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Abstract

In this paper, we develop a four compartment model that explain the transmission dynamics of
infectious bursal disease, considering the effects of environmental factors. Ordinary differential
equations have been used in formulation of the model. Reproductive number (R0) has been
derived using Next Generation Matrix. The disease free equilibrium is analyzed using Jacobian
matrix and found to be locally and globally asymptotically stable when R0 < 1. We employ
Routh-Hurwitz stability criterion to analyze the stability of endemic equilibrium. The numerical
results indicates that contact with contaminated environment enhances the rate of transmission
of the disease in the system.
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1 Introduction

Infectious bursal disease also known as Gumboro disease is a viral disease which is highly infectious
and affects young chickens of 3-6 weeks old. According to Van den Berg [1], a severe and acute out
break of the disease in poultry farm causes 100% morbidity and mortality rate is also high, but the
less acute or sub-clinical disease is common in 0-3 week old birds [1]. Chicks at this age are protected
by passive immunity acquired from the parents. When the strain of the virus is of low virulence
it causes less than 2% specific mortality and can be successfully controlled by vaccination [2]. The
disease is caused by Infectious Bursal Disease Virus (IBDV), which is a member of birnavirus
genus. The virus consist of two segment of double-stranded ribonucleic acid (RNA),which has no
envelop, which make it highly resistant to the outside environment [3]. IBD virus is highly resistant
to environmental exposure and is transmitted laterally by direct or indirect contact between the
environment, susceptible and infected flocks [2]. The virus is very difficult to eliminate since it
is extremely hardy and can survive in a wide range of environmental conditions [3, 4]. Due to
the resistance nature of the virus, it is hard to clear it with most disinfectants and environmental
factors, making poultry houses to be contaminated with IBD Virus that persist on the premises
and tend to reappear in subsequent flock [5]. When chickens below 3 weeks old are infected by
infectious bursal disease they show no detectable sign which is the most economically important
as the disease can lead to severe long lasting suppression of the immune system, while those of 3-6
weeks old are mostly susceptible to clinical symptoms of the disease. Birds infected by IBD virus
shed the virus in their feces thereby contaminating feeds, water and their house. The other birds
in the house become infected by ingesting the virus [6]. IBDV remains infectious in the house for
122 days and 52 days in the feed and water respectively. Due to the hardy state of the virus, strict
hygiene should be observed in poultry management and vaccination of the chickens should be done
at attender age to curb the disease [7]. Infectious bursal disease is associated with great economic
losses in poultry enterprises and it has been of great concern to poultry industries [8]. The economic
impact caused by IBDV is difficult to assess due to the complex nature of the losses associated with
gumboro disease [5]. And lack of adequate responses to vaccinations and against other diseases,
destroys the immune response rendering the chicks susceptible to various infections responsible for
the greatest economic losses in the affected flocks [9, 10].

In this paper, we develop a MSIR mathematical model to study the transmission dynamics of
Infectious bursal disease considering the effect of environment. We paid more attention on the
effects of contact with the contaminated environment by the infectious bursal disease virus.

Aim of the study

This study aims at investigating the effects of environmental factors in transmission dynamics of
infectious bursal disease.

Objectives of the study

i) To formulate a mathematical model for the transmission dynamics.

ii) To derive reproductive number.

iii) To carry out stability analysis of the model.

iv) To perform numerical analysis on the effects of contact with the environment.

2 Model Formulation

In this section, we formulate a four compartment model MSIR for transmission dynamics of
infectious bursal disease. The total population (N) is divided into four classes: The passive immune
class (M), Susceptible (S), Infected (I) and Recovery (R).
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The total population with respect to all the compartments is given by;

N(t) = M(t) + S(t) + I(t) + R(t).

The schematic diagram below shows how the disease spreads.
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Fig. 1. Schematic diagram showing the transmission dynamics of Gumboro disease

The mathematical equations of the model are described by a system of ordinary differential equations
given below:

dM

dt
= ΩN − (π + µ)M,

dS

dt
= πM − βIS − (σ + µ)S,

dI

dt
= βIS + σS − (ω + α+ µ)I, (2.1)

dR

dt
= αI − µR.

and
dN

dt
= (Ω− µ)N − ωI.

with initial conditions; M(0) = M0 > 0, S(0) = S0 ≥ 0, I(0) = I0 ≥ 0, R(0) = R0 ≥ 0.

Tables 1 and 2 indicates the description of the variables and parameters used.

Table 1. The variable used in the model

Variable Description

M Passive immune
S Susceptible
I Infectious
R Recovery
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Table 2. The Parameters used in the model

Parameter Description

Ω Recruitment rate
µ Natural mortality rate
β Contact rate with infected birds
σ Contact rate with contaminated environment
α Recovery rate from infection
ω Rate of mortality due to IBD
π Rate of passive immunity loss

2.1 Assumptions

There are some assumptions made in developing the model:

(1) The population is not fixed.

(2) Birds get into the system by birth or immigration.

(3) Chickens bellow two weeks old are protected by passive immunity from their mothers.

(4) The population is mixed homogeneously (have the same interaction rate with one another).

(5) Non-negative parameter are used.

2.2 Positivity of the solution

In this section, we prove that the variables remain positive for they stand for living population.
Assuming that the initial condition of the model is non-negative, we show that the solution of the
model is positive.

Theorem 2.1. Let Λ =
{
(M,S, I,R) ∈ R4

+ : M0 > 0, S0 > 0, I0 > 0, R0 > 0
}
.

Then the solution of {M,S, I,R} is positive for t ≥ 0.

Proof
From the system of differential equations (2.1), we have;

dM

dt
≥ −(π + µM), (2.2)

dS

dt
≥ −(βI + σ + µ)S. (2.3)

dI

dt
≥ −(µ+ ω + α)I. (2.4)

dR

dt
≥ −µR, (2.5)

Integrating both sides of inequality (2.2),(2.3), (2.4), (2.5) and simplifying the equations we obtain;

M(t) ≥ Ae−(π+µ)t,

S(t) ≥ Ae−(βI+σ+µ)t,

I(t) ≥ Ae−(µ+ω+α)t,

R(t) ≥ Ae−µt.

When we substitute the initial condition when t = 0 and simplify we finally obtain;

(π + µ) > 0, (βI + σ + µ) > 0, (µ+ ω + α) > 0, µ > 0.

Since all the model solutions are positive, this is the completes proof of the theorem.
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2.3 Invariant region

Theorem 2.2. The closed region Λ is positively invariant attracting all solutions.

Proof We obtain the invariant region, in which the solution is bounded. Considering the total
population (N), where;

N = M + S + I +R. (2.6)

Differentiating N both sides with respect to (t) we get;

dN

dt
=

dM

dt
+

dS

dt
+

dI

dt
+

dR

dt
. (2.7)

dN

dt
≤ Ω− µN. (2.8)

Integrating both sides of (2.8) and simplifying we get

Ω− µN ≥ Ae−µt. (2.9)

By applying the initial conditions; t = 0, N(0) = N0, in (2.9),

A ≤ Ω− µN0, (2.10)

putting (2.10) into (2.9) we obtain,

N ≤ Ω

µ
−

(
Ω− µN0

µ

)
e−µt. (2.11)

As t → ∞ in (2.11), the population size;

N → Ω

µ
, (2.12)

which implies that,

0 ≤ N ≤ Ω

µ
.

Since the study represents living flock of birds population, all state variables remains positive all
the time. The solution set which is feasible invariant is given by;

Λ =

{
(M,S, I,R) ∈ R4

+ : 0 ≤ M + S + I +R ≤ Ω

µ

}
. (2.13)

Hence Λ is a positive invariant region.

2.4 Disease free equilibrium (DFE)

To find the disease free equilibrium of IBD ,we set the system of equation (2.1) to zero. At this
state , there are no infection and recovery, that is I = R = 0. Thus,

Ω− (π + µ)M = 0,

πM − β(0)S − (σ + µ)S = 0,

β(0)S + σS − (µ+ ω + α)(0) = 0,

α(0)− µ(0) = 0.

(2.14)

From first equation of (2.14) we get;

M∗ =
Ω

(π + µ)
.
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And from the second equation of (2.14), we get

S∗ =
πM∗

(σ + µ)
,

where S∗ is given by;

S∗ =
πΩ

(σ + µ)(π + µ)
.

And

I∗ = R∗ = 0.

Thus the DFE ,

E∗
0 (M

∗, S∗, I∗, R∗) =

(
Ω

(π + µ)
,

πΩ

(σ + µ)(π + µ)
, 0, 0

)
. (2.15)

2.5 Basic reproduction number (R0)

Basic reproductive number is used to show whether an infectious disease can die or continue
spreading in the population. The value of R0 during an out break is urgently estimated and
its value provide insight when designing control measures for the disease.

We use next generation matrix (NGM) approach to determine R0. From NGM we have

G = FV −1.

Where F is the Jacobian of fi and is the rate of new infections in compartment I.

V is the Jacobian matrix of vi, where vi is the rate of transfer of infections from one compartment
to another

The model equation with new ineffective class is;

dI

dt
= βIS + σS − (µ+ ω + α)I.

The associated matrices from the model are:

fi = βIS + σS,

F =
∂fi
∂I

= βS.

From DFE, S = πΩ
(π+µ)(σ+µ)

,
therefore;

F =
βπΩ

(π + µ)(σ + µ)
. (2.16)

Then

vi = v−i − v+i ,

v−i = (µ+ ω + α)I, while v+i = 0
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therefore,
vi = (µ+ ω + α)I,

V =
∂vi
∂I

= (µ+ ω + α).

On computing

V −1 =
1

(µ+ ω + α)
. (2.17)

Thus

FV −1 =
βπΩ

(π + µ)(σ + µ)(µ+ ω + α)
.

The basic reproductive number R0 is the spectral radius of the matrix FV −1 which is given by;

ρ(FV −1) =
βπΩ

(π + µ)(σ + µ)(µ+ ω + α)
.

Therefore

R0 =
βπΩ

(π + µ)(σ + µ)(µ+ ω + α)
. (2.18)

2.6 Stability of the disease - free equilibrium

2.6.1 Local stability

Theorem 2.3. The disease free equilibrium is locally asymptotically stable when all the eigenvalues
have a negative real part for 0 ≤ t < ∞. [11]

Proof:
This theorem is proven by first obtaining the Jacobian matrix of the model system at DFE (E0) as
follows;

Let

X1 = Ω− (π + µ)M,

X2 = πM − (µ+ βI + σ)S,

X3 = βIS + σS − (µ+ ω + α)I,

X4 = αI − µR. (2.19)



∂X1
∂M

∂X1
∂S

∂X1
∂I

∂X1
∂R

∂X2
∂M

∂X2
∂S

∂X2
∂I

∂X2
∂R

∂X3
∂M

∂X3
∂S

∂X3
∂I

∂X3
∂R

∂X4
∂M

∂X4
∂S

∂X4
∂I

∂X4
∂R


.

J(M,S, I,R) =


−(π + µ) 0 0 0

π −(µ+ βI + σ) −βS 0
0 βI + σ βS − (µ+ ω + α) 0
0 0 α −µ

 .

26



Omollo and Kimathi; ARJOM, 16(9): 20-35, 2020; Article no.ARJOM.59641

The Jacobian matrix at disease free equilibrium is given by the relation;

E∗
0 (M

∗, S∗, I∗, R∗) =

(
Ω

µ+ π
,

Ωπ

(µ+ π)(µ+ σ)
, 0, 0

)
.

J0 =


−(π + µ) 0 0 0

π −(µ+ σ) βΩπ
(µ+π)(µ+σ)

0

0 σ βΩπ
(µ+π)(µ+σ)

− (µ+ ω + α) 0

0 0 α −µ

 .

To simplify our work we let ;

A = −(π + µ),

B = −(µ+ σ) = B,

C =
βΩπ

(µ+ π)(µ+ σ)
− (µ+ ω + α).

So the J0 matrix becomes;

J0 =


A 0 0 0

π B βΩπ
(µ+π)(µ+σ)

0

0 σ C 0
0 0 α −µ

 .

Solving for the eigenvalues which is represented by λ from the matrix;

|J0 − λI| =

∣∣∣∣∣∣∣∣
A− λ 0 0 0

π B − λ βΩπ
(µ+π)(µ+σ)

0

0 σ C − λ 0
0 0 α −µ− λ

∣∣∣∣∣∣∣∣ = 0,

We have;
(A− λ)(B − λ) ((C − λ)(−µ− λ)) = 0. (2.20)

On evaluating equation (2.20) we have the eigenvalues as;

λ1 = −(π + µ),

λ2 = −(µ+ σ),

λ3 =
βΩπ

(µ+ π)(µ+ σ)
− (µ+ ω + α),

λ4 = −µ. (2.21)

For the DFE to be asymptotically stable, we require λ3 < 0.

This means that; (
(βΩπ)(µ+ ω + α)

(π + µ)(σ + µ)(µ+ ω + α)
− (µ+ ω + α)

)
< 0.

But from equation (2.18) we have,

R0 =

(
βΩπ

(π + µ)(σ + µ)(µ+ ω + α)

)
.

Therefore we have;
R0(µ+ ω + α)− (µ+ ω + α) < 0. (2.22)
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This means that

R0(µ+ ω + α) < (µ+ ω + α). (2.23)

or

R0 < 1. (2.24)

We note that R0 < 1 regardless of the value of our parameters at the DFE. Thus in this section,
since we have shown that R0 < 1 , the DFE is locally asymptotically stable and this completes the
proof.

From equation (2.18) of R0 making σ the subject we have;

R0 =
βΩπ

(π + µ)(σ + µ)(ω + α+ µ)
.

Therefore we have,

σ >
βΩπ − µ(π + µ)(ω + α+ µ)

(π + µ)(ω + α+ µ)
. (2.25)

Theorem 2.4. In the system (2.1), we have R0 < 1 if and only if

σ >
βΩπ − µ(π + µ)(ω + α+ µ)

(π + µ)(ω + α+ µ)
,

hence, the DFE of the system will be locally asymptotically stable.

2.6.2 Global stability

Considering the approach by Castillo-Chaven theorem [12], the model system of model equation is
expressed as;

dP

dt
= W (P,Q)

dQ

dt
= G(P,Q), G(P, 0) = 0

where P = (M(t), S(t)) and Q = (I(t)), with components of P ∈ R2 representing infected
population ,while Q ∈ R represents infected population. And E∗

0 = (P ∗, 0) denotes the disease
free equilibrium of the model.

Conditions for global stability:

A1. dP
dt

= W (P, 0), P ∗ is GAS

A2. G(P,Q) = AQ− Ḡ(P,Q), Ḡ(P,Q) ≥ 0 for (P,Q) ∈ Γ

Where A = DqG(P,Q) is an M-matrix, where off diagonal element of A are non-negative, and Γ is
the region where the model makes biological sense.

If the model system satisfies the conditions above according to Castillo- Chaven, then the following
theorem holds.

Theorem 2.5. The equilibrium point E∗
0 = (P ∗, 0) of the model system (3.1) is globally asymptotically

stable provided R0 < 1 (locally asymptotically stable) and condition A1 and A2 are satisfied [12]

Proof:
From the model system we have;

P = (M,S), Q = (I(t))
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W (P,Q) =

(
Ω− (π + µ)M

πM − βIS − (σ + µ)S

)
, G(P,Q) =

(
βIS + σS − (µ+ ω + α)I

0

)
and P ∗ =

(M∗, S∗, 0, 0)

dP

dt
= W (P, 0) =

(
Ω− (π + µ)M
πM − (σ + µ)S

)
Which shows that P ∗ = (M∗, S∗, 0, 0) is globally asymptotically stable; hence condition A1 is
satisfied.

For condition A2 we have ,

A = DqG(P ∗, 0) =

(
βS − (µ+ ω + α) 0

0 0

)
and

Ḡ(P,Q) =

(
βIS + σS

0

)
=

(
βI(S∗ − S) + σ(S∗ − S)

0

)
Since S∗ > S, this clearly shows that Ḡ(P,Q) ≥ 0.

Therefore condition (A2) is satisfied. Hence the disease free equilibrium of the system is globally
asymptotically stable (G.A.S) when R0 < 1.

2.7 Endemic equilibrium (EE)

This is a steady state solution that shows that the disease does not die in the population.

Let E∗
1 = (M∗, S∗, I∗, R∗) be the endemic point, where M∗, S∗, I∗, R∗ > 0

Setting the system of equation (2.1) to zero and evaluating the state variables, the endemic equilibrium
points would be as follows:

dM

dt
+

dS

dt
+

dI

dt
+

dR

dt
= 0,

;

0 = Ω− (π + µ)M∗, (2.26)

0 = πM∗ − βI∗S∗ − (σ + µ)S∗, (2.27)

0 = βI∗S∗ + σS∗ − (ω + α+ µ)I∗, (2.28)

0 = αI∗ − µR∗. (2.29)

From (2.26) we get;

M∗ =
Ω

π + µ
. (2.30)

Using (2.29) we get;

R∗ =
α

µ
I∗. (2.31)

Putting (2.30) into (2.27) we get;

S∗ =
Ωπ

(π + µ)(βI∗ + σ + µ)
. (2.32)

Substituting the value of S∗ into (2.28) and simplifying, we obtain a characteristic equation;

A(I∗)2 +B(I∗) + C = 0. (2.33)
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Where

A = β(π + µ)(µ+ ω + α),

B = −βΩπ + (σ + µ)(π + µ)(µ+ ω + α),

C = −Ωπσ.

On substituting (2.18) in B, R0 = βπΩ
(π+µ)(σ+µ)(µ+ω+α)

, we have therefore have:

A = β(µ+ π)(ω + α+ µ),

B = −(σ + µ)(π + µ)(ω + α+ µ)(1−R0),

C = −Ωπσ.

The endemic equilibrium point M∗ given in the equilibrium point is positive since all the parameters
are positive. While S∗ and R∗ are in terms of I∗. On substituting the positive value of I∗, we will
have them being positive. We obtained I∗ by solving the quadratic equation (2.33).

2.7.1 Stability of endemic equilibrium

The endemic equilibrium point of the model E∗
1 = (M∗, S∗, I∗, R∗) where,

M∗ =
Ω

π + µ
,

S∗ =
Ωπ

(π + µ)(βI∗ + σ + µ)
,

I∗ =
−(1−R0) +

√
(1−R0)2 + 4 σ

σ+µ
R0

2
(

β
σ+µ

) ,

R∗ =
αI∗

µ
.

(2.34)

We find that the stability of endemic equilibrium is locally asymptotically stable, if by finding the
eigenvalues they have negative real parts.

Using the Jacobian matrix obtained from the model equation at the EE point (2.34), we have;

J(E∗
1 ) =



−J11 0 0 0

J21 −J22 −J23 0

0 J32 J33 0

0 0 J43 −J44


.

Where

J11 = (π+µ), J22 = (µ+βI∗+σ), J32 = βI∗+σ, J33 = βS∗− (µ+ω+α), J23 = βS∗, J21 = π,
J43 = α, J44 = µ.

On evaluating the Jacobian matrix J(E∗
1 ), we obtain the eigenvalues λ1 = −(π + µ), λ4 = −µ and

the characteristic equation can also be expressed as;

a0λ
2 + a1λ+ a2. (2.35)
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Where

a0 = 1,

a1 = (J22 − J33),

a2 = (J23J32 − J22J33).

(2.36)

Theorem 2.6. For endemic equilibrium of model system (2.1) to be stable, we need to
have the coefficients of the characteristic equation (2.35), being positive. Otherwise it will
be unstable.

The necessary conditions for stability are:

C1. The coefficients of the characteristic equation should be positive and real.

ai > 0, i = 0, 1, 2, 3.

C2. The coefficients of the characteristic equation should be non-zero.

Proof

Condition C2, is fulfilled since the coefficients of equation (2.35) are non-zero as shown in (2.36).

For C1 to be fulfilled, we need to set the following conditions of inequalities for a1 > 0 and a2 > 0.
On simplifying the inequalities in equation (2.36), we obtain;

a0 = 1 > 0. (2.37)

a1 = β(I∗ − S∗) + (2µ+ ω + σ + α) > 0. (2.38)

a2 = (βI∗ + σ)(ω + α) > 0. (2.39)

Since the coefficients of the characteristic equation (2.35) are all positive as in equation (2.37), (2.38)
and (2.39), this implies that the endemic equilibrium of the system (2.1) is locally and globally stable
when R0 < 1, hence the proof.

3 Numerical Results

We carried out simulations of model system (2.1) using MATLAB, to investigate the effect contaminated
environment had on the transmission dynamics of IBD. This was achieved by use of the initial values
on the tables 3 and parameter values which were all assumed.

Table 3. Variables used in the simulations

Variables value

M(0) 800
S(0) 600
I (0) 150
R(0) 10
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Fig. 2. We have used the following parameters in the simulation of the model system
M,S,I,R of the total population when R0 < 1 :

Ω = 10, µ = 0.001, β = 0.001, σ = 0.95, α = 0.15, ω = 0.225, π = 0.565, R0 = 0.02792. A decrease
in number of population in M and S class is observed as class I increases to its peak,

then drops as time progresses. compartment R also increases at a constant rate

Fig. 3. The parameters used in the simulation of the infected population with varied
contact rate with the environment, when R0 < 1 and when R0 > 1 are :

Ω = 10, µ = 0.001, β = 0.001, α = 0.15, ω = 0.225, π = 0.565, σ = [0.001, 0.05, 0.505, 0.95]. High
contact rate between the contaminated environment leads to high infection rate in

the system, great number of flock get infected.
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Fig. 4. The simulation of the susceptible population when the parameter σ
representing contact rate with the environment is varied. The parameters used when

R0 < 1 and when R0 > 1 are:
Ω = 10, µ = 0.001, β = 0.001, α = 0.15, ω = 0.225, π = 0.565, σ = [0.001, 0.05, 0.505, 0.95]. High
contact rate between the susceptible flock and the contaminated environment leads
to increase in infectious in the system hence the susceptible flock reduces in number.

(a) (b)

Fig. 5. Susceptible population when R0 < 1 and when R0 > 1. In (a), the parameters
used when R0 = 0.8564 are β = 0.001, σ = 0.03, µ = 0.001, ω = 0.225, π = 0.5655,Ω = 10. The
rate of infection is low when R0 < 1. In (b), the parameters used when R0 = 2.885 are
β = 0.005, σ = 0.045, µ = 0.001, ω = 0.225, π = 0.5655,Ω = 10. The rate of infection is high

and the population decreases drastically with time when R0 > 1

(c) (d)

Fig. 6. The simulation of the infected population when R0 < 1 and when R0 > 1 . In
(a), the parameters used when R0 = 0.8564 are:

β = 0.001, σ = 0.03, µ = 0.001, ω = 0.225, π = 0.5655,Ω = 10.The infection takes time to pick
up and the trajectory move to zero along the x-axis when the system is stable. In

(b), the parameters used when R0 = 2.885 are:
β = 0.005, σ = 0.045, µ = 0.001, ω = 0.225, π = 0.5655,Ω = 10.The infection pick up
immediately and the trajectory does not reach the x-axis when the system is

unstable
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4 Discussion

A study carried out by Silke and Sharma, indicated that maternal acquired antibody alone are not
adequate to protect chickens against IBDV and that introducing T-cell was critical for protection
[13]. The finding done by Van den Berg and Meulemans, on Protection afforded by maternally
derived antibodies and inference with live vaccination, on acute infection of bursal disease in poultry
indicated that chicks are not fully protected against highly pathogenic strain of IBDV during there
growing period by their maternally derived antibodies [14].

From Fig. 2, there is a decrease in Partially immune class (M) as birds lose their maternal antibody.
They become susceptible to IBD infection, hence move into S-class. As the birds in susceptible
compartment interact with contaminated environment, the chicken will be infected and move to
infected class, where an increase in the population will be observed, since the birds can not be
sufficiently protected by the maternal antibodies [1].

As the birds in susceptible class interact with the contaminated environment they are infected by the
infectious bursal disease virus, since the virus is transmitted laterally by direct or indirect contact
between the contaminated environment and susceptible [2]. In Fig. 3,5 and 6 as the contact rates
varies, the rate of infections also changes. As the susceptible come into contact with the infected
within the same environment, leads to increase in infection in the system [4, 5].

5 Conclusion

In this paper, we developed a four compartmental model of transmission dynamics of infectious
bursal disease (M,S,I,R) taking into consideration the effect of environmental factors.

We derived the reproductive number R0, which predicts the state of the infection in the system.
The stability of the disease free equilibrium and endemic equilibrium was analysed and found it to
be locally and globally asymptotically stable if R0 < 1 and unstable if R0 > 1. For the system to
be stable, we have;

σ >
βΩπ − µ(π + µ)(ω + α+ µ)

(π + µ)(ω + α+ µ)

When the model is stable, it means the disease will die off with time and the spread of the epidemic
can be controlled. But if R0 > 1 the model is unstable. The model exhibited the existence of unique
endemic equilibrium points, as the value of I∗ depended on R0. Endemic equilibrium is stable when
R0 < 1 and unstable when R0 > 1. When R0 < 1 the disease takes time to pick up in the system
and it reaches the peak after a longer time. When R0 > 1 the disease spreads much faster in the
system and and reaches the peak after a short time, but the trajectory does not return to zero.

From numerical simulations, it proves that the spread of IBD is highly enhanced by the interaction
between the susceptible and contaminated environment. When the contact rate is high, most of the
birds become infected with the virus within a short period.
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