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Abstract 
 

In the present paper we have obtained some properties of an almost semi-invariant of a normal almost 
paracontact manifold. The integrability condition of distributions �, ��, �⨁{�} have also been discussed. 
According to these cases normal almost paracontact manifold is categorized and its used to demonstrate 
that the method presented in this paper is effective. 
 

 

Keywords: Almost Semi invariant submanifold; Normal almost paracontact manifold. 
 

MSC (2010): 53C15 – General geometric structures on manifolds (almost complex, almost product 
structures, etc.). 
 

1 Introduction 
 

A Riemannian manifold (��, �) is called almost paracontact metric manifold if it is endomed with structure 
(�, �, �, �), where � is a (1, 1) tensor, � ��� � vector field and 1-form on ��, respectively, satisfying. 
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��� = � − �(�)�                 (1.1) 
 
�� = 0, � 0 � = 0                 (1.2) 
 
�(�) = 1                  (1.3) 
 
�(��, ��) = �(�, �) −  �(�)�(�)                (1.4) 
 
�(�) = �(�, �)                   (1.5) 
 
for any �, � ∈ (��), where TM denotes the set of all smooth vector fields on �� [1] 
 
An almost paracontact metric manifold �� is said to be normal if the covariant derivative of � satisfies 
 

�∇����� =  −�(�, �) � −  �(�)� + 2�(�)�(�)�             (1.6) 
 
And 
 
∇��� =  ��                 (1.7) 
 
where ∇� is the Levi-Civita connection on �� 
 
Let ∇� (resp. ∇) be the linear connection of M�  (resp. M) with respect to the Riemannian metric g. The linear 
connection induced by ∇� on the normal bundle ���  is denoted by ∇�  then the equation of Gauss and 
Weingarten are respectively given by 
 
∇��� =  ∇�� + ℎ(�, �)                (1.8) 
 
And 
 

∇��� =  −��� +  ∇�
� �                 (1.9) 

 
For all � ∈ ⌈(��)� and � ∈ ⌈(���)�, h is the second fundamental form of M and ��  is the fundamental 
tensor with respect to the normal section N and  
 
�(ℎ(�, �), �) = �(���, �)             (1.10) 
 
Let M be an m-dimensional submanifold immersed of a normal almost paracontact manifold �� . Let 
�� ��� ��� be respectively the tangent and normal bundle to M. Suppose the structure vector field � is 
tangent to M and denoted by {ξ}  the one dimensional distribution spanned by �  on M and {�}�  the 
complementary orthogonal distribution to {�} in TM. For each � ∈ (��), Put 
 
�� = �� + ��               (1.11) 
 
where �� ∈ ({�}�) ��� �� (���). Thus b is an endomorphism of the tangent bundle TM and c is a normal 
bundle 1-form on M. 
 

1.1 Definition 
 
The submanifold of a normal almost para contact manifold is said to be an almost semi-invariant 
submanifold and its tangent bundle TM has the decomposition 
 
�� = � ⨁ �� ⨁ � {�}               (1.12) 
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where  
 

(a) D is invariant distribution on M i.e. �(��) =  �� 
 
(b) ��is an anti-invariant distribution on M, i.e. ���  ⊂ (���) for � ∈ � 
 
(c) ��  is neither invariant nor an anti-invariant distribution on M, i.e. ���  ≠ 0 ��� ��� ≠ 0  for any 

� ∈ � ��� ��  ∈  �� 
 
(d) {�} is the distribution spanned in M by the Vector field � 
 

Para Contact manifolds and almost semi invariant submanifolds were studied by many investigators (See, 
[2 – 7, 8 – 11]) 

 

2 Basic Results 
 
Let M be an almost semi-invariant submanifold of a normal almost paracontact manifold �� and � both by 
g. Let P, Q, and L be the projection morphisms of TM to the distributions, �, �� ��� �� , respectively. 
Then,� ∈ (��), we have  
 
� = �� + �� + �� +  �(�)�                (2.1) 
 
Now, we take � ∈ (��) . Then �� ≠ 0 , �� ≠ 0. Thus c defines a vector sub-bundle ��� ∶ � ⟶ ����  of 
���. For any � ∈ (���), we put  
 
�� = �� + ��                  (2.2) 
 
where tN and fN are respectively the tangent and the normal component of ��. Then we have  
 

����� , ���� = 0                  (2.3) 
 
Next, we denote by � the orthogonal complementary vector bundle to ���  ⨁ ���  �� (���). By (1.4), we 
have  
 

�(��, ��) = �(��, ��) = �(�, �) = 0, ��� � ∈ (�)��� � ∈ ����                           (2.4) 
 
Thus ��� =  ���  ⨁ ���                 (2.5) 
 

2.1 Lemma 
 
The morphism t and f satisfy 
 
�(���) =  �� ⨁ ��                  (2.6) 
 
�(���) = ��                  (2.7) 
 

������ =  ��                  (2.8) 
 

������ = ���                  (2.9) 
 
Proof Let � ∈ (���), then 
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�(��, �) = �(��, �)  
 
= �(�, ��) = 0    ∀    � ∈ (�)  
And, �(��, �) = �(��, �)  
 
= �(�, ��) = 0  
 

Thus, �� ∈ ���  ⨁ ��� and we get (2.6). Next for each � ∈ (��), we have 
 
� =  ��� = ��� + ��� = ���  
 
Which implies (2.7)  
 
We now have 
 

�(���, �) = �(���, �), ��� � ∈ (��), � ∈ ����  
 
= �(��, ��) = 0  
 
and �(���, �) = �(���, �) = �(��, ��) = 0 
 

�(���, �) = �(���, �) = �(��, ��) = 0,    ∀ � ∈ (�) ��� � ∈ ��  
 
Therefore, 
 

��� ∈  ������   
 
Giving (2.8) 
 
Lastly, we have 
 

�(���, �) = �(���, �), where � ∈  � , � ∈ ���� 
 
= �(��, ��) = 0  
 
And  
 

�(���, ��) = �(���, ��) for � ∈ (��) and � ∈ ���� 
 
= �(��, �) = 0  
 
And hence we get (2.9) 
 

2.2 Lemma 
 
Let M be an almost semi-invariant submanifold of a normal almost para contact manifold ��. Then we have, 
 
(�� + ��)� = � − �(�)�, (�� + ��)� = 0              (2.10) 
 
(�� + �� − �)� = 0, (�� + ��)� = 0             (2.11) 
 
(�� − � + ���)� = 0               (2.12) 
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(��� − � + ���)� = 0               (2.13) 
 
For any � ∈ (��) and � ∈ (���) 
 
Proof  The proof follows directly from (1.1), (1.11) and (2.2) 
 
Proposition 2.1 Let M be an almost semi-invariant submanifold of a normal almost paracontact manifold 
��. Then the endomorphism �: �� ⟶ �� is a para f-structure on M, that is, �� − � = 0 if and only if M is 
a semi-invariant submanifold. 
 
Proof  From (1.11), we see that  
 
(�� − �)� = 0 for any � ∈ �� ⨁ ��  ⨁{�}� 
 
Since ���� =  ���, we see that  
 
(�� − �)���� = {0} �� ��� ���� ��   
 
(�� − �)���� = 0  
 
Which with the help of (2.10) gives 
 
(�� − �) =  −��  
 

Therefore ������ = 0  
 
Which with the help of (2.8) gives �� = {0}. 
 
Proposition 2.2 Let M be an almost semi-invariant sub-manifold of a normal almost paracontact manifold. 
Then M is a semi-invariant sub manifold if and only if (�� − �) = 0      (2.14) 
 
Proof  We see that � ∈ (���), we have �� = 0 and for � ∈ (�), �� =  �� 
 
By (2.9), we see that t is an automorphism on ���. 
 

Hence (�� − �)����� = {0} if and only if  
 
(�� − �)����� = {0}                (2.15) 
 
Using (2.11), we get 
 

������� = 0  
 
Which with the help of (2.8) gives �� = {0}. 
 

2.3 Lemma 
 
Let M be an almost semi-invariant submanifold of a normal almost paracontact manifold, then we have 
 

���(�, �)� =  ��∇�� − �(�)��               (2.15) 
 

���(�, �)� =  ��∇�� −  �(�)��              (2.16) 
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���(�, �)� =  ��∇�� −  �(�)��               (2.17) 
 

−�(�, �) +  �(�)�(�) =  ���(�, �)�             (2.18) 

��∇�� + ��∇�� + ��∇�� = ℎ(�, ���) + ℎ(�, ���) +  ∇�
���� + ∇���� +�ℎ(�, �)        (2.19) 

 
Where, 
 
�(�, �) =  ∇���� +  ∇���� − ����� −  �����            (2.20) 

 
For all �, � ∈ (��)  
 
Proof From (2.1), we see that  
 
� = �� + �� + �(�) +  �(�)�            (2.21) 
 
Differentiating (2.21) covariantly along X and using (1.6), (2.1), (1.8) and (1.9), we get 
 
��∇�� +  ��∇�� + ��∇�� + ��∇�� +  � �ℎ(�, �) + � �ℎ (�, �) + � �ℎ(�, �) +  �(�ℎ(�, �)�) +
�ℎ(�, �) − �(�, �)� +  �(�)�(�)� −  �(�)�� −  �(�)�� − �(�)��  
= �∇���� + �∇���� + �∇���� +  �(∇����)� + ℎ(�, ���) − ������ − ������ − ������ −

��������� + ∇�
���� + �∇���� + �∇���� + �∇���� + �(∇����)� + ℎ(�, ���) − ������ −

������ − � ����� −  �(�����)� + ∇�
����  

 
Equating tangent and normal parts, we get (2.15), (2.16), (2.17), (2.18) and (2.19) 
 

2.4 Lemma 
 
Let M be an almost semi-invariant submanifold of a normal almost paracontact manifold ��. Then we have 
 
∇� � = ��, ℎ(�, �) = ��   ∀ � ∈ (��)            (2.22) 
 
∇� � =  ��, ℎ(�, �) = 0   ��� ��� � ∈ (�)           (2.23) 
 
∇�� = 0, ℎ(�, �) =  ��  ��� ��� � ∈ (��)            (2.24) 
 

∇� � = ��, ℎ(�, �) = �� ��� ��� � ∈ ����              (2.25) 
 
∇� � = 0, ℎ(�, �) = 0               (2.26) 

 
Proof We have 
 

∇��� =  ∇�� + ℎ(�, �)  
 
Which on using (1.7) and (1.11), gives 
 
�� + �� =  ∇� � + ℎ(�, �)  
 
Equating the tangent and the normal parts we get (2.22) and (2.23) – (2.26) are obtained directly from (2.22) 
 

2.5 Lemma 
 
Let M be an almost semi-invariant submanifold of a normal almost paracontact manifold ��. Then we have  
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���� +  ���� = 0 for all �, � ∈ (��)            (2.27) 

 
Proof With the help of (1.6), (1.8) and (1.10), gives 
 

������, �� = �(ℎ(�, �), ��)   

 = ��∇���, ��� 

 = ���∇���, �� 

 = ��∇����, �� − � ��∇�����, �� 

 = −����, ∇���� =  −������, �� 

 
for all �, � ∈ (��) and � ∈ (��) which implies (2.27) 
 

2.6 Lemma 
 
Let M be an almost semi-invariant submanifold of a normal almost paracontact manifold ��. Then we have 
 
∇�� ∈ (�) ��� ��� � ∈ (�)              (2.28) 

 
∇�� ∈ (��) ��� ��� � ∈ (��)              (2.29) 

 

∇�� ∈ ���� ��� ��� � ∈ ����              (2.30) 

 
The proof follows from Bejancu and Papaglumic (1984a, b). 
 
Corollary (2.1) 
 
Let M be an almost semi-invariant submanifold of a normal almost paracontact manifold ��. Then we have 
 
[�, �] ∈ (�) ��� ��� � ∈ (�)              (2.31) 
 
[�, �]  ∈ (��) ��� ��� � ∈ (��)              (2.32) 
 
[�, �]  ∈ ���� ��� ��� � ∈ ����             (2.33) 
 
The proof immediately follows from Lemmas (2.4) and (2.6) 
 

3 Integrability of Distributions 
 
3.1 Theorem 
 
Let M be an almost semi-invariant submanifold of a normal almost paracontact manifold �� . Then the 
distribution D is integrable if and only if 
 
ℎ(�, ��) = ℎ(�, ��)                 (3.1) 
 
Proof By using (2.23), we have  
 
�([�, �], �) = �(∇� � − ∇��, �)  
 = −�(∇��, �) + �(∇��, �)  
 = −�(��, �) + �(��, �) 
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 = 0  for all �, � ∈ (�) 
 
Next from (2.19), we have 
 

ℎ(�, ��) =  ��∇�� + ��∇�� + ��ℎ(�, �)�             (3.2) 
 
for any �, � ∈ (�) 
 
Hence, we have 
 
ℎ(�, ��) − ℎ(�, ��) =  ��[�, �] + ��([�, �])  
 
Which proves the theorem. 
 

3.2 Theorem  
 
The distribution �� is not necessarily integrable 
 
Proof For �, � ∈ (��), (2.20) gives 
 
�(�, �) =  − ����  

 
Applying � to (2.15) and using (1.1), we get 
 

�∇�� =  −������ ��, for any �, � ∈ (��) 

 
Which with the help of Lemma (2.5), gives 
 

�([�, �]) =  ���−���� +  �����  

 = −2������ �� 

 
Showing the non integrability of �� 
 

3.3 Theorem 
 
The distribution �� is integrable if and only if  
 

���� − ���� + ∇��� −  ∇��� ∈ ��� ⨁��⨁{�}�                   (3.3) 
 

ℎ(��, �) − ℎ(�, ��) + ∇�
��� − ∇�

��� ∈ (��� + �)             (3.4) 
 
for all �, � ∈ (��) 
 
Proof 
 

For any �, � ∈ ����, using (2.25), we get  
 
�([�, �]) = �(∇�� − ∇��, �)  
 = �(�, ∇��) − �(�, ∇��) 
 = �(�, ��) − �(�, ��) 
 = 0  
 



 
 
 

Singh; JAMCS, 35(8): 91-100, 2020; Article no.JAMCS.62644 
 
 
 

99 
 
 

Now, for any �, � ∈ ����, (2.20), gives  
 
�(�, �) =  ∇��� − ����                 (3.5) 
 
Applying � to (2.15) and using (1.1), we get  
 
�∇�� =  ��(∇��� − ����)  
 
And hence 
 
�([�, �]) =  ��(∇��� −  ���� − ∇��� + ����)    
 

Which shows that [�, �] ∈ ���� if and only if (3.3) is satisfied. Further applying � to (2.19), and taking the 
component in ��, we get 
 

�∇�� = ���ℎ(�, ��)� + ∇�
��� − ��ℎ(�, �)�  

 
Which further yields 
 

�([�, �]) = ���ℎ(�, ��)� +  ∇�
��� −  ∇�

���  
 
Hence, �� is integrable if and only if (3.4) is satisfied. 
 

4 Discussion and Analysis of Result 
 
In this paper I have given some results on almost semi-invariant submanifold and some properties on almost 
semi-invariant submanifold of a normal almost para contact manifold have been discussed. 
 

5 Conclusion/Remarks 
In this paper I have categorized normal almost paracontact manifold satisfying the conditions, �∇����� =

 −�(�, �)� −  �(�)� + 2�(�)�(�)�  ���  ∇��� =  �� . This derivative operators are very important. It 
provides information about the structure on the manifold. 
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