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Abstract

Direction-of-Arrival estimation accuracy using arc array geometry is considered in this paper.
There is a scanty use of Uniform Arc Array (UAA) in conjunction with Cramér-Rao bound (CRB)
for Direction-of-Arrival estimation. This paper proposed to use Uniform Arc Array formed from
a considered Uniform Circular Array (UCA) in conjunction with CRB for Direction-of-Arrival
estimation. This Uniform Arc Array is obtained by squeezing all sensors on the Uniform Circular
Array circumference uniformly onto the Arc Array. Cramér-Rao bounds for the Uniform Arc
Array and that of the Uniform Circular Array are derived. Comparison of performance of the
Uniform Circular Array and Uniform Arc Array is done. It was observed that Uniform Arc Array
has better estimation accuracy as compared to Uniform Circular Array when number of sensors
equals four and five and azimuth angle ranging between π

9
and 7

18
π and also 10

9
π and 25

18
π.

However, UCA and UAA have equal performance when the number of sensors equals three and
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the azimuth angle ranging between 0 and 2π. UCA has better estimation accuracy as compared
to UAA when the number of sensors equals four and five and the azimuth angle ranging between
π
2
and π and also 3

2
π and 2π.

Keywords: Array signal processing; direction-of-arrival estimation; direction finding; Cramér-Rao
bound; uniform arc array.

2010 Mathematics Subject Classification: 53C25; 83C05; 57N16.

1 Introduction

The general performance of any Direction Finding (DF) system is a function of both the DF
algorithm used and array geometry [1]. Direction-of-Arrival (DOA)/Direction Finding (DF) is
the direction in which an incoming signal arrives into an array of sensors (a group of sensors
arranged/organized in a particular pattern). Direction-of-arrival (DOA) estimation is a fundamental
problem in array signal processing. Various algorithms have been proposed for DOA estimation
such as Multiple Signal Classification (MUSIC), Root-MUSIC, propagator methods, high-order
cumulant method, Maximum Likelihood Method (MLM), among many others [2]. Its accuracy is
an important parameter of any direction finding system [3]. Cramér-Rao bound is a very important
tool for evaluating the accuracy of any parameter estimation method since it provides a lower bound
on the accuracy of any unbiased estimator [3]. Performance of various estimators (MUSIC, MLE,
among others) is compared to the ultimate performance corresponding to CRB [4]. Regardless of
the specific algorithm used, CRB lower bounds estimation error variance of any unbiased estimator
[5]. Therefore, CRB provides an algorithm-independent basis against which various algorithms are
compared [3]. It has been used in several works such as Cramér-Rao bound for DF using an L-
Shaped Array with Non-orthogonal Axes [6], accuracy limits through Cramér-Rao Lower Bound for
Geolocation of Internet hosts [7], among many others. One of the simplest array geometry which
enables signal array-processing algorithms to be applied easily is the uniform linear array (ULA)
[8]. It has useful properties such as application of forward-backward spatial smoothing to only ULA
because of the Vandermonde structure of the array steering matrix, application of fast subspace
algorithms such as Root-MUSIC in ULA, hence computational efficiency increment [9]. However,
ULA will limit azimuth field of view below π (normally 2

3
π) since it is one-dimensional. The solution

to this problem requires the use of several ULAs arranged in triangular or rectangular shape among
others or rotating the ULA a few times to cover the entire azimuth spread. This use of several
ULAs increases the cost as well as collecting a lot of data [10]. There are other geometries that
have been employed to resolve the problem of the non-uniform performance of ULA in all directions
which degrades Direction-of-Arrival (DOA) estimation performance in angles close to endfire [11].
In 2-dimension angle estimation, Uniform Circular Array (UCA) which is a geometrical pattern
with a number of sensors equally spaced on the circumference of a circle is highly used due to its
attractive advantages such as it provides a 2π full azimuth coverage, has an extra information on
elevation angle and its direction pattern is almost unchanged [12]. However, UCA is expected to
suffer serious mutual coupling effects because of the compelling coupling that can occur between
elements that are positioned diametrically opposite one another together with the strong coupling
between adjacent elements. This effect can be compensated since the symmetry of the UCA can
break down into a series of symmetrical spatial components using the array excitation [8]. There
are different array configurations/geometries in the literature used for DF such as linear, planar and
conformal arrays [13]. Unfortunately, very little is known about the arrangement of sensors along
a curve or an arc [14]. An arc is a portion or a part of the circumference of a circle. A uniform
arc array is a geometrical pattern with a number of sensors equally spaced on an arc. Circular arcs
were treated as very important features in the field of pattern recognition such as they were used for
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recognizing curved objects. They were also used as shape features for recognition purpose and closed
circular arcs were used as local features in identifying and locating partially occluded objects [15].
There is a scanty use of uniform arc array geometry for DOA estimation and therefore this paper
proposed to form a uniform arc array (UAA) out of a uniform circular array to be considered for
DOA estimation. This paper proposed to use a UCA with a known finite isotropic/identical number
of sensors with a narrow-band far-field signal emitted by a single source arriving on the UCA. It
is organized as follows; In Section 2 the array geometries (UCA and UAA) will be developed. In
section 3 a statistical data model for the geometries will be assumed. In section 4 the CRB of the
suggested geometries will be derived. Section 5 will be analysis and section 7 will be the conclusion.

2 Development of the Array Geometries

2.1 Uniform Circular Array

A uniform circular array (UCA) with L number of isotropic sensors equally spaced on the circumference
of the circle of radius R, at points S1 to SL is considered. These sensors will be considered to be
arranged anticlockwise from the positive x-axis where the direction of arrangement does not matter
since the sensors are identical. The Cartesian coordinate system origin is assumed to be the central
point of the UCA array denoted as O. This point is considered as the reference point. A plane-
wave signal from a far-field source is assumed to arrive on O at an azimuth angle ϕ measured
anticlockwise from the positive x-axis, and a polar angle θ measured clockwise from the positive
z-axis. See Figure 2.1. The position vector for the ℓth sensor on the UCA, p

ℓ
, is given by [16]

Fig. 1. Uniform Circular Array (UCA).

pℓ =
[
R cos

(
2π(ℓ−1)

L

)
, R sin

(
2π(ℓ−1)

L

)
, 0
]T

(2.1)
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and the array manifold vector for the UCA is

aUCA =



exp
{
i 2πR

λ
sin(θ) cos(ϕ)

}
exp

{
i 2πR

λ
sin(θ) cos(ϕ− 2π

L
)
}

exp
{
i 2πR

λ
sin(θ) cos(ϕ− 4π

L
)
}

...

exp
{
i 2πR

λ
sin(θ) cos

(
ϕ− 2π(L−1)

L

)}

 . (2.2)

2.2 Uniform Arc Array

A uniform arc array (UAA) from the UCA formed by squeezing all L number of sensors onto an
arc of a known angle is considered. The sensors are arranged anticlockwise from the positive x-axis.
See Figure 2.2. The position vector for the ℓth sensor on the UAA, pℓ , is given by

Fig. 2. Uniform Arc Array (UAA).

pℓ =
[
R cos

(
2π(ℓ−1)
L(L−1)

)
, R sin

(
2π(ℓ−1)
L(L−1)

)
, 0
]T

(2.3)

and the corresponding array manifold vector is given by

aUAA =



exp
{
i 2πR

λ
sin(θ) cos(ϕ)

}
exp

{
i 2πR

λ
sin(θ) cos

(
ϕ− 2π

L(L−1)

)}
exp

{
i 2πR

λ
sin(θ) cos

(
ϕ− 4π

L(L−1)

)}
...

exp
{
i 2πR

λ
sin(θ) cos

(
ϕ− 2π

L

)}


. (2.4)
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3 Statistical Data Model

Signals impinging on the array of sensors from a certain source are affected/corrupted by additive
noise. Thus, at the array of sensors, the observed data for the geometry used is given by [6]

z(m) = a(θ, ϕ)s(m) + n(m), m = 1, 2, ...,M ; (3.1)

where s(m) is the signal received at mth time instant and n(m) is the additive noise. From the
model, n(m), z(m) and a(θ, ϕ) will be L× 1 vectors. For multiple time instants/snapshots M , the
data model vector will be given by [6]

z̃ = s⊗ a(θ, ϕ) + ñ (3.2)

where

z̃ = [z(1), z(2), · · · , z(M)]T ,

s = [s(1), s(2), · · · , s(M)]T ,

ñ = [n(1),n(2), · · · ,n(M)]T ,

and ⊗ is the Kronecker product. For simplicity, a pure-tone incident signal s(m) = σs exp[j(2πfm+
φ)] will be considered, where σs is the signals’ amplitude and φ is the phase angle. The random
variables z(1), z(2), · · · , z(M) are assumed to be independent and have the same probability distribution.
Therefore, the random variable z̃ has a mean of µ(θ, ϕ) and a covariance matrix of Γ(θ, ϕ) hence
it follows a normal distribution z ∼ N (µ,Γ) which has a probability density function (likelihood
function) p(z̃|Θ) where Θ = {θ, ϕ}, i.e.

p(z̃|Θ) =
1√
|2πΓ|

exp

{
−1

2
[z̃− µ]HΓ−1[z̃− µ]

}
. (3.3)

In the above, µ = E[z̃], Γ = E
{
[z̃− µ][z̃− µ]H

}
and | · | denotes the corresponding matrix

determinant.

µ = E[z̃] = E[s⊗ a(θ, ϕ) + n]

= E[s⊗ a(θ, ϕ)] + E[ñ]

= s⊗ a(θ, ϕ) (3.4)

and

Γ = E
{
[z̃− µ][z̃− µ]H

}
= E[ññH ]

= σ2
n
IML×ML. (3.5)

4 Derivation of the Cramér-Rao Bound

To get the Cramér-Rao bound, the inverse of the Fisher Information Matrix (FIM) is obtained.
Since the observed data vector, in this case, is complex-valued, a simplified FIM for multivariate
normal distribution is given by [6]

[F(ξ)]k,r = 2Re

{[
∂µ

∂ξk

]H

Γ−1 ∂µ

∂ξr

}

+Tr

{
Γ−1 ∂Γ

∂ξk

Γ−1 ∂Γ

∂ξr

}
. (4.1)

In the above, Re{·} indicates the real part of the identity inside the curly brackets, ξ = [θ, ϕ] is the
set of unknown parameters and k, r = {1, 2}.

5



Nyokabi et al.; JAMCS, 33(1): 1-15, 2019; Article no.JAMCS.48578

4.1 Cramér-Rao Bound for the Uniform Circular Array

The FIM here will be given by [6]

F(ξ) =

[
[F(ξ)]1,1 [F(ξ)]1,2
[F(ξ)]2,1 [F(ξ)]2,2

]
(4.2)

and therefore computing the entries of the FIM one by one we have, Using (2.2), (3.4) and (3.5) in
(4.1), we have

[F(ξ)]1,1 = ML

(
2πRσs

λσn

)2

cos2(θ), (4.3)

[F(ξ)]2,2 = ML

(
2πRσs

λσn

)2

sin2(θ), (4.4)

[F(ξ)]1,2 = [F(ξ)]2,1

= 0. (4.5)

Thus,

F(ξ) = ML

(
2πRσs

λσn

)2 [
cos2(θ) 0

0 sin2(θ)

]
. (4.6)

Hence, Cramér-Rao bounds for the UCA are

CRBUCA(θ) =
1

ML

(
λσn

2πRσs

)2

sec2 θ (4.7)

and

CRBUCA(ϕ) =
1

ML

(
λσn

2πRσs

)2

csc2 θ. (4.8)

4.2 Cramér-Rao Bound for the Uniform Arc Array

Using (2.4), (3.4) and (3.5) in (4.1), we have

[F(ξ)]1,1 = 8M

{
πRσs

λσn

}2 {
L

2
+D

}
cos2(θ), (4.9)

[F(ξ)]1,2 = [F(ξ)]2,1

= −8M

{
πRσs

λσn

}2

{F} sin(θ) cos(θ), (4.10)

[F(ξ)]2,2 = 8M

{
πRσs

λσn

}2 {
L

2
− E

}
sin2(θ), (4.11)

where

D =
sin

(
2π

L−1

)
cos

(
2π
L

− 2ϕ
)

2 sin
(

2π
L(L−1)

) ,
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E =
sin

(
2π

L−1

)
cos

(
2π
L

+ 2ϕ
)

2 sin
(

2π
L(L−1)

) ,

F =
− sin

(
2π

L−1

)
sin

(
− 2π

L
+ 2ϕ

)
2 sin

(
2π

L(L−1)

) .

The Cramér-Rao bounds become

CRBUAA(θ) =
λ2σ2

n
sec2(θ)γ

8π2MR2σ2
s
β

(4.12)

and

CRBUAA(ϕ) =
λ2σ2

n
csc2(θ)α

8π2MR2σ2
s
β

(4.13)

where

γ =
L

2
− E,

=
L− sin

(
2π

L−1

)
csc

(
2π

L(L−1)

)
cos

(
2π
L

+ 2ϕ
)

2
, (4.14)

α =
L

2
+D,

=
L+ sin

(
2π

L−1

)
csc

(
2π

L(L−1)

)
cos

(
2π
L

− 2ϕ
)

2
, (4.15)

β =

(
L

2
+D

)(
L

2
− E

)
− F 2

=
1

4

{
L− sin

(
2π

L− 1

)
csc

(
2π

L(L− 1)

)}
×1

4

{
cos

(
2π

L
+ 2ϕ

)}
×
{
L+ sin

(
2π

L− 1

)
csc

(
2π

L(L− 1)

)}
×
{
cos

(
2π

L
− 2ϕ

)}
−1

4

{
sin

(
2π

L− 1

)
csc

(
2π

L(L− 1)

)}2

×1

4

{
sin

(
−2π

L
+ 2ϕ

)}2

. (4.16)
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5 Analysis

5.1 CRB for the Elevation Angle θ

From equations (4.7), (4.12), (4.14) and (4.16)

CRBUCA(θ)

CRBUAA(θ)

=
2β

Lγ

=

L+ sin
(

2π
L−1

)
csc

(
2π

L(L−1)

)
cos

(
2π
L

− 2ϕ
)

L


−

{
sin

(
2π

L−1

)
csc

(
2π

L(L−1)

)
sin

(
− 2π

L
+ 2ϕ

)}2

L
{
L− sin

(
2π

L−1

)
csc

(
2π

L(L−1)

)
cos

(
2π
L

+ 2ϕ
)}

=
L+ T1

L
− T2

2

LT3
(5.1)

where,

T1 = sin

(
2π

L− 1

)
csc

(
2π

L(L− 1)

)
cos

(
2π

L
− 2ϕ

)
,

T2 = sin

(
2π

L− 1

)
csc

(
2π

L(L− 1)

)
sin

(
−2π

L
+ 2ϕ

)
,

T3 = L− sin

(
2π

L− 1

)
csc

(
2π

L(L− 1)

)
cos

(
2π

L
+ 2ϕ

)
.

5.1.1 When
CRB

UCA
(θ)

CRB
UAA

(θ) < 1

From (5.1) we have

L+ T1

L
− T2

2

LT3
< 1

(5.2)

which implies

T1T3 < T2
2. (5.3)

This means that UCA has better estimation accuracy as compared to UAA for L = 4, 5, π
2
≤ ϕ ≤ π

and 3
2
π ≤ ϕ ≤ 2π.

5.1.2 When
CRB

UCA
(θ)

CRB
UAA

(θ) = 1

From (5.1) we have

L+ T1

L
− T2

2

LT3
= 1

(5.4)

8



Nyokabi et al.; JAMCS, 33(1): 1-15, 2019; Article no.JAMCS.48578

which implies

T1T3 = T2
2. (5.5)

This means that UAA and UCA have same performance for L = 3 and 0 ≤ ϕ ≤ 2π.

5.1.3 When
CRB

UCA
(θ)

CRB
UAA

(θ) > 1

From (5.1) we have

L+ T1

L
− T2

2

LT3
> 1

(5.6)

which implies

T1T3 > T2
2. (5.7)

This means that UAA has better estimation accuracy as compared to UCA for L = 4, 5, π
9
≤ ϕ ≤

7
18
π and 10

9
π ≤ ϕ ≤ 25

18
π.

5.2 CRB for the Azimuth Angle ϕ

From equations (4.8), (4.13), (4.15) and (4.16)

CRBUCA(ϕ)

CRBUAA(ϕ)

=
2β

Lα

=

L− sin
(

2π
L−1

)
csc

(
2π

L(L−1)

)
cos

(
2π
L

+ 2ϕ
)

L


−

{
sin

(
2π

L−1

)
csc

(
2π

L(L−1)

)
sin

(
− 2π

L
+ 2ϕ

)}2

L
{
L+ sin

(
2π

L−1

)
csc

(
2π

L(L−1)

)
cos

(
2π
L

− 2ϕ
)}

=
L− T4

L
− T2

2

LT5
(5.8)

where,

T4 = sin

(
2π

L− 1

)
csc

(
2π

L(L− 1)

)
cos

(
2π

L
+ 2ϕ

)
,

T2 = sin

(
2π

L− 1

)
csc

(
2π

L(L− 1)

)
sin

(
−2π

L
+ 2ϕ

)
,

T5 = L+ sin

(
2π

L− 1

)
csc

(
2π

L(L− 1)

)
cos

(
2π

L
− 2ϕ

)
.

5.2.1 When
CRB

UCA
(ϕ)

CRB
UAA

(ϕ) < 1

From (5.8) we have

L− T4

L
− T2

2

LT5
< 1

(5.9)

9
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which implies

−T4T5 < T2
2. (5.10)

This means that UCA has better estimation accuracy as compared to UAA for L = 4, 5, π
2
≤ ϕ ≤ π

and 3
2
π ≤ ϕ ≤ 2π.

5.2.2 When
CRB

UCA
(ϕ)

CRB
UAA

(ϕ) = 1

From (5.8) we have

L− T4

L
− T2

2

LT5
= 1

(5.11)

which implies

−T4T5 = T2
2. (5.12)

This means that UAA and UCA have same performance for L = 3 and 0 ≤ ϕ ≤ 2π.

5.2.3 When
CRB

UCA
(ϕ)

CRB
UAA

(ϕ) > 1

From (5.8) we have

L− T4

L
− T2

2

LT5
> 1

(5.13)

which implies

−T4T5 > T2
2. (5.14)

This means that UAA has better estimation accuracy as compared to UCA for L = 4, 5, π
9
≤ ϕ ≤

7
18
π and 10

9
π ≤ ϕ ≤ 25

18
π.

6 Numerical Simulations

The following diagrams validates the numerical results in section (5).

Ratios (5.1) and (5.8) are discontinuous when csc
(

2π
L(L−1)

)
= ∞ at which points sin

(
2π

L(L−1)

)
= 0.

6.1 The Special Cases of
CRB

UCA
(θ)

CRB
UAA

(θ)
and

CRB
UCA

(ϕ)

CRB
UAA

(ϕ)

6.1.1
CRB

UCA
(θ)

CRB
UAA

(θ) < 1 and
CRB

UCA
(ϕ)

CRB
UAA

(ϕ) < 1

When L = 4 and 5 and π
2
≤ ϕ ≤ π, then from equations (5.1) and (5.8) we obtain Figure 6.1.1.

When L = 4 and 5 and 3
2
π ≤ ϕ ≤ 2π, then from equations (5.1) and (5.8) we obtain Figure 6.1.1.

From Figures 6.1.1-6.1.1, it is clear that when L = 4 and 5, π
2
≤ ϕ ≤ π and 3

2
π ≤ ϕ ≤ 2π, the ratios

(5.1) and (5.8) are less than 1.

10
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Fig. 3. Comparison of CRBUCA(θ) and CRBUAA(θ).

Fig. 4. Comparison of CRBUCA(ϕ) and CRBUAA(ϕ).

6.1.2
CRB

UCA
(θ)

CRB
UAA

(θ) > 1 and
CRB

UCA
(ϕ)

CRB
UAA

(ϕ) > 1

When L = 4 and 5 and π
9
≤ ϕ ≤ 7

18
π, then from equations (5.1) and (5.8) we obtain Figure 6.1.2.

When L = 4 and 5 and 10
9
π ≤ ϕ ≤ 25

18
π, then from equations (5.1) and (5.8) we obtain Figure 6.1.2.

From Figures 6.1.2-6.1.2, it is also clear that when L = 4 and 5, π
9
≤ ϕ ≤ 7

18
π and 10

9
π ≤ ϕ ≤ 25

18
π,

the ratios (5.1) and (5.8) are greater than 1.

11
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Fig. 5.
CRB

UCA
(θ)

CRB
UAA

(θ)
< 1 and

CRB
UCA

(ϕ)

CRB
UAA

(ϕ)
< 1 when L = 4 and 5 and π

2
≤ ϕ ≤ π

Fig. 6.
CRB

UCA
(θ)

CRB
UAA

(θ)
< 1 and

CRB
UCA

(ϕ)

CRB
UAA

(ϕ)
< 1 when L = 4 and 5 and 3

2
π ≤ ϕ ≤ 2π

6.1.3
CRB

UCA
(θ)

CRB
UAA

(θ) = 1 and
CRB

UCA
(ϕ)

CRB
UAA

(ϕ) = 1

This case was only possible for L = 3 and 0 ≤ ϕ ≤ 2π and therefore from equations (5.1) and (5.8)
we obtain Figure 6.1.3. From Figure 6.1.3 it is clear that when L = 3 and 0 ≤ ϕ ≤ 2π for both θ

12
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Fig. 7.
CRB

UCA
(θ)

CRB
UAA

(θ)
> 1 and

CRB
UCA

(ϕ)

CRB
UAA

(ϕ)
> 1 when L = 4 and 5 and π

9
≤ ϕ ≤ 7

18
π

Fig. 8.
CRB

UCA
(θ)

CRB
UAA

(θ)
> 1 and

CRB
UCA

(ϕ)

CRB
UAA

(ϕ)
> 1 when L = 4 and 5 and 10

9
π ≤ ϕ ≤ 25

18
π

13
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Fig. 9.
CRB

UCA
(θ)

CRB
UAA

(θ)
= 1 and

CRB
UCA

(ϕ)

CRB
UAA

(ϕ)
= 1 when L = 3 and 0 ≤ ϕ ≤ 2π

and ϕ, ratios (5.1) and (5.8) are equal to one.

7 Conclusions

The CRBs for both UCA and UAA were derived. Comparison of performance was done by getting
the ratio of the obtained CRBs for both elevation angle and azimuth angle. The ratio of the CRB
of UCA to the CRB of UAA for both elevation angle and azimuth angle being less than one implied
that UCA has better estimation accuracy as compared to UAA.The ratio of the CRB of UCA to
that of UAA for both elevation angle and azimuth angle being equals to one implied that UCA and
UAA have equal performance. The ratio of the CRB of UCA to that of UAA for both elevation
angle and azimuth angle being greater than one implied that UAA has better estimation accuracy
as compared to UCA. Therefore, the proposed Uniform Arc Array has better estimation accuracy as
compared to Uniform Circular Array when number of sensors equals four and five and azimuth angle
ranging between π

9
and 7

18
π and also 10

9
π and 25

18
π. Future studies can focus on better estimation

accuracy when the number of sensors increases.
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