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Abstract

The aim of this paper is to clarify the choice of the self map T : X → X in Kaya et als (F,L)
weak contractions by choosing a family Tn, n ∈ N of (F,L) contractions. Motivated by the fact
that the uniform limit T of the family of self maps is a better approximation, we are guaranteed
the choice of the self map. By this, the choice of T is no longer arbitrary. Again, for any finite
family T1, T2, T3, · · · , TN of (F,L) contractions their composition is an (F,L) contraction. This
concept generalizes and improves on several results especially Theorems 3.1 and 3.2 of [10].
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1 Introduction

The theory of metric spaces has experienced rapid development in recent decades and has gained
access to many areas of Mathematics such as group theory, Riemann geometry and partial differential
equations. Metric space methods have also been employed in internet search engines and image
classification [1] as well as protein classification [2].

In recent years the attention in this area of research has shifted to partial metric spaces. The
concept of partial metric was introduced by S. G. Matthews [3] in 1994 as a generalization of
metric spaces. Matthews [3] replaced the equality d(x, x) = 0 in the definition of a metric with the
inequality d(x, x) ≤ d(x, y) for all x, y ∈ X. He then proved Banachs contraction mapping principle
in a new framework and also discussed some properties of convergence of sequences.

In [4], Oltra and Valero generalized the results of Matthews, and Altun et al [5] improved on
Matthews results by studying generalized contractions on this space. Again, Romaguera [6] charac-
terized the completeness for partial metric spaces. Heckmann [7] omitted the self-distance axiom
of partial metric and defined and pioneered the theory of weak-partial metrics. Wardowski [8] used
the notion of F-contractions to prove fixed point theorems which generalized Banachs contraction
mapping principle. Later, Wardowski [9] working in tandem with Van Dung introduced F-weak
contractions and established fixed point theorems for such mappings in a complete metric spaces.
These theorems extend and generalize several theorems in this direction and improve many existing
results.

In 2017, Kaya et al [10] defined the concept of (F,L) contractions in weak partial metric spaces
and proved some common fixed point results for a self mapping T. The motivation for the concept
of a commuting family of (F,L) contractions stems from the work of Frimpong and Prempeh [11].
They obtained fixed point results in 2017 in reflexive Banach space using a family of maps.

In this paper, my purpose is to prove some common fixed point results for a commuting family
Tn, n = 1, 2, · · · of self mappings in a weak partial metric space. This generalizes and improves
several recent results: particularly Theorems 3.1 and 3.2 of [10].

Particularly, if Tn, n = 1, 2 · · ·N is a sequence of (F,L) contractions in a complete partial metric
space then their composition T = T1T2T3 · · ·TN is an (F,L) contraction.

2 Preliminaries

We now mention briefly some fundamental definitions and results which will be needed subsequently.

Definition 2.1 [3]

A metric on a non empty set E is a function d : E × E → R satisfying the following axioms:

M1 : d(x, y) ≥ 0, ∀ pair x, y ∈ E

M2 : d(x, y) = 0 ⇔ x = y for all x, y ∈ E

M3 : d(x, y) = d(y, x) ∀ x, y ∈ E

M4 : d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ E.

When d is a metric on E then the pair (E, d) is called a metric space.
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Definition 2.2 [3]

A partial metric on a non-empty set E is a function ρ : E × E → R+ such that for all x, y, z ∈ E:

P1 : x = y ⇔ ρ(x, x) = ρ(x, y) = ρ(y, y)

P2 : ρ(x, x) ≤ ρ(x, y)

P3 : ρ(x, y) ≤ ρ(y, x)

P4 : ρ(x, z) ≤ ρ(x, y) + ρ(y, z)− ρ(y, y)

A partial metric space is a pair (E, ρ) such that E is a non-empty set and ρ is a partial metric on
E. If E is a partial metric space then each metric ρ on E generates a T0 topology λρ on E with a
base consisting of the family of open balls {Bρ(x, ε) : x ∈ E, ε > 0}, where
Bρ(x, ε) = {y ∈ E : ρ(x, y) < ρ(x, x) + ε}, for all x ∈ E and ε > 0. Kaya et al [10]

Definition 2.3 [3]

Let (E, ρ) be a partial metric space. Then,

• a sequence {µn} in (E, ρ) converges with respect to λρ to a point µ ∈ E if
ρ(µ, µ) = lim

n→∞
ρ(µ, µn),

• a sequence {µn} in (E, ρ) is called Cauchy if lim
m,n→∞

ρ(µm, µn) exists and is finite,

• (E, ρ) is said to be complete if every Cauchy sequence {µn} in (E, ρ) converges to a point
µ ∈ E; that is

ρ(µ, µ) = lim
m,n→∞

ρ(µm, µn)

Lemma 2.1 [10]

Let ρ be a partial metric as defined in 2.3 above. Then the function d : E × E → R+ defined by

d(x, y) = ρ(x, y)−min{ρ(x, x), ρ(y, y)}

∀ pair x, y ∈ E is an ordinary metric on E.

Lemma 2.2 [3]

Let (E, ρ) be a partial metric space. Then a sequence {µn} in (E, ρ) is Cauchy if and only if it is
a Cauchy sequence in the metric space (E, d). Moreover, (E, ρ) is complete if and only if (E, d) is
complete. Additionally,

lim
n→∞

d(µn, µ) = 0 ⇔ ρ(µ, µ) = lim
n→∞

ρ(µn, µ) = lim
n,m→∞

ρ(µn, µm)

Definition 2.4 [10]

Let (E, ρ) be a partial metric space. A mapping T : E → E is said to be continuous at a point
x0 ∈ E if for every ε > 0 , there exists δ > 0 such that T (Bρ(x0, δ)) ⊂ Bρ(Tx0, ε). We say that
T is continuous on (E, ρ) if it is continuous at all points x ∈ E.
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Lemma 2.3 [10]

Let (E, ρ) be a complete partial metric space, T : E → E a continuous map and {µn} a sequence
in E such that µn → µ ∈ E, then lim

n→∞
ρ(Tµn, Tµ) = ρ(Tµ, Tµ).

Definition 2.5 [8]

Let F be the family of all functions F : (0,∞) → R satisfying the following axioms:

F1: F is a strictly increasing function. i.e. for all α, β ∈ (0,∞) if α < β then F (α) < F (β),

F2: for each sequence {µn} of positive integers in (0,∞), the following holds:

lim
n→∞

µn = 0 ⇔ lim
n→∞

F (µn) = −∞.

F3: ∃ k ∈ (0, 1) ∋ lim
α→0+

{αkF (α)} = 0.

Definition 2.6 [9]

Let (E, d) be a metric space. A mapping T : E → E is said to be an F−contraction on (E, d)
if ∃ F ∈ F and τ > 0 such that for every pair x, y ∈ E satisfying d(Tx, Ty) > 0, the following
condition holds:

τ + F (d(Tx, Ty)) ≤ F (d(x, y)).

Definition 2.7 [10]

A weak partial metric on a non-empty set E is a function ρ : E×E → R+ such that for all x, y, z ∈ E
:

K1: x = y ⇔ ρ(x, x) = ρ(x, y) = ρ(y, y)

K2: ρ(x, y) ≤ ρ(y, x)

K3: ρ(x, z) ≤ ρ(x, y) + ρ(y, z)− ρ(y, y)

Definition 2.8 [10]

Let T1 and T2 be self mappings on E. If T1x = T2x = y for some x ∈ E then x is called a coincidence
point of T1 and T2 and y is called a point of coincidence of T1 and T2. The self-mappings T1 and
T2 are said to be weakly compatible if they commute at their coincidence point. If T1 and T2 have
a unique point of coincidence then this point is their unique common fixed point.

When ρ is a weak partial metric on E then the pair (E, ρ) is called a weak partial metric space.
The concept of weak partial metric space was introduced by Heckmann [7] as a generalization of
Matthews [3] partial metric space by omitting the small self-distance axiom of Matthews definition.
Heckmann then introduced the weak small self-distance axiom: that is, for every pair x, y ∈ E,

ρ(x, y) ≥ ρ(x, x) + ρ(y, y)

2

With this property Heckmann was able to show that weak partial metric spaces are no different
from small self-distance axiom. His conclusion was that every partial metric space is a weak partial
metric space but the converse may not be true.
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3 Main Results

We now discuss our results by introducing the following concept.

Definition 3.1 [10]

Let (E, ρ) be a weak partial metric space. A mapping T : E → E is said to be an F− contraction
on (E, ρ) if ∃ F ∈ F and τ > 0 such that for every pair x, y ∈ E satisfying ρ(Tx, Ty) > 0, the
following holds:

τ + F
(
ρ(Tx, Ty)

)
≤ F

(
ρ(x, y)

)
(3.1)

Definition 3.2 [10]

Let (E, ρ) be a weak partial metric space. A mapping T : E → E is said to be an (F,L)− contraction
on (E, ρ) if F ∈ F and ∃ τ > 0 and L ≥ 0 ∋ for every pair x, y ∈ E satisfying ρ(Tx, Ty) > 0, the
following holds:

τ + F
(
ρ(Tx, Ty)

)
≤ F

(
ρ(x, y)

)
+ Ld(y, Tx). (3.2)

By virtue of the symmetry of the metric, the (F,L)− contraction condition implicitly includes the
dual

τ + F
(
ρ(Tx, Ty)

)
≤ F

(
ρ(x, y)

)
+ Ld(x, Ty). (3.3)

Using (3.2) and (3.3), the (F,L)− contraction condition can be replaced by

τ + F
(
ρ(Tx, Ty)

)
≤ F

(
ρ(x, y)

)
+ Lmin{d(x, Ty), d(y, Tx)}. (3.4)

Lemma 3.1 [10]

Let (E, ρ) be a weak partial metric space and T : E → E a self mapping. T is said to be an
F− contraction on (E, ρ) if ∃ F ∈ F and τ > 0 such that for every pair x, y ∈ E satisfying
ρ(Tx, Ty) > 0, the following holds: τ + F (ρ(Tx, Ty)) ≤ F (ρ(x, y)). By virtue of the fact that

τ + F (ρ(Tx, Ty)) ≤ F (ρ(x, y)) ≤ F (ρ(x, y)) + Lmin{d(x, Ty), d(y, Tx)},

T is an (F,L)− contraction. Thus, every F− contraction is an (F,L)− contraction.

Lemma 3.2 [10]

Let (E, ρ) be a weak partial metric space and T : E → E a self mapping. Suppose that F ∈ F and
∃ τ > 0 and L ≥ 0 ∋ for every pair x, y ∈ E satisfying ρ(Tx, Ty) > 0, the following holds:

τ + F (ρ(Tx, Ty)) ≤ F (ρ(x, y)) + Lmin{d(x, Tx), d(x, Ty), d(y, Tx)}.
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Theorem 3.1

Let (E, ρ) be a complete weak partial metric space and Tn : E → E, n = 1, 2, 3, · · · , · · · , N be a
sequence of commuting (F,L) contractions on E. Then their composition T = T1T2T3 · · · · · ·TN is
(F,L) contraction on E.

Proof. The proof is by induction. Let
PN : τ + F{ρ

(
T1T2T3 · · ·TN (x), T1T2T3 · · ·TN (y)

)
} ≤ F{ρ(x, y)}+ Lmin{d(x, Ty), d(y, Tx)}

P1 is trivially true by hypothesis.
P2 : τ + F{ρ(T2T1x, T2T1y)} ≤ F{ρ(T1x, T1y)} ≤ F{ρ(x, y)}+ Lmin{d(x, T1y), d(y, T1x)}

=⇒ τ+F{ρ(T2T1x, T2T1y)} = τ+F{ρ(T1T2x, T1T2y)} ≤ F{ρ(x, y)}+Lmin{d(x, T2y), d(y, T2x)}.

Hence T2 is (F,L) contraction on E.
Now, assuming that for some k ∈ N, T1, T2, · · · , Tk−1 are (F,L) contraction on E, we get
τ + F{ρ

(
TkTk−1 · · ·T1(x), TkTk−1 · · ·T1(y)

)
} ≤ F{ρ(x, y)}+ Lmin{d(x, Tky), d(y, Tkx)}.

Therefore T = T1T2T3 · · ·TN is (F,L) contraction on E.

Theorem 3.2 [11]

Let E be a weak partial metric space and let C be a bounded closed convex subset of E. Let
Tn, n ≥ 1 be a sequence of (F,L) contractions on C such that Tn(x) ≤ Tn+1(x), ∀ n ≥ 1, x ∈ E.
If Tn converges pointwise on C to (F,L) contraction T then the convergence is uniform.

Proof. Let fn(x) = T (x) − Tn(x) for each n ∈ N. Then fn is a sequence of (F,L) contractions on
the compact set C such that fn(x) ≥ fn+1(x) ≥ 0 for all x ∈ C and n ∈ N .
Moreover,

lim
n→∞

fn(x) = lim
n→∞

{T (x)− Tn(x)} = 0

Let Mn = sup{fn(x) : x ∈ C} and let ε > 0 be given.
Let

En = {x ∈ C : fn(x) < ε} = f−1
n

(
(−∞, ε)

)
.

Then En is open for each n and En ⊂ En+1 because fn(x) ≥ fn+1(x). Since for each x ∈ C,
lim

n→∞
fn(x) = 0 ,∃ n ∈ N ∋ fn(x) < ε which implies x ∈ En. Thus ∪∞

n=1En is an open cover for C

and ∪∞
n=1En = C.

Since C is compact there exists a finite subcover for C and in view of the fact that En ⊂ En+1,
the largest of these also covers C. Hence there is N ∈ N such that EN = C and this means that
fN (x) < ε for all x ∈ C and n ≥ N . Thus MN ≤ ε and since Mn ≥ 0, lim

n→∞
Mn = 0 . This

indicates that the sequence fn converges uniformly to 0 on C and therefore the sequence of (F,L)
contractions Tn converges uniformly to T on C.

Theorem 3.3

Let (E, ρ) be a complete weak partial metric space and Tn : E → E, n = 1, 2, 3, · · · , · · · , N be a
sequence of commuting (F,L) contractions on E. If F is continuous then T = T1T2T3 · · · · · ·TN has
a unique fixed point in E.

Proof. Let µn+1 = Tµn, n ∈ N be a sequence in E, where µ0 ∈ E is an arbitrary point.
Case 1: If µn = µn+1 for some n ∈ N , then µn is a fixed point of T = T1T2T3 · · · · · ·TN and the
proof is complete.
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Case 2: Suppose that µn ̸= µn+1 ∀ n ∈ N. Then we get using equation (4)

F{ρ(µn, µn+1)} = F{ρ(Tµn−1, Tµn)}
≤ F{ρ(µn−1, µn)}+ Lmin{d(µn−1, Tµn), d(µn, Tµn−1)} − τ

= F{ρ(µn−1, µn)}+ Lmin{d(µn−1, µn+1), d(µn, µn)} − τ

= F{ρ(µn−1, µn)} − τ

=⇒ F{ρ(µn, µn+1)} ≤ F{ρ(µn−1, µn)} − τ (⋆)

After n iterations of (⋆) we get

F{ρ(µn, µn+1)} ≤ F{ρ(µ0, µ1)} − nτ, ∀ n ∈ N (3.5)

Taking limit of (3.5) as n → ∞ we get

lim
n→∞

F{ρ(µn, µn+1)} = −∞

which together with F2 gives

lim
n→∞

ρ(µn, µn+1) = 0 (3.6)

Now, by definition of F ∈ F , ∃ k ∈ (0, 1) such that

lim
n→∞

{ρ(µn, µn+1)}kF{ρ(µn, µn+1)} = 0 (3.7)

Combining (3.5) and (3.7) and taking limit as n → ∞ gives

lim
n→∞

{ρ(µn, µn+1)}k
{
F{ρ(µn, µn+1)} − F{ρ(µ0, µ1)}

}
≤ lim

n→∞
{ρ(µn, µn+1)}knτ ≤ 0

=⇒ 0 ≤ lim
n→∞

{ρ(µn, µn+1)}knτ ≤ 0

=⇒ lim
n→∞

{ρ(µn, µn+1)}kn = 0 (3.8)

From equation (3.8) there exists a positive integer φ1 such that ∀ n ≥ φ1

{ρ(µn, µn+1)}kn ≤ 1

=⇒ ρ(µn, µn+1) ≤
1

n
1
k

, ∀ n ≥ φ1 (3.9)

Now, let m,n ∈ N ∋ n > m ≥ φ1. Using (3.9) and P3 gives,

ρ(µn, µm) ≤ ρ(µn, µn+1) + ρ(µn+1, µn+2) + ρ(µn+2, µn+3) + · · ·+ ρ(µm−1, µm)−

{ρ(µn+1, µn+1) + ρ(µn+2, µn+2) + ρ(µn+3, µn+3) + · · ·+ ρ(µm−1, µm−1)}

≤
m−1∑
ζ=n

ρ(µζ , µζ+1)

≤
∞∑

ζ=n

ρ(µζ , µζ+1)

≤
∞∑

ζ=n

1

ζ
1
k
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Since k ∈ (0, 1), the series
∞∑

ζ=n

1

ζ
1
k

is a p−series with p > 1. Therefore
∞∑

ζ=n

1

ζ
1
k

< ∞ which implies

that lim
m,n→∞

ρ(µn, µm) = 0, and the sequence {µn} is Cauchy in (E, ρ). Then Lemma 2.2 guarantees

that {µn} is a Cauchy sequence in (E, d). Moreover, the completeness of (E, ρ) ensures that (E, d)
is also complete. Hence there exists µ⋆ ∈ E such that

lim
n→∞

d(µn, µ
⋆) = 0

Assume that F is continuous. Then there exist a positive integer n1 ∋ ∀ n ≥ n1 ρ(µn+1, Tµ
⋆) > 0.

Therefore by the definition of our (F-L) contraction in (4), we get

τ + F{ρ(µn+1, Tµ
⋆)} = τ + F{ρ(Tµn, Tµ

⋆)}
≤ F{ρ(µn, µ

⋆)}+ Lmin{d(µn, Tµ
⋆), d(µ⋆, Tµn)}

= F{ρ(µn, µ
⋆)}+ Lmin{d(µn, Tµ

⋆), d(µ⋆, µn+1)}

Again from Lemma 2.2, there exists a positive integer n2 ∋ ∀ n ≥ n2, τ + F{ρ(µn+1, Tµ
⋆)} ≤

F{ρ(µ⋆, µ⋆)} and we get ρ(µn, µ
⋆) < ρ(µ⋆, Tµ⋆). Thus ∀ n ≥ max{n1, n2},

τ + F{ρ(µn+1, Tµ
⋆)} ≤ F{ρ(µ⋆, µ⋆)}+ Lmin{d(µn, Tµ

⋆), d(µ⋆, µn+1)}

By the fact that F is continuous and letting n → ∞, we arrive at

τ + F{ρ(µ⋆, Tµ⋆)} ≤ F{ρ(µ⋆, µ⋆)} (3.10)

(10) is clearly a contradiction since τ > 0. Hence our claim that ρ(µ⋆, Tµ⋆) > 0 is untenable.
Therefore we must have ρ(µ⋆, Tµ⋆) = 0. Hence by axioms P1 and P2 of Definition 2.2, Tµ⋆ = µ⋆

proving that µ⋆ is a fixed point of T.
For uniqueness of µ⋆, we assume that µ⋆

1 and µ⋆
2 are two distinct fixed points of T . Then ρ(Tµ⋆

1, Tµ
⋆
2) >

0. By Lemma 3.2 we get

τ + F{ρ(µ⋆
1, µ

⋆
2)} = τ + F{ρ(Tµ⋆

1, Tµ
⋆
2)}

≤ F{ρ(µ⋆
1, µ

⋆
2)}+ Lmin{d(µ⋆

1, Tµ
⋆
1), d(µ

⋆
1, Tµ

⋆
2), d(µ

⋆
2, Tµ

⋆
1)}

= F{ρ(µ⋆
1, µ

⋆
2)} .

This is a contradiction. Thus we have µ⋆
1 = µ⋆

2, proving uniqueness of fixed point of T .

Lemma 3.3 [11]

Let E be a non-empty set. Then all equivalent classes of E are disjoint and E is the union of its
equivalence classes.

Theorem 3.4

Let (E, ρ) be a complete weak partial metric space and let
Tn : E → E, n = 1, 2, 3, · · · be an infinite family of commuting (F,L) contractions on E. If F is
continuous then T = T1T2T3 · · ·TN , where T1, T2, T3, · · ·TN is an equivalence class of size N has a
unique fixed point in E.

Proof. The proof is done by partitioning the infinite family Tn, n = 1, 2, 3, · · · into equivalence
classes of size N , for a positive integer N . Thus, all the assumptions made for the finite number of
non-expansive maps in Theorem 3.3 hold for each class. Again, since equivalent classes are disjoint,
there are no spillovers into other classes. Therefore any result that is true for one class will also
hold for other classes. Consequently, the result is a priori true from Theorem 3.1.
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4 Conclusion

Kaya et al [10] considered in a weak partial metric space X a single self mapping T and proved that
if the real-valued function F : (0,∞) → R as defined in Definition 2.5 is continuous on its domain
then T has a unique fixed point in X. The choice of the self mapping T is arbitrary. Thus we have
considered a family Tn : E → E. n = 1, 2, 3, · · · , of commuting (F,L) contractions in a weak partial
space E.

Case 1 If a finite number of the commuting family is considered then its composition as proved in
Theorem 3.1 is (F,L) contraction. Thus the choice of the map is now not arbitrary.

Case 2 For an infinite family of commuting (F,L) contractions, the uniform limit as demonstrated
in Theorem 3.2 provides a better approximation for the self map T . Thus, the principal conclusion
from the research is that the choice of the self map has been made explicitly clear to be the uniform
limit of the sequence of (F,L) contractions.
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