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Abstract: In recent years, with the reduction of the cost of microsatellites, the development of
commercial rockets and the multi-satellite launching technology, the construction of large-scale
constellations in low-Earth orbit (Mega-Constellations) has become a development trend. Since
the motion of LEO satellites is affected by perturbations such as non-spherical gravitational fields
and atmospheric drag, as well as the uncertainty of actuators, measurement systems, and dynamic
models, it is easy to cause divergence of constellation configurations. The station-keeping control
of the satellites is crucial for the stable operation of the mega-constellation. Aiming at this problem,
this paper proposes an uncertainty propagation approach based on semi-analytical and Monte
Carlo for LEO Mega-Constellations. Under the assumption that initial uncertainty on the osculating
trajectory is Gaussian distribution, through hypothesis testing analysis, the uncertainty propagation
simulations of a single satellite suggest that the satellite argument of latitude and the relative phase
of co-plane satellites can be both considered as Gaussian distributions with zero means. Multi-group
Monte Carlo simulations with product-based least-squares surface fitting establish an approximate
mapping between initial and terminal errors. The mapping provides an efficient method for deviation
prediction and can be used to design the station-keeping control strategy.

Keywords: station-keeping; mega-constellations; uncertainty propagation; Monte Carlo

1. Introduction

The development of microsatellites leads to a general trend in Networking with LEO
mega-constellations. Many countries and companies have proposed building this type of
constellation, such as OneWeb and Starlink in the United States [1]. Of these, the Starlink
communications constellation of 12,000 satellites is expected to be constructed around 2025,
and accumulated to 42,000 satellites afterward [2].

Compared with the traditional middle and high Earth orbit navigation constellations,
the LEO mega-constellations are characterized by low orbit height, dense satellite distribu-
tion, large perturbation, and high requirements for station position maintenance. Although
the relative phase between satellites will not drift in constellations with the same value
of mean elements, due to errors in the measurement data, dynamic model, solution algo-
rithm, actuator, and other factors, the constellation configuration will be out of order in the
uncontrolled state, leading to a high risk of collisions within the constellations.

To investigate how much the relative phase between satellites in the same orbital
plane in the LEO mega-constellations will be drifted by the perturbations, it is critical
to first point out the nominal value of the constellation design. From the semi-analytic
theory [3], the satellite orbits can be described by their initial mean elements. If the initial
mean elements of the constellation are identical, the relative phases within the constellation
will not theoretically diverge. So, the constellation nominal values can be considered a set
of mean elements. Accordingly, the problem of phase evolution affected by perturbations
can be viewed as the initial uncertainties propagation of the constellation: how to establish
the mapping relationship of the terminal state to the initial state. The initial state is the
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deviation of the position velocity of the two satellites from the nominal design value, and
the terminal state is the deviation of the relative phase of the two satellites from the design
nominal value after a while.

As widely recognized, orbit propagation is a fundamental problem in astrodynamics.
There are three main approaches for modeling orbit propagation [4]: the numerical ap-
proach, analytical approach, and semi-analytical approach. The numerical approach [5,6]
has high precision and is suitable for scenarios with complex mechanical environments,
but consumes more computational resources. The analytical approach [7] is developed on
Brouwer’s perturbation solutions [8,9], using an approximate analytical solution instead
of the original ordinary differential equations of motion, preserving the main features
of the perturbation while neglecting higher-order small terms. The analytical approach
makes the calculation much more efficient while losing some accuracy. The semi-analytical
approach [10,11] mixes the analytical and numerical approaches’ advantages, classification
of perturbation solutions into long-term, long-period, and short-period terms according
to perturbation characteristics. Bezděk [12] presents the computational efficiency strength
of the semi-analytical approach in long-term dynamics. Golikov [13] presents a dynamic
approach of satellite formation flights based on the THEONA semi-analytical theory with
arbitrary values of the eccentricity.

For general stochastic dynamical systems, the evolution equation of the probability
density over time satisfies the Fokker–Planck equation [14] (FPE), while for orbital dynam-
ical systems with high dimensionality (6 dimensions) and nonlinear perturbations, the
FPE solution becomes very tough. Thus, the probability density function (PDF) evolution
often requires the assumption of local linearization and only the lower order moments
(e.g., mean and covariance matrices) are analyzed. Currently, nonlinear uncertainty prop-
agation approaches include polynomial chaos expansions [15], state transition tensor
approaches [16,17], differential algebra approaches [18,19], and Gaussian mixture model
approaches [20]. Most of the theories of uncertainty propagation are, however, focused on
explaining the behavior of medium and high Earth orbit navigation constellations, seldom
involving LEO mega-constellations. A well-known and robust approach used to study the
uncertainty propagation problem is the Monte Carlo simulation [21], and the distribution of
terminal states is obtained through the steps of randomly taking a large number of samples,
high-precision simulation, and statistical analysis. The numerical approach-based Monte
Carlo simulation has a long computation time and high hardware requirements. A possible
solution to the problem at hand is applying the semi-analytical dynamics model, which
does not need to propagate the orbital elements of the satellite or the position and velocity
vectors of the satellite to obtain the position information of the satellite at a specific time
and therefore has a smaller computational memory and computational load [22].

This paper aims to develop an overarching framework to reveal the uncertainty
propagation law of the phase of LEO mega-constellations. The perturbation solution
is modeled in Section 2. Section 3 describes the Monte Carlo uncertainty propagation
approach. Section 4 carries out a numerical simulation. Conclusions are drawn in Section 5.

2. Modeling the Orbital Dynamics

In the geocentric equatorial inertial coordinate systems, the orbit motion of a satellite
can be reduced to a perturbed two-body problem, and the motion equation is a set of
ordinary differential equations [23]{

r̈ = F0(r) + Fε(r, ṙ, t; ε),

r(t0) = r0, ṙ(t0) = ṙ0,
(1)

where r and ṙ are the position vectors and velocity vectors of the satellite, t is the propaga-
tion time, F0 is the two-body motion acceleration of the central body, Fε is the perturbation
acceleration, and ε is a small parameter. Utilizing asymptotic expansion and other ap-



Aerospace 2022, 9, 128 3 of 13

proaches, the power series form solution of small parameter ε can be constructed [24],
such as

κ(t) = κ(0)(t) + εβ(t) + ε2β2(t) + · · ·+ εl βl(t), (2)

where κ = (a, e, i, Ω, ω, M)T are the classical orbital elements: semimajor axis, eccentricity,
inclination, right ascension of the ascending node, argument of perigee, and mean anomaly
at epoch, respectively. By substituting the formal solution into the original perturbed motion
equation and comparing the coefficients of the same power εl at both ends, the perturbation
solutions of each order can be obtained. By the average approach, the perturbation solutions
can be divided into secular terms, long-period terms, and short-period terms according to
forms of presentation.{

κ(t) = f (κ0, t) = κ(t) + κlp(t) + κsp(t),

κ(t) = κ0 + (δn + κ
(1)
sec + κ

(2)
sec + · · · )(t− t0).

(3)

Among them, t0 is the epoch time, κ(t) are the osculating elements at time κ(t), κ0
is the initial mean elements, κ(t) is the mean elements at time t, δ = [0, 0, 0, 0, 0, 1]T , n is
the mean motion of satellite in two body, κsec(t− t0) makes up the secular terms, κlp(t)
consists of the long period terms, and κsp(t) consists of the short-period terms. Besides this,
Equation (3) describes the identity mapping between mean elements and the osculating
elements, which can be solved by numerical algorithm such as Newton iteration [25].

LEO constellations are mainly affected by atmospheric drag and non-spherical Earth
gravity. The first-order and second-order secular term of J2, the first-order long-period
term of J2, the first-order short-period term of J2, and the secular term of atmospheric drag
are involved in the semi-analytical dynamic model. It should be noted that in order to
avoid the abnormal matrix caused by the large numerical difference among the Keplerian
elements, distance and time variables need to be normalized by [Re] and [(Re3/µ)1/2],
where Re is the Earth’s equatorial radius and µ is the Earth’s gravitational constant. Thus,
the mean motion n is expressed by a−3/2. Detailed semi-analytical solutions are recorded
in [26].

2.1. Earth Non-Spherical Gravity Perturbation Solution

The bulge at equator exerts a pull on the satellite toward the equatorial plane. Whether
the satellite is above or below the equatorial plane, the orbital plane will move toward
the equator and make a precession motion [27]. The main perturbation solutions of J2 are
listed below.

The first-order secular terms of J2 are

a(1)sec = 0, e(1)sec = 0, i(1)sec = 0,

Ω(1)
sec = −

3J2

2p2 cos i n,

ω
(1)
sec =

3J2

2p2

(
2− 5

2
sin2 i

)
n,

M(1)
sec =

3J2

2p2

(
1− 3

2
sin2 i

)√
1− e2 n.

(4)

The second-order secular terms of J2 are
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a(2)sec = 0, e(2)sec = 0, i(2)sec = 0,

Ω(2)
sec = −

(
3J2

2p2

)2

cos i
[(

3
2
+

1
6

e2 +
√

1− e2
)
− sin2 i

(
5
3
− 5

24
e2 +

3
2

√
1− e2

)]
n,

ω
(2)
sec =

(
3J2

2p2

)2[(
4 +

7
12

e2 + 2
√

1− e2
)
− sin2 i

(
103
12

+
3
8

e2 +
11
2

√
1− e2

)
+ sin4 i

(
215
48
− 15

32
e2 +

15
4

√
1− e2

)]
n,

M(2)
sec =

(
3J2

2p2

)2√
1− e2

[
1
2

(
1− 3

2
sin2 i

)2√
1− e2 +

(
5
2
+

10
3

e2
)
− sin2 i

(
19
3

+
26
3

e2
)

+ sin4 i
(

233
48

+
103
12

e2
)
+

e4

1− e2

(
35
12
− 35

4
sin2 i +

315
32

sin4 i
)]

n.

(5)

The first-order short-period terms of J2 are

a(1)sp =
3J2
2 a

{
2
3
(1− 3

2
sin2 i)

[
a3

r3 − (1− e2)−3/2
]
+ sin2 i

a3

r3 cos
(

2 f + 2 ω

)}
,

e(1)sp =

(
3J2

2p2

){
1
3
(1− 3

2
sin2 i)

[
e
(

1

1 +
√

1− e2
+
√

1− e2
)
+ cos f

(
3(1 + e cos f ) + (cos f )2

)]
+

1
2

sin2 i
[(

e + cos f
(

3(1 + e cos f ) + (e cos f )2
))

cos 2( f + ω)−
(

1− e2
)(

cos( f + 2ω) +
1
3

cos(3 f + 2ω)

)]}
,

i(1)sp (t) =
(

3J2

2p2

)
sin 2i

{
e
4

cos( f + 2ω) +
1
4

cos(2 f + 2ω) +
e

12
cos(3 f + 2ω)

}
,

Ω(1)
sp (t) = −

(
3J2

2p2

)
cos i{( f −M + e sin f )− 1

2

[
e sin( f + 2ω) + sin(2 f + 2ω) +

e
3

sin(3 f + 2ω)

]}
,

ω
(1)
sp (t) = − cos iΩ(1)

sp (t) + [ω
(1)
sp (t)]1,

[ω
(1)
sp (t)]1 =

1
e

(
3J2

2p2

){(
1− 3

2
sin2 i

)[
( f −M + e sin f )e +

(
1− e2

4

)
sin f +

e
2

sin 2 f +
e2

12
sin 3 f

]
+ sin2 i

[
−
(

1
4
− 7

16
e2
)

sin( f + 2ω) +
3
4

e sin 2( f + ω) +

(
7
12

+
11
48

e2
)

sin(3 f + 2ω)

+
3
8

e sin(4 f + 2ω) +
e2

16
(sin(5 f + 2ω) + sin( f − 2ω))

]}
,

M(1)
sp (t) = −

√
1− e2[ω

(1)
sp (t)]1 +

(
3J2

2p2

)√
1− e2{(

1− 3
2

sin2 i
)
( f −M + e sin f ) + sin2 i

[
3
4

e sin( f + 2ω) +
3
4

sin(2 f + 2ω) +
1
4

e sin(3 f + 2ω)

]}
.

(6)

The first-order long-period terms of J2 are

a(1)lp (t) = 0,

e(1)lp (t) =
(

3J2

2p2

)
2 sin2 i

4− 5 sin2 i

(
7
24
− 5

16
sin2 i

)
(1− e2)e cos 2ω,

i(1)lp (t) = −
(

3J2

2p2

)
sin 2i

4− 5 sin2 i

(
7

24
− 5

16
sin2 i

)
e2 cos 2ω,

Ω(1)
lp (t) = −

(
3J2

2p2

)
cos i(

4− 5 sin2 i
)2

(
7
3
− 5 sin2 i +

25
8

sin4 i
)

e2 sin 2ω,

ω
(1)
lp (t) = −

(
3J2

2p2

)
1(

4− 5 sin2 i
)2

[
sin2 i

(
25
3
− 245

12
sin2 i +

25
2

sin4 i
)

− e2
(

7
3
− 17

2
sin2 i +

65
6

sin4 i− 75
16

sin6 i
)]

sin 2ω,

M(1)
lp (t) =

(
3J2

2p2

) √
1− e2

4− 5 sin2 i
sin2 i

[(
25
12
− 5

2
sin2 i

)
− e2

(
7

12
− 5

8
sin2 i

)]
sin 2ω.

(7)
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By substituting short-period terms (Equation (6)) and long-period terms (Equation (7))
into the first equation in Equation (3), the mean elements and osculating elements conver-
sion can be realized.

2.2. Perturbation Solution of Atmospheric Drag

The secular terms of atmospheric drag are

asec,drag = −B1a2n
[
(I0 + 2eI1) + C cos 2ωI2 + νz2

0

(
3
4

I0 − I1 +
1
4

I2

)]
,

esec,drag = −B1an
[(

e
2

I0 + I1 +
e
2

I2

)
+

C
2

cos 2ω(I1 + I3)

+ νz2
0

(
−1

2
I0 +

7
8

I1 −
1
2

I2 +
1
8

I3

)]
,

isec,drag = −1
4

B2a sin i(I0 + cos 2ωI2),

Ωsec,drag = −1
4

B2a sin 2ωI2,

ωsec,drag = − cos iΩsec,drag − B1an
1
e

C sin 2ω

[
e
4

I0 −
1
2

I1 − eI2 +
1
2

I3 +
3
4

eI4

]
,

Msec,drag = −(ωsec,drag + cos iΩsec,drag)−
3n
4a

asec,drag(t− t0),

(8)

where ν is the atmospheric density scale height rate, Im(z) is the Bessel function of the first
type of virtual variables, and variable z abides by

z =
ae

Hp0

. (9)

Other intermediate quantities are given as follows:

Im(z) = ∑
k>0

1
k!(m + k)!

(
z
2

)m+2k

, (10)

B1 =
CDS

m
ρp0 F2 exp

(
− 1

Hp0

(a− a0 + a0e0)− C cos 2ω0

)
, (11)

B2 =
CDS

m
ρp0 Fne exp

(
− 1

Hp0

(a− a0 + a0e0)− C cos 2ω0

)
, (12)

F = 1−
rp0 ne

vp0

cos i0, C =
1
2

(
εe

Hp0

rp0

)
sin2 i0, (13)

where S is the cross-sectional reference area, m is the satellite mass, CD is the drag coefficient,
ne is the Earth spin rate, the elements (a0, e0, i0, ω0) are the initial Keplerian elements, ρp0

and Hp0 are atmospheric density and the density scale height of the initial perigee of the
satellite orbit, and rp0 and vp0 are the position and velocity at the same point.

3. Uncertainty Propagation Approach of Constellation Phase

The uncertainty propagation problem satisfying the dynamic constraints Equation (1)
can be described as: Given the initial state ξ0 and the PDF p(t0, ξ0) of the initial state
deviation δξ0, find the PDF p(t, ξ) of the state ξ(t) of the dynamical system at any moment
or its statistical moments of each order. Generally only the first two order statistical
moments of the deviation δξ, i.e., the mean and covariance matrix, are of interest.

Because controllers, thrusters, and observers have a direct influence on the instanta-
neous state of the satellite, and the terminal state quantity we are interested in is the mean
elements of the satellite, the samples are generated on the satellite’s osculating trajectory,
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and the terminal samples appear around the mean trajectory. Therefore, the initial state
errors are modeled as a probability distribution of three-dimensional position/velocity
components x0 = [r, v]T of the two co-plane satellites at the moment t0. Since the short
period effect is removed by averaging in the dynamics model, only long and long-period
effects are retained, so the different initial positions of satellites in one orbital plane do not
influence the evolution process. It means that the relative phase evolution of any two co-
plane satellites can represent the divergence of this whole orbital plane. The relative phase
∆φ = φ1(t)− φ2(t) of the two satellites after time t is chosen as the terminal state quantity.
The schematic diagram of two co-plane satellites’ uncertainty propagation is shown in
Figure 1. Since the orbits of LEO mega-constellations tend to be near-circular, the argument
of latitude φ = ω + M is used to characterize the phase angle of a satellite. The evolution
of the initial state to the terminal state involves, in turn, the transformation of the position-
velocity components to the osculating elements, the transform between osculating elements
and mean elements, and the semi-analytical propagation. The whole physical process
shows strong nonlinearities, so the Monte Carlo is an appropriate analysis approach.

Figure 1. Evolution of Phase Deviation of two co-planar Satellites.

3.1. Semi-Analytical-Based Monte Carlo Simulation Design

Without loss of generality, we assume that the initial state quantities of each co-
planar satellite in the satellite orbit coordinate system follow a three-dimensional Gaussian
distribution with zero mean X0 ∼ N(0, Σ), and the components are independent of each
other. Then, the joint Gaussian PDF is

p(x) =
1

(2π)3/2|Σ|1/2 exp
[
−1

2
xTΣ−1x

]
, (14)

where the covariance matrix of the initial position velocity errors Σr and Σv are{
Σr = diag(σ2

x , σ2
y , σ2

z ),

Σv = diag(σ2
vx , σ2

vy , σ2
vz),

(15)

where diag represents a diagonal matrix with the entries on the diagonal.
To further simplify the problem, Monte Carlo simulations are performed in two

hypothetical cases: Case I, where both two satellites have only initial position errors, and
the position standard deviation is σx = σy = σz = σr; Case II, where both two satellites
have only velocity errors, and the velocity error is noted as σvx = σvy = σvz = σv.
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A number of N samples are generated, and the samples are then propagated over
time individually, and the a posteriori uncertainty distribution is reconstructed from the
integrated samples. Multiple sets of position (velocity) standard deviations σr (σv) with
orbital propagation time t are taken, and multiple Monte Carlo simulations are performed
to count the first two order moments of the relative phase distribution, which are the mean
and standard deviation. Combining hypothesis testing and surface fitting, an approximate
mapping between the initial covariance and the terminal covariance can be obtained.

It should be noted that since the relative phase is a directional statistic, and 0◦ and
360◦ are identical angles, so that for example 180◦ is not a sensible mean of 1◦ and 359◦. To
avoid this error, the directional mean E(θ) and the directional standard deviation σ(θ) of
the directional quantity θ should be calculated by Equation (16) [28]{

E(θ) = tan−1(S̄/C̄),

σ(θ) =
√
−2 ln R̄,

(16)

where the center of mass (C̄, S̄) of the directional statistic is

C̄ =
1
N

N

∑
j=1

cos θi, S̄ =
1
N

N

∑
j=1

sin θi, (17)

and the mean resultant length is

R̄ = (C̄2 + S̄2)1/2. (18)

3.2. Hypothesis Testing of Monte Carlo Simulations Results

The overall terminal phase quantities obtained from the Monte Carlo simulation are
denoted as Xt. The Gaussian distribution remains normal after propagation by the linear
or linearized dynamic equations [29], while the two-body motion plays a dominant role in
the orbital dynamics, and the J2 regimens and the atmospheric drag regimens are small
quantities. Thus, the terminal quantities can be considered to obey the same Gaussian
distribution Xt ∼ N(µt, σt). In order to test whether the mean µt of the relative phase
distribution is zero, a statistical hypothesis test is required [30]. Two mutually opposing
hypotheses are made for Xt

H0 : µt = 0, H1 : µt 6= 0. (19)

The test statistic distinguishing the first hypothesis from the alternative hypothesis is
z value and is given by

z =
E(∆φ)− 0

σ(∆φ)/
√

N
. (20)

The significance level α is given and the standard Gaussian distribution table is queried
to determine the rejection domain. If |z| < zα/2 is satisfied, the hypothesis H0 is accepted
(the opposing hypothesis H1 is rejected), i.e., it is considered that, ideally, two co-plane
satellites will not diverge or cluster under perturbations; if |z| ≥ zα/2, the hypothesis H1 is
accepted (the hypothesis H0 is rejected), i.e., it is considered that ideally the non-uncertainty
case, the relative phase will also have drifted.

3.3. Product-Based Least-Squares Surface FITTING Approach

Multiple sets of Monte Carlo simulations with different orbital propagation times t
and position (velocity) standard deviations σr (σv) are selected. The time series is denoted
as t (days), the position or velocity standard deviation series is denoted as σ (m or m/s),
the standard deviation of the phase difference obtained by the Monte Carlo approach is
denoted as φ (rad), and t, σ, φ are all row vectors, which approximately form a three-
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dimensional surface. The set of functions {ϕp(t)ψq(σ)} is used as the basis function for the
product-type least-squares fit [31], where

ϕp(t) = tp, p = 0, 1, . . . , N,

ψq(σ) = σq, q = 0, 1, . . . , M.
(21)

Construct a surface with cpq as parameter, which can be expressed as

Γ(t, σ) =
N

∑
q=0

M

∑
p=0

cpq ϕp(t)ψq(σ). (22)

where, the coefficient cpq is a matrix form given by

C = (BTB)−1BTφG(GTG)−1, (23)

with
B = [ϕ0(tT), . . . , ϕN(tT)],

G = [ψ0(σ
T), . . . , ψM(σT)].

(24)

In this way, an approximate function of the standard deviation of the initial position
velocity and the standard deviation of the phase difference can be obtained.

4. Numerical Simulations and Results

We will now demonstrate the method for a specific problem. Because the Starlink
constellation is a typical LEO mega-constellation with great research significance, we
choose the orbit and mechanical environmental parameters of Starlink for simulation.
Take into consideration the satellite with mean Keplerian elements as shown in Table 1
and mechanical environmental parameters as shown in Table 2 to conduct Monte Carlo
simulations. Orbital and structural parameters of Starlink satellites can be found in SpaceX’s
FCC documents (such as 36 FCC Rcd 7995 (11)(2021)). In our simulations, the semi-
analytical approach shows a strong advantage in computing efficiency. On a PC equipped
with i7-1065G7 CPU 1.30 GHz, the numerical and the semi-analytical approach respectively
take 4.258 s and 0.103 s under J2 and atmospheric drag for the 7-day orbit prediction.

Without loss of generality, the initial position and velocity uncertainty of the satellite
is assumed to be Gaussian distributed, and are defined in the geocentric inertial coordinate
system. The mean is zero and the covariance matrix is{

Σr = diag(100, 100, 100)(m)2,

Σv = diag(0.01, 0.01, 0.01)(m/s)2.
(25)

Four thousand points are distributed to be consistent with the initial uncertainty,
generated and propagated using the averaged J2 and atmosphere drag dynamics, referring
to the second equation of Equation (3). The secular terms of J2 and atmosphere drag are
the same as Equations (4), (5), and (8). The conversion between osculating elements and
mean elements abides by the first equation of Equation (3), and short-period terms and
long-period terms are described in Equations (6) and (7).
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Table 1. Initial mean elements.

Elements Values

a 6921 km
e 0.0001
i 53 deg

Ω 10 deg
ω 10 deg
M 60 deg

Table 2. Analytical model coefficients [32].

Parameters Values Explanation

J2 1082.62668355× 10−6 zonal harmonic
ne 7.2921158553× 10−5 rad/s Earth spin rate
Re 6378.137 km Earth’s equatorial radius
µ 3.98600436× 1014 m3/s2 Earth’s gravitational constant
ν 0.1 variability of scale height
εe 1/298.257 Earth flattening
H 68.7 km scale height
ρ0 2.34× 10−13 kg/m3 atmospheric density
CD 2.2 drag coefficient
m 227 kg mass of satellite
S 1.2 m2 cross-sectional reference area of satellite

Figure 2 shows initial points distribution before and after conversion from osculating
elements to mean elements. The mean track propagated in averaged J2 and atmosphere
drag dynamics is marked as a green line, while the osculating track propagated in full
dynamics—which includes short-period and long-period terms besides secular terms—
is marked as an orange line. To better display the size of the uncertainty ellipsoid, the
absolute position of the points is subtracted from the nominal position, and denoted by
δ. It can be seen that it is the conversion between osculating elements and mean elements
that makes the distribution of sample points show strong nonlinearity at initial moments.
Figure 3 shows points distribution after different revolutions up to 100 orbits, which is
about 6.2 days. The samples are gradually correlated with the mean trajectory as the
propagation time progresses. After 1 orbit period, the shape of points takes on a shuttle
shape. Hence, it is reasonable to assume that the position nonlinearity becomes weaker
after several revolutions. The argument of latitude of a satellite is Gaussian distribution
after going through the same revolutions.

Table 3 shows the first two order moments of the relative phase of two co-plane
satellites in the constellation, z value of hypothesis test Equation (20) and whether H0
should be accepted are also presented in this table.

There is only a 15◦ difference in relative position between the two satellites, and other
initial mean elements of them are the same. When the significance level of hypothesis test α
is given as 0.05, the z value of the two-sided test is 1.96. Thus, the hypothesis H0 is rejected
in the beginning and is accepted after 1 orbit, because the standard deviation is growing
faster than the mean over time. As a consequence, the phase of two co-plane satellites can
also be considered as a Gaussian distribution with zero mean as propagation time goes by.

In the multi-group MC simulation, the total number of samples per group is set to
be 4000, the propagation time is chosen as t = {0.5, 1, . . . , 5} days, the position stan-
dard deviation is σr = {40, 80, . . . , 1000}m, and the velocity standard deviation is σv =
{0.04, 0.08, . . . , 1}m/s. There are a total of 625 groups in each case and are parallel computed.
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Figure 2. Initial uncertainty distribution before (a–c) and after (d–f) conversion from osculating
elements to mean elements.

Figure 3. Position distribution and 3-σ error ellipse projection on the x-y plane.
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Table 3. Relative phase statistics and hypothesis testing.

Propagation Time Mean (rad) Standard Deviation z Value Accept H0

0.3 orbit −2.442× 10−6 7.656× 10−5 −2.017 No
0.5 orbit −3.693× 10−6 1.223× 10−4 −1.909 Yes
1 orbit −6.819× 10−6 2.403× 10−4 −1.795 Yes
5 orbits −3.184× 10−5 1.196× 10−3 −1.683 Yes

10 orbits −6.317× 10−5 2.393× 10−3 −1.669 Yes

The standard deviation surfaces of the relative phase in two cases are shown in Figure 4,
and the least-squares surface fitting parameters are shown in Table 4. Taking α = 0.01, the
z value of the two-sided test is 2.58, and the acceptance rate of hypothesis H0 reaches 96%
in both two scenarios, indicating that our assumption is logical.

(a) Case I (b) Case II

Figure 4. Standard deviation surface of relative phase deviation.

Table 4. Least-squares fitting coefficient matrix.

Coefficient
Cr Cv

1 y y2 1 y y2

1 −3.163× 10−7 −1.249× 10−4 −8.969× 10−7 1.368× 10−6 6.991× 10−6 −1.846× 10−7

x 3.477× 10−9 5.896× 10−5 5.945× 10−9 −1.092× 10−5 5.278× 10−2 4.280× 10−7

x2 −3.491× 10−12 −7.843× 10−10 −8.068× 10−12 1.794× 10−5 −2.711× 10−5 −8.750× 10−7

Since the fitting relationship of the initial standard deviation to the terminal standard
deviation has been obtained, we can easily make deviation forecasts for controllers with
known error magnitudes, or infer the control and observation error of a constellation
backward from its deviation evolution. For example, if two co-plane satellites have an
initial uncertainty of 100 m standard deviation in three-dimensional position, after 20 orbits,
the relative phase appears an uncertainty of 0.438◦ standard deviation, which could be also
be caused by 0.109 m/s three-dimensional velocity errors.

5. Conclusions

In this paper, an uncertainty propagation analysis approach based on the semi-
analytical dynamic approach, Monte Carlo simulation, and least-squares fitting is proposed.
The overall approach shows significant benefits in terms of improving the computational
efficiency of uncertainty propagation and is suitable for LEO mega-constellations scenarios.
On this basis, numerical tests confirm that the probability density will become highly
nonlinear after the conversion between osculating elements and mean elements, and the po-
sitions distribution of the satellite fits its mean trajectory after the initial nonlinear moment
about one orbit period, leading to the phase of two co-plane satellites can be considered as a
Gaussian distribution with zero mean as propagation time goes by. Ulteriorly, multi-group
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Monte Carlo simulations under the effect of initial normal position or velocity error and hy-
pothesis testing verify the assumption. Finally, the initial standard deviation, propagation
time, and terminal standard deviation can be described by a binary equation, which can
estimate the phase error or infer initial uncertainties.

The major limitation of the present study is that the initial position and velocity errors
are considered separately in two cases, but the two coexist in practice, and the other is that
our approach is only suitable for low Earth orbit scenarios.
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