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ABSTRACT 
 

We here research the features of transport of nerve impulse along the nerve fiber using modern theory of molecular 
biology, in which we think this transport is due to the driving of bio-energy released from the hydrolyses reaction of 
ATP molecules in the cells. Because ATP molecules are often attached on the protein molecules, where the energy 
is transported along the protein molecules from the position of generation of hydrolyses reaction to the position used 
in virtue of transport of the soliton formed by the excitons through the mechanism of self-trapping, where the exciton 
is a quantum produced by the C=0 stretching (or amide-I ) vibrations. We studied and obtained the properties of 
transport of bio-energy, which is carried by Pang’s soliton, along α-helical protein molecules and found further the 
lifetimes of Pang’soliton, which is between 0.53×10-10S  0.65×10-10S at physiological temperature T=300K. In this 
lifetime Pang’s soliton can travel over several hundreds of amino acid residues. This implies that Pang ‘s theory is a 
relevant and correct model of bio-energy transport, then Pang’s soliton is a real carrier of bio-energy transport in 
protein molecules. The bio-energy is transported into the nerve membrane to drive the works of sodium pump and 
potassium pump on the surface of membrane of cells, which drive also the transfer of the action electric-potential or 
the nerve impulse along the nerve membranes. We confirm that there is not the nerve impulse, or the action 
electric- potential without the works of sodium pump and potassium pump, or the bio-energy. This means that the 
nerve impulse can be transported along the nerve membrane, only if the bio-energy are absorbed really by the 
sodium pump and potassium pump. In order to obtain a stable nerve impulse we must ensure that the times forming 
it must be shorter than the lifetime of Pang’s soliton and its experimental values, or else, the nerve impulse is not 
stable and is useless. Thus we can judge and affirm that the nerve impulse is a terahertz wave. Thus we can affirm 
and verified that the nerve impulse can be transport along the nerve systems in the terahertz wave, instead the 
millimeter wave. We here determinate and discuss further its features. This is first time to determinate the terahertz 
features of transport of the nerve impulse along the nerve fibers in life systems, which will  promotes the 
development of the nerve science. 
 

Keywords: Nerve impulse, nerve membrane, nerve fiber, bio-energy, soliton lifetime, 
protein molecule, ATP molecule, energy transport, carrier, terahertz wave, 
feature. 
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INTRODUCTION, FORMATION OF NERVE 
IMPULSE IN LIFE SYSTEMS 
 

It is well known, the distributions of                  
Na+

、K+ and Cl- ions in the inner and the 
exterior of the neurons in the resting case 
are different, which are also same with 
general cells, their charges are all                      
different, which results in the different                      
of states of distribution for the charges, 
which are positive in the exterior and 
negative in the inner. Thus the resting 
potential of the neurons are about 40-70mV. 
which is just the membrane potential of the 
neurons we observed often. Its detailed 
reasons of form are just due to the 
differences of the permeability of the 
neurons for different ions. Therefore, the 
uneven of distribution and permeability of 
these ions in inside and outside of the 
membrane is just their basic feature. These 
ion channels in the neuron membranes are 
formed by a kind of transmembrane protein 
molecules. Just the existences of the 
channels, which promote to passive transfer 
and flow of these ions along the directions of 
the electrochemical gradients. But the 
transfer and flow have a observe the ion 
specificity, i.e., different ions have different 
channels. 

 

Very clearly, The flow of these ions 
along these channel firm a current, this is 
just the electrical signal. It is controlled by 
the membrane potential. Thus we can say 
that the electrical signal is due to the 
changes of open or close of ion channels. 
Therefore we can affirm that there are 
changes of ion current in the nerve systems. 
However, to cause and to maintain the ion 
concentration gradient on both sides of the 
nerve membrane need supply constantly the 
energy, which can be carried out and 
guaranteed by the ionic pumps such as 
sodium pump and potassium pump on the 
membrane of neurons. These ionic pumps 
have obtained from the energy factory in life 

bodied through the metabolism or chemical 
reactions, which can release the energy, 
such as the hydrolysis reaction of ATP 
molecules. 
 

In general case the ion concentration on 
both sides of the membrane maintained 
always at a certain level. However, if the ion 
pumps are obtained the energy from the 
metabolic reactions, then they can put forth 
or pump out voluntarily some ions into the 
membrane to prompt the variations of the 
ion concentration on both sides of the 
membrane, thus their gradient of ion 
concentration on both sides will be changed, 
Thus, the potential of cell membrane, which 
is determined and controlled by the relative 
permeability of specific ions on the cell 
membrane, will be varied in this case. The 
changes of the potential are determined and 
controlled by the concentration and 
permeability of specific ions as well the 
energy imported from the factories, but 
their degree of influences are different for 
different ions. If the change of the potential 
of across the nerve membrane achieve and 
are more than its threshold values ,then the 
potential of nerve membrane having the 
features of great, severe of deformation and 
determination of outline will appear. Then 
the nerve excitement or nerve impulse as 
well its transport occurs in this case. Thus, a 
nerve impulse and its transport along the 
nerve membrane are also inducted and 
formed in this case.  

   

From the investigations mentioned we 
know and affirm the conditions of form of the 
nerve impulse and its transport. They are 
described as follows 

 

(1) The distributions of Na+and K+ ions in 
the inner and the exterior of the nerve 
membrane are not same, their 
permeabilities are also different in the 
nerve membrane. In this case there 
are all channels of Na+and K+ ions on 
the nerve membranes. 
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(2) only if the bio-energy is provided and 
imported constantly to the nerve 
membrane to trigger the work of 
sodium pump and potassium pump, 
let the excitement of nerve membrane 
to produce and launch the nerve 
impulse, or else, the nerve impulse 
cannot be formed, produced and 
transported.  

 
In practice, the changes of the potential 

of the neurons in the across membrane is 
controlled by many factors, such as 
variations of the concentration and 
permeability of sodium and potassium ions 
as well the energy imported from the energy 
factories. In this case meeting above two 
conditions the nerve excitement triggered by 
the action potential can also occur, if only 
different nerve membranes are in the excited 
states having a variety of forms and states. 
Then a nerve impulse will also be produced 
in the nerve membranes organism. If the 
nerve organism can obtain the bio-energy, 
then the nerve impulse with certain nerve 
information can transport along the nerve 
fiber organism. Therefore, the nerve impulse 
and its transport are always and closely 
related with the acquisition of the bio-energy. 
Then we can affirm that there are not the 
nerve impulse and its transport without 
import of the bio-energy in nerve fiber 
organizations. 

 
HODHKIN-HUXLEY MODEL FOR FORM 
OF NERVE IMPULSE AND ITS 
NECESSITY OF DEVELOPMENT  

 
In accordance with these conditions and 

requests of form of nerve impulse and its 
features we can say that the famous 
Hodhkin-Huxley model of the nerve 
excitement (A. L. Hodgkin, et al. 1952; A. L. 
Hodgkinand and R. D. Keynes, 1955; A. L. 
Hodgkin and R. D. Keynes 1953) and 
transport of nerve impulse are not a 

complete theory. Why?  
 

In fact, Hodhkin-Huxley proposed and 
established (A. L. Hodgkin, et al. 1952; A. L. 
Hodgkinand and R. D. Keynes, 1955; A. L. 
Hodgkin and R. D. Keynes 1953) first the 
model of the nerve impulse in the nerve 
membrane. In this case they assumed 
artificially that the possibility of potassium 
ions through their channel on the nerve 
membrane are controlled by four polar 
molecules with certain electric dipole 
moments, which are in the entrances of the 
channels. In this case they denoted the 
conductance of potassium ions appeared by  

 
4ngg

kK =
 

 
where gk is maximal conductance of the 

solutions in the body, n is a characteristic 
constant of nerve membrane. Hodhkin-
Huxley (A. L. Hodgkin, et al. 1952; A. L. 
Hodgkinand and R. D. Keynes, 1955; A. L. 
Hodgkin and R. D. Keynes 1953) 
assumedagain that n meets the equation:   

 

nn
dt

dn
nn βα −−= )1(

. 
 

where αn and βn are some rate contents for 
the sodium ions, they are related with the 
temperature of the nerve organism, the 
concentration of calcium ions and the 
potential V of the nerve membrane. If the 
potential is increased along the direction of 
its positive values, then the value of αn is 
increased, but βn is decreased. If the 
potential is a content, then the solution of 
above equation can be denoted by 

),/exp()()( 00 ttnAAtn −−=  where 
0n is its 

early value, )( nnn nA βα += . 
 

For the motions of sodium ions, their 
possibility along the channels on the nerve 
membrane, Hodhkin-Huxley assumed still 
that they are controlled by four polar 
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molecules, in which but three polar 
molecules carrier only a pair of charge, 
respectively, but other molecule carries three 
pairs charges. When the channels have not 
be opened, the positive charges of the 
above three polar molecules can be turned 
to the out parts of the mouths of the 
channels to stop the import of the sodium 
ions, thus the channels are closed, or 
speaking, the activity of the channels are 
lost, thus the possibility along the channels 
are now in the states of negative charges. 
then can also come into the channels under 
the action of the electric field. In this case 
the negative charges can come into the 
mouths of the channels to attract the sodium 
ions. Thus, the sodium ions can come into 
the channels in this case. However, the 
molecular dipoles with three pairs of charge 
turn immediately to the positive charges 
to face the entrance of these channels from 
3 pairs original negative charges turn to the 
positive charges to face the entrance. Then 
the activity of the channels is lost in this 
case. This is called h process in                    
this case.   

 

In this case, the probability of Na+ ions 
across the nerve membrane are determined 
together by the probability appearing the 
open state related to the three processes of 
m and the probability appearing the closed 
state related to the process of h=1-m. Thus 
the conductance of sodium ions can be 
represented by the equation: 

 

hmgg
NaNa

3=
 

 

where Na
g

is the maximal conductance of the 
sodium ions, m and h are some general 
contents, they meet following equations : 
 

mm
dt

dm
mm βα −−= )1(

，

hh
dt

dh
hh βα −−= )1(

       
where αm 、 αh 、 βm and βh are some 

contents, which are related with the 
temperature of nerve membrane and 
concentration of the calcium ion and the 
potential of nerve membranes. If the fibrous 
inner potential are changed along the 
positive direction, then αm and α will be 
increased, but βm aad βh are decreased. 
   

 If m and n are known, then from 
Equations above mentioned we can obtain 
the sodium conductance, potassium 
conductance and the membranes 
conductance in these cases of 
depolarization of cell membranes. Some 
researchers measured really the nerve 
membrane conductance, depolarization of 
cell membranes, sodium conductance and 
potassium conductance and their changes in 
the squid. These results obtained from 
experiments in the squid are basically 
consistent the theoretical results by 
Hodhkin-Huxley’s model. This manifest that 
Hodhkin-Huxley’s model is successful.   

 
However, we knew clearly from above 

investigation that Hodhkin-Huxley’s model 
(A. L. Hodgkin, et al. 1952; A. L. Hodgkinand 
and R. D. Keynes, 1955; A. L. Hodgkin and 
R. D. Keynes 1953) is only a simple 
description of the properties of nerve 
impulse and it has not elucidated the form of 
the nerve impulse and its feature of 
transport along the nerve membranes. 
Strictly speaking, Hodhkin-Huxley’s model is 
only a  static theory of the nerve impulse, 
can describe only the form and features of 
the action potential because it has not 
researched the properties of transport of 
nerve impulse along the nerve fibers 
triggered by the work of sodium pump and 
potassium pump under the drive of the bio-
energy importing from biological organisms . 

 
However, the transports of nerve 

impulse are widely existent in the life 
systems, there are not life activity without 
the transports of nerve impulse. Therefore, 
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to investigate the form of nerve impulse and 
its features of transports have very important 
significances in life sciences. Then we can 
affirm that Hodhkin-Huxley model is only an 
approximate theory, it cannot describe and 
elucidate correctly the form and transport of 
nerve impulse along the nerve fibers. This 
means that the Hodhkin-Huxley model must 
be developed forward to built complete the 
theory of transport of nerve impulse in life 
systems.    

 
In the following sections we will research 

and elucidate completely and in detail the 
form of nerve impulse and its features of 
transports driven by the works of sodium 
pump and potassium pump, which are 
triggered by the bio-energy. The energy are 
released from the hydrolysis reaction of the 
adenosine phosphate (ATP) molecules in 
the mitochondrion in the cells. The energy 
are transported to the sodium pump and 
potassium pump through the protein 
molecules. We should investigate in detail 
these processes and properties of transport 
of the bio-energy. These investigations are 
described as follows.  

 

THE THEORY OF BIO-ENERGY 
TRANSPORT ALONG THE PROTEIN 
MOLECULES AND ITS C PROPERTIES  
 

The Theory of Bio-energy Transport 
along the Protein Molecule in the Living 
System 
 

As it is known from the above 
investigation that life or life activity is just 
processes of mutual changes and 
coordination and unity for the bio-material, 
bio-energy and bio-information in the live 
systems. Their synthetic movements and 
cooperative changes are just total life activity, 
where the bio-material is the foundation if 
life, the bio-energy is its center, the bio-
information is its key, the transfer of bio-
information are always accompanied by the 
transport of bio-energy in living systems 

(PangXiao-Feng 2007). Thus, the bio-energy 
and its transport are an fundamental and 
important process in life activity. In this case 
the bio-energies are mainly provided by that 
released in adenosine phosphate (ATP) 
hydrolysis in the living systems. Namely, an 
ATP molecule reacts with water, which 
results in the energy release of 0.43eV 
under normal physiological conditions as 
mentioned above. The reaction is 
represented in Eq.(18) in chapter1.The bio-
energies needed in biological processes in 
the bio-tissues come basically from this 
energy, namely, it is mainly used in these 
processes, such as the muscle contraction, 
DNA duplication and the neuroelectric pulse 
transfer on the membranes of neurocytes as 
well as work of calcium pump and sodium 
pump. Therefore, there is always a process 
of bio-energy transport from the producing 
place to required organisms in the living 
systems. However, understanding of 
mechanism of the bio-energy transport in 
the living systems is a long standing 
problem which retains interesting up now. 
Plenty of the mechanisms of bio-energy 
transport were proposed, but most of them 
are not successful (PangXiao-Feng 2007; 
D.A. Baylor, et al. A.F. Huxley 1957; G..E. 
Schulz and R.H. Schirmar 1979). It is known 
that ATP molecules bind often to a specific 
site on the protein molecule, the energy 
supply for most protein activity and functions 
is provided by the ATP hydrolysis. Thus the 
transport of bio-energy released by ATP 
hydrolysis is always related to the protein 
molecules and their changes of 
conformation and configuration. 

 

As it is known, the protein molecules are 
composed of more than twenty different 
kinds of individual building blocks called 
amino acids. Each amino acid is again 
constructed by an amino group(NH2), a 
carboxyl group (COOH), and a side group, 
or radical attached to an α carbon atom. The 
radical is what distinguishes one amino acid 
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from another. Amino acids polymerize to 
form long chains of residues that constitute 
a protein molecule. When two amino acids 
join together, they release one water 
molecule and form a peptide bond. When 
the polypeptide chain has been formed, it 
can fold into a variety of complex three-
dimensional conformations. Of particulars 
are the three structural configurations that 
recur over and over in proteins: the α –helix, 
the β-sheet and globular conformation. In 
the α-helix the polypeptide chain is tightly 
coiled about its longitudinal axis. In 
theβsheet the chain can be visualized as 
pleated strands of protein. The globular 
conformation is most complex since the 
chains are folded irregularly into a compact 
near- spherical shape. Part of the chain can 
often be in the α-helix or theβsheet 
configuration (PangXiao-Feng 2007; G..E. 
Schulz and R.H. Schirmar 1979; A. S. 
Davydov 1982; C.W.F. McClare 1974). 

 

Generally speaking, the energy can be 
converted to a particular vibrational 
excitation within a protein molecule. A likely 
recipient exchange is the amide-I vibration. 
Their vibration is primarily a stretch and 
contraction of the C= O bond of the peptide 
groups. The amide-I vibration is also a 
prominent feature in infrared and Raman 
spectra of protein molecules. Experimental 
measurement shows that one of the 
fundamental frequencies of the amide-I 
vibration is about 0.205eV. This energy is 
about half the energy released during the 
ATP hydrolysis. Moreover, it remains nearly 
constant from protein to protein, indicating 
that it is rather weakly coupled to other 
degrees of freedom. All these factors can 
lead to the assumption that the energy 
released by ATP hydrolysis might stay 
localized and stored in the amide-I vibration 
excitation. A biological role for vibrational 
excited states was first proposed by 
McClare in connection with a possible crisis 
in bioenergetics (A.F. Huxley 1957) (for 

more information about McClare’s work see 
the article by Luca Turin, in this issue (G.E. 
Schulz and R.H. Schirmar 1979). Then, as 
an alternative to electronic mechanisms, one 
can assume that the energy is stored as 
vibrational energy in the C=O stretching 
model (amide-I) of polypeptide chains in the 
protein molecules. In view of the features of 
bio-energy some theoretical models of the 
bio-energy transport have been proposed 
subsequently. We here will survey these 
theoretical models as well as their properties 
and correctness. 

 

Davydov’s theory 
 

As it is well known, an inspection of the 
α-helix structure reveals three channels of 
hydrogen-bonded peptide groups 
approximately in the longitudinal direction 
with the sequence :    

 

 :….H-N-C=O…H-N-C=O…H-N-C=O…H-N-
C=O…. , where the dotted lines indicate the 
hydrogen bond, Davydov worked out this 
idea in the α-helix protein molecules, which 
is shown in Fig. 1, based on McClare’s 
proposal for explaining the conformational 
changes responsible for muscle contraction 
(A. S. Davydov, A.D. Suprun 1973; A. S. 
Davydov 1973), where the trigger is the 
energy donating reaction of ATP hydrolysis. 
His theory has shown how a soliton could 
travel along the hydrogen-bonded spines of 
the α-helix protein molecular chains. 
Davydov’s assumption was that the first 
event after the ATP hydrolysis is the storing 
of the energy released by the chemical 
reaction in a vibrational mode of the peptide 
group. In 1973 Davydov suggested that the 
amide-I energy could stay localized through 
the nonlinear interactions of the vibrational 
excitation with the deformation in the protein 
structure caused by the presence of the 
excitation. The excitation and the 
deformation balance each other and form a 
soliton. Thus the bio-energy can transport 
along the protein molecules in virtue of the 
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motion of the soliton. This mechanism can 
be described classically as follows. 
Vibrational energy of the C=0 stretching (or 
amide-I) oscillators that it localized on the 
helix chains acts, through a phonon coupling 
effect, to deform the structure of the amino 
acid residue, the deformation of amino acid 
residues reacts, again through phonon 
coupling, to trap the amide-I vibrational 
quanta and prevent its dispersion.Thus a 
soliton is formed in this process. This effect 
is called self-trapping of the amide-I 
vibrational quantum (or exciton). The soliton 
can moves over a macroscopic distances 
along the molecular chains keeping its 
shape and energy and momentum and other 
quasi-particle properties. This is just 
Davydov theory of bioenergy transport in α-
helical protein molecules, which was 
proposed by Davydov in1973 (A. S. 
Davydov 1973; A. S. Davydov 1991; A. S. 
Davydov 1979; A.S. Davydov 1983; A. S. 
Davydov 1982). The mathematical  
techniques that are used to analyze 
Davydov’s soliton are analogous to some 
that have been developed for the “polaron’ 
effect suggested by Landau (L. D. Landau, 
and E. M. Lifshitz 1987; L. D. Landau 1933) 
and studied by Pekar (S. Pekar 1946), 
(Frohlich 1952; W. F¨orner 1991), Holstein 
(1959) and many others. 
 

Therefore, Davydov’s first main addition 
to McClare’s proposal was to point out a 
specific vibrational band that is found in 
proteins and that is ideal for the storage and 
propagation of energy. His second main 
contribution to the field of bioenergetics was 
to realize that the amide-I energy depends 
on the strength of the hydrogen bond that 
may exist between the oxygen of one 
peptide group and the nitrogen of another, 
Thus Davydov took into account the 
coupling between the amide-I vibration 
(intramolecular excitation or exciton) and 
deformation of amino acid residues (or, 
acoustic phonon) in the α-helix proteins and 

gave further the Hamiltonian of the system 
(A. S. Davydov 1973; A. S. Davydov 1991; A. 
S. Davydov 1979; A.S. Davydov 1983; A. S. 
Davydov 1982), which is as follows   

 

in t .ex p hH H H H= + +                              (1) 

with 

( )0 1 1( )ex n n n n n n

n

H D B B J B B B Bε + + +
+ +

 = − − + ∑   (2) 

2

1

1
( )

2 2

n

ph n n

n

P
H w u u

M
−

 
= + − 

 
∑  and 

int 1 1( )
n n n n

n

H u u B Bχ +
+ −= −∑                     (3) 

 

which are the Hamiltonians of the 

excitons with energy 0ε ,the vibration of 

amino acid residue and their interaction, 

respectively,  where ( )n nB B
+

 is the exciton 

creation (annihilation) operator at the nth 

site with an energy 0 0.205ε = eV. They 

satisfy the commutation relation: 
 

, , , [ , ] 0.
n m nm n m n m

B B B B B Bδ+ + +   = = =        
 (4) 

 

 
 

Fig. 1. structure of −α helical protein (A. C. Scott 

1982; A. C. Scott 1984; A.H. Rornero 1999; D. W. 
Brown 1986; D. W. Brown 1987; D. W. Brown 1988; 
D. W. Brown 1990; D. W. Brown 1986; D. W. Brown 
1988; D. W. Brown and Z. Ivic 1989; K. Lindenberg 
1990; M. J. Skrinjar 1988; A. C. Scott 1987; A. C. 

Scott 1990; Pang Xiao-Feng 1986; Pang Xiao-Feng 
1986) 
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Also in Eq. (84), the 0 n nB Bε +
denotes 

the kinetic energy of the exciton, 

1 1( )n n n nJ B B B B
+ +

+ ++  represents the 

resonant (or dipole-dipole) interaction 

between neighboring excitons, 
2

3

02J d r=
ur

  

is the resonance (or dipole-dipole) 
interaction that determines the transition of 
an exciton from one molecule to another. 

Then n nDB B
+

denotes the interaction of the 

exciton with the lattice or peptide groups. D 
is the deformation excitation energy, and is 
approximately a constant, un and  Pn are the 
displacement of the peptide groups and its 
conjugate moment, M is the mass of the 
peptide group, w is the spring constant of 

the molecular chains and n
J uχ = ∂ ∂ is the 

coupling constant between the exciton and 
vibrational quantum of the peptide group 
(phonon). Obviously, the Hamiltonian in 
Eq.(1) represents the elementary motions of 
the exciton and phonon as well as their 
interactions in the systems. 

 
Davydov used the following wave 

function to represent the collective states of 
excitation of the excitons and phonons 
arising from the energy released by ATP 
hydrolysis 

 

)t(D2
＞= | ( ) ( )t tϕ β> =

( ) exp [ ( ) ( ) ] 0n n n n n n

n n

i
t B t P t uϕ β π+  

− − 
 

∑ ∑
h

. (5a) 

or  

1 *

( ) exp

| ( )
( ) ( ) 0

n n

n nq q nq n

q

t B

D t
t a t a

ϕ

α α

+

+




>=    −    
 

∑
∑

 (5b) 

where  
 
 2

2 2 2 2| | ( )  =1n n nn
D P D D P D tϕ>= >=∑ ,  (6)    

 
 

0 0 0
ex ph

=  are the ground states 

of the exciton and phonon, respectively, 

)a(a qq

+  is annihilation (creation) operator of 

the phonon with ware vector q, ( ) 
n

tϕ , 

n( ) | |
n

t uβ =<Φ Φ>  , ( ) |  n nt Pπ = Φ Φ >

and >=<α )t(D|a|)t(D)t( 1q1nq are some 

undetermined functions of time. Evidently, 
equation (5) is an excited state of single 
particle for the excitons, but it is a coherent 
state for the phonons in Eq.(5).This is just 
basic features of Davydov’s wave function.  

 

Obviously, the Davydov wave functions, 

both >> 21 DandD , are concerned, they 

are all not true solutions of the protein 
molecules., in the meanwhile, there is 
obviously asymmetry in the Davydov wave 
function since the phononic parts is a 
coherent state, while the excitonic part is 
only an excitation state of a single particle. It 
is not reasonable that the same nonlinear 
interaction generated by the coupling 
between the excitons and phonons 
produces different states for the phonon and 
exciton. 
 

Using the functional ( ) ( )t H tΦ Φ

and the variational approach, Davydov et al 
(A. S. Davydov 1973; A. S. Davydov 1991; A. 
S. Davydov 1979; A.S.Davydov 1983; A. S. 
Davydov 1982) got: 
 

[ ]0 1 1 1 1( ) ( )n
n n n n n

i W J
t

ϕ
ε χ β β ϕ ϕ ϕ+ − + −

∂
= + + − − +

∂
h   (7)  

 

and                                                 
 

2 2
2 2

1 1 1 12
(2 ) ( )

n n n n n
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∂
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t

β
β π

β
β β −

∂
= Φ Φ = Φ Φ =

∂

∂ 
= + − ∂ 
∑

 

 
In the continuity approximation the 
equations (7) and (8) becomes: 
 

2 2

2

( , )
2 ( , ) 0,

2

x t
i x t

t m x x

β
χ φ

 ∂∂ ∂
− Λ + − = 

∂ ∂ ∂ 

h
h

 (9)   

 
and                                                    

2 2
22 0

02 2

2
( , ) ( , ) 0

r
v x t x t

t x M x

χ
β φ

 ∂ ∂ ∂
− − = 

∂ ∂ ∂ 

 (10) 

                                                                         

where 0 2J WεΛ = − + , 
0 0v r w M=  is 

the sound speed of the molecular chain. 
Clearly, equation (9) is a nonlinear 
Schrödinger equation(NLSE) having a 
soliton solution as given by  

    

0 02

0 0

( , ) sec ( ) exp ( )
2 2

D D DE tv
x t h x x vt x x

r Jr

µ µ
φ

   
= − − − −  

   

h

h

              (11)                                                         
 
Thus from Eqs.(10)-(11) we can give the 
solution of Eq. (10) as follows: 
 

2

0
02

0

( , ) tanh ( )
(1 )

D
r

x t x x vt
w s r

χ µ
β

 
= − − − 

−  
 (12)      

 
Equations (11)-(12) show clearly that the 
bio-energy transports along the protein 
molecular chains in the form of bell-type of 
soliton in Eq.(11). The soliton is localized 
over a scale r0/ Dµ , where,

DDD JGJws µχµ 4,)1/( 22

1 =−= ,
2 2 2 1/2

0 0 0s / , v (w/M)v v r= = is the sound 

speed in the protein molecular chains, v is 
the velocity of the soliton, r0 is the lattice 
constant. From the above result we know 

that a positive χχ =1 means that when the 

hydrogen bond length decreases, the 
energy of the amide I vibration decreases, 
and vice versa. When 0χ = , the amide I 

energy does not depend on the relative 
positions of the peptide groups and the 
amide I excitation propagates from one 
peptide group to the next due to the dipole–
dipole interactions J. In this case, an amide I 
excitation that is initially located at one 
peptide group will spread to other peptide 
groups, and the state will quickly cease to 
be localized. On the other hand, when 

0χ ≠ , an excitation initially located at one 

peptide group will induce a distortion of the 
associated hydrogen bond (a compression 
for  positive χ and an expansion for 

negative χ ), which, in turn, will decrease the 

energy of the corresponding amide I state. 
When the (negative) interaction energy is 
greater, in absolute terms, than the 
distortion energy, which is always positive, 
the state of the amide- I excitation together 
with the distortion has an energy that is 
lower than the state of the amide-I excitation 
in the absence of the distortion.  
 

Evidently, the Davydov soliton contains 
only one exciton, i.e., N= ＜

1)t(N̂)t( DD >=ϕϕ ,  

 
where the particle number operator 

ˆ
nn n

N B B
+

=∑ . This shows that the 

Davydov soliton is formed through self- 
trapping of one exciton with binding energy

4 2

1 / 3BDE Jwχ= − . 

 
The Improved Models of Davydov’s 
Theory 
 

Davydov’s idea yields a compelling 
picture for the mechanism of bio-energy 
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transport in protein molecules and 
consequently has been the subject of a 
large number of works including Takeno 
soliton model and Yomosa’s model (T. 
Holstein 1959; S. Takeno 1983; S.Takeno 
1984; S. Takeno 1985; S. Takeno 1986; V.K. 
Fedyamin et al. 1977; S. Yomosa 1983; S. 
Yomosa 1982; Gue Bai-lin and Pang Xiao-
Feng 1987; A. C. Scott 1991; A. C. Scott 
1982; A. C. Scott 1983; A. C. Scott 1982; A. 
C. Scott 1984; A.H. Rornero et al. 1999; D. 
W. Brown et al. 1986; D. W. Brown 1987; D. 
W. Brown 1988; D. W. Brown 1990; D. W. 
Brown 1986; D. W. Brown 1988; D. W. 
Brown and Z. Ivic 1989; K. Lindenberg 1990; 
M. J. Skrinjar 1988; A. C. Scott 1987; A. C. 
Scott 1990; Pang Xiao-Feng 1986; Pang 
Xiao-Feng 1986; Pang Xiao-Feng 1987; P. L. 
Christiansen and A.C. Scott 1990; L J. 
Halding et al. 1988; L.Cruzeiro et al. 1988; 
L.Cruzeiro-Hansson 1993; L.Cruzeiro-
Hansson 1992; A. C. Scott 1990; W. Forner 
1991; W. Forner 1999; W. Forner 1991; W. 
Forner 1992; W. Forner 1993; H. 
Motschman et al. 1989; P. S. Lomdahl and 
W. C. Kerr 1985; W. C. Kerr and P. S. 
Lomdahl 1989; X. Wang et al. 1989; X. 
Wang et al. 1989; J.P. Cottingham and J. W. 
Schweitzer 1989; J. W. Schweitzer 1992; J. 
M. Hyman et al. 1981; A. F. Lawrence 1986; 
B. Mechtly and P.B. Shaw 1988; L. MacNeil 
and A.C. Scott 1984; H. Bolterauer and M. 
Opper 1991; J. C. Eibeck et al. 1985; Pang 
Xiao-Feng 1990; Pang Xiao-Feng 1994; 
Pang Xiao-Feng 1999; Pang Xiao-Feng 
1993; Pang Xiao-Feng 1993; Pang Xiao-
Feng 1993; Pang Xiao-Feng 1993; Pang 
Xiao-Feng 1993; Pang Xiao-Feng 1993; 
Pang Xiao-Feng 1994; Pang Xiao-Feng  
1993; Pang Xiao-Feng 1996; Pang Xiao-
Feng 1997; Pang Xiao-Feng 1993; Pang 
Xiao-Feng 1997; Pang Xiao-Feng 1987; 
Pang Xiao-Feng 1995; Pang Xiao-Feng 
1996; Pang Xiao-Feng 1997; Pang Xiao-
feng 1994; Pang Xiao-Feng 2000; Pang 
Xiao-Feng 1999; L Cruzeiro et al. 2009). A 

lot of issues related to the Davydov model, 
including the foundation and accuracy of the 
theory, the quantum and classical properties 
and the thermal stability and lifetimes of the 
Davydov soliton have been extensively and 
critically examined by many scientists (A. C. 
Scott 1982; A. C. Scott 1983; A. C. Scott 
1982; A. C. Scott 1984; A.H. Rornero et al. 
1999; D. W. Brown et al. 1986; D. W. Brown 
1987; D. W. Brown 1988; D. W. Brown 1990; 
D. W. Brown 1986; D. W. Brown 1988; D. W. 
Brown and Z. Ivic 1989; K. Lindenberg 1990; 
M. J. Skrinjar 1988; A. C. Scott 1987; A. C. 
Scott 1990; Pang Xiao-Feng 1986; Pang 
Xiao-Feng 1986; Pang Xiao-Feng 1987; P. L. 
Christiansen and A.C. Scott 1990; L J. 
Halding et al. 1988; L.Cruzeiro et al. 1988; 
L.Cruzeiro-Hansson 1993; L.Cruzeiro-
Hansson 1992; A. C. Scott 1990; W. Forner 
1991; W. Forner 1999; W. Forner 1991; W. 
Forner 1992; W. Forner 1993; H. 
Motschman et al. 1989; P. S. Lomdahl and 
W. C. Kerr 1985; W. C. Kerr and P. S. 
Lomdahl 1989; X. Wang et al. 1989; X. 
Wang et al. 1989; J.P. Cottingham and J. W. 
Schweitzer 1989; J. W. Schweitzer 1992; J. 
M. Hyman et al. 1981; A. F. Lawrence 1986; 
B. Mechtly and P.B. Shaw 1988; L. MacNeil 
and A.C. Scott 1984; H. Bolterauer and M. 
Opper 1991; J. C. Eibeck et al. 1985; Pang 
Xiao-Feng 1990; Pang Xiao-Feng 1994; 
Pang Xiao-Feng 1999; Pang Xiao-Feng 
1993; Pang Xiao-Feng 1993; Pang Xiao-
Feng 1993; Pang Xiao-Feng 1993; Pang 
Xiao-Feng 1993; Pang Xiao-Feng 1993; 
Pang Xiao-Feng 1994; Pang Xiao-Feng  
1993; Pang Xiao-Feng 1996; Pang Xiao-
Feng 1997; Pang Xiao-Feng 1993; Pang 
Xiao-Feng 1997; Pang Xiao-Feng 1987; 
Pang Xiao-Feng 1995; Pang Xiao-Feng 
1996; Pang Xiao-Feng 1997; Pang Xiao-
feng 1994; Pang Xiao-Feng 2000; Pang 
Xiao-Feng 1999; L Cruzeiro et al. 2009) and 
the following questions have been of 
particular concern. (1) What is the correct 
quantum mechanical description of 
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Davydov’s soliton at low temperature? (2) 
How does the soliton get started on an 
alpha-helix proteins” ? (3) Is Davydov’s 
soliton stable at the biological temperature 
300K? If not, how long will it last ? (4) How 
may Davydov’s theory be generalized to 
include charge transfer and more general 
protein structures? Therefore, considerable 
controversy has arisen in recent years 
concerning whether the Davydov soliton can 
provide a viable explanation for bio-energy 
transport. It is out of question that the 
quantum fluctuations and thermal 
perturbations are expected to cause the 
Davydov soliton to decay into a delocalized 
state. Some numerical simulations indicated 
that the Davydov soliton is not stable at the 
biological temperature 300K (L J. Halding et 
al. 1988; L.Cruzeiro et al. 1988; L.Cruzeiro-
Hansson 1993; L.Cruzeiro-Hansson 1992; A. 
C. Scott 1990; W. Forner 1991; W. Forner 
1999; W. Forner 1991; W. Forner 1992; W. 
Forner 1993; H. Motschman et al. 1989; P. S. 
Lomdahl and W. C. Kerr 1985; W. C. Kerr 
and P. S. Lomdahl 1989; X. Wang et al. 
1989; X. Wang et al. 1989; J.P. Cottingham 
and J. W. Schweitzer 1989; J. W. Schweitzer 
1992; J. M. Hyman et al. 1981; Pang Xiao-
Feng 1994; Pang Xiao-Feng 1999; Pang 
Xiao-Feng 1993; Pang Xiao-Feng 1993; 
Pang Xiao-Feng 1993; Pang Xiao-Feng 
1993). Other simulations showed that the 
Davydov soliton is stable at 300K (S. 
Yomosa 1982; Gue Bai-lin and Pang Xiao-
Feng 1987; A. C. Scott 1991; A. C. Scott 
1982; A. C. Scott 1983; A. C. Scott 1982; A. 
C. Scott 1984; A.H. Rornero et al. 1999), but 
they were based on classical equations of 
motion which are likely to yield unreliable 
estimates for the stability of the Davydov’s 
soliton (A. S. Davydov 1973; A. S. Davydov 
1991; A. S. Davydov 1979; A.S.Davydov 
1983; A. S. Davydov 1982). The simulations 
based on the ID ２ ＞  state in Eq.(5a) 
generally show that the stability of the 
soliton decreases with increasing 

temperatures and that the soliton is not 
sufficiently stable in the region of biological 
temperature. Since the dynamical equations 
used in the simulations are not equivalent to 
the dingeroSchr &&  equation, the stability of the 

soliton obtained by these numerical 
simulations is unavailable or unreliable. The 
simulation (C.W.F. McClare 1974) based on 
the ID１＞state in Eq.(5b) with the thermal 
treatment of Davydov soliton (C.W.F. 
McClare 1974; Pang Xiao-Feng 1986), 
where the equations of motion are derived 
from a thermally averaged Hamiltonian, 
yields the wondering result that the stability 
of the soliton is enhanced with increasing 
temperature, predicting that ID1> - type 
soliton is stable in the region of biological 
temperature. Evidently, the conclusion is 
doubtful because the Davydov procedure in 
which one constructs an equation of motion 
for an average dynamical state from an 
average Hamiltonian, corresponding to the 
Hamiltonian averaged over a thermal 
distribution of phonons, is inconsistent with 
standard concepts of quantum-statistical 
mechanics in which a density matrix must be 
used to describe the system. Therefore, 
there exists not an exact fully quantum-
mechanical treatment for the numerical 
simulation of the Davydov soliton. However, 
for the thermal equilibrium properties of the 
Davydov soliton, there is a quantum Monte 
Carlo simulation (P. S. Lomdahl 1985; W. C. 
Kerr and P. S. Lomdahl 1989). In the 
simulation, correlation characteristic of 
solitonlike quasiparticles occur only at low 
temperatures, about T<10K, for widely 
accepted parameter values. This is 
consistent at a qualitative level with the 
result of Cottingham et al. (X. Wang 1989; X. 
Wang 1989). The latter is a straightforward 
quantum-mechanical perturbation 
calculation. The lifetime of the Davydov 
soliton obtained by using this method is too 
small (about −− 1210  sec10 13− ) to be 
useful in biological processes. This shows 
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clearly that the Davydov solution is not a 
true wave function of the systems. A through 
study in terms of parameter values, different 
types of disorder, different thermalization 
schemes, different wave functions, and 
different associated dynamics leads to a 
very complicated picture for the Davydov 
model (L. Cruzeiro-Hansson 1993; 
L.Cruzeiro-Hansson 1992; A. C. Scott 1990; 
W. Forner 1991; W. Forner 1999; W. Forner 
1991; W. Forner 1992; W. Forner 1993; H. 
Motschman et al. 1989; P. S. Lomdahl and 
W. C. Kerr 1985; W. C. Kerr and P. S. 
Lomdahl 1989; X. Wang 1989). These 
results do not completely rule out the 
Davydov theory, however they do not 
eliminate the possibility of another wave 
function and a more sophisticated 
Hamiltonian of the system having a soliton 
with longer lifetimes and good thermal 
stability. 

 
Indeed, the question of the lifetime of 

the soliton in protein molecules is twofold. In 
Langevin dynamics, the problem consists of 
uncontrolled effects arising from the 
semiclassical approxima- tion. In quantum 
treatments, the problem has been the lack of 
an exact wave function for the soliton. The 
exact wave function of the fully quantum 
Davydov model has not been known up to 
now. Different wave functions have been 
used to describe the states of the fully 
quantum- mechanical systems (D. W. Brown 
et al. 1986; D. W. Brown et al. 1987; D. W. 
Brown 1988; D. W. Brown 1990; D. W. 
Brown 1986; D. W. Brown 1988; D. W. 
Brown, Z. Ivic 1989; K. Lindenberg 1990; M. 
J. Skrinjar 1988; A. C. Scott 1987; A. C. 
Scott 1990). Although some of these wave 
functions lead to exact quantum states and 
exact quantum dynamics in the J=0 state, 
they also share a problem with the original 
Davydov wave function, namely that the 
degree of approximation included when 

0J ≠  is not known. Therefore, it is 

necessary to reform Davydov’s wave 
function. 

 
Scientists had though that the soliton 

with a multiquantum（ 2n ≥ ）, for example, 
the coherent state of Brown et al. (D. W. 
Brown 1986), the multi quantum state of 
Kerr et al. and Schweitzer, the two-quantum 
state of Cruzeiro -Hansson and Forner, and 
so on, would be thermally stable in the 
region of biological temperature and could 
provide a realistic mechanism for bio-energy 
transport in protein molecules. In the Brown 
et al’s model (D. W. Brown 1986), the state 
of the excitons was denoted by a coherent 

state vector ( )A t , which is defined by 

 

1 2( ) ( ) ( ) ... ( )NA t a t a t a t= ⊗ ⊗ ⊗
 

 

wherein ( )
n

a t  is a pure coherent state 

defined by  
 

21
( ) exp[ ]exp[ ( ) ] 0

2
n n n n ex

a t t aα α += −

 

where the complex scalar ( )
n

tα is the 

coherent-state amplitude, which may take 
on all values in the complex plane, The 

product state ( )A t  may be defined by 

the property that ( ) ( ) ( )n na A t a t A t=  

for all of the n
a . The expectation value of a 

Hamiltonian operator of the system 

[ , ]H a a+
 in the state ( )A t  is therefore a 

real scalar function
*[ ( ), ( )]H a t a t  for all 

the ( )
n

tα and their complex conjugates. 

Thus we can presume that the starting 
Hamiltonian operator is in normal ordered 
form so that there is no ambiguity in the 
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relationship between [ , ]H a a+
 and 

*[ ( ), ( )]H a t a t . Then we can obtain the 

properties of the exciton-soliton in the 
system by general method. However, the 
assumption of the standard coherent state 
is unsuitable or impossible for biological 
protein molecules because there are 
innumerable particles in this state and one 
could not retain conservation of the number 
of particles of the system and is also 
inconsistent with the fact that the bio-
energy released in ATP hydrolysis can 
excite only two quanta of amide-I vibration.  
 

In the Schweitzer’s model (J. M. 
Hyman 1981) of the multiquantum state the 
state of the excitons was denoted by 

 

( ) ( , ) 0

1
( )( ) 0

!

exm

m

nm n exnm

t m t

t B
m

ϕ α

ϕ +

=

=

∑

∑  

 

However, the assumption of a 
multiquantum state (m>2) along with a 
coherent state is also inconsistent with the 
fact that the bioenergy released in ATP 
hydrolysis can excite only two quanta of 
amide-I vibration. 
 

In Forner ‘s model of two-quanta (W. 
Forner 1992),he represented the state of 
the exciton by  

 

21
( ) ( ( ) ) 0

2!
n n exn

t t Bϕ ϕ +== ∑
 

 
Forner’s numerical results (W. Forner 

1991; W. Forner 1999; W. Forner 1991; W. 
Forner 1992; W. Forner 1993; H. 
Motschman et al. 1989; P. S. Lomdahl and 
W. C. Kerr 1985) shows that the soliton of 
two-quantum state is more stable than that 
with a one-quantum state. 

 

Cruzeiro-Hansson (A. C. Scott 1990) 
had thought that Forner’s two-quantum 
state in the semiclassical case was not 
exact. Therefore, he constructed again a 
so-called exactly two-quantum state for the 
semiclassical Davydov system as follows 
(A. C. Scott 1990): 
 

( ) ( )
N

nm n m ex

n,m

t {u },{P }, t B B 0 ,
l l

l

φ ϕ + +

=

= >∑                      

(13) 
 

where ( )n nB B
+  is the annihilation 

(creation) operator for an amide-I vibration 

quantum (exciton), l
u is the displacement of 

the lattice molecules, l
P is its conjugate 

momentum, and 
ex0 > is the ground state of 

the exciton. He calculate the average 
probability distribution of the exciton per site, 
and average displacement difference per site, 
and the thermodynamics average of the 

variable, 1 1 2 2 ,P B B B B
+ += −  as a measure 

of localization of the exciton, versus quantity 
2

1/ χν JW=  and )/1( TKLn B=ββ  in the 

so-called two-quantum state, Eq.(13), where

1χ  is a nonlinear coupling parameter related 

to the interaction of the exciton-phonon in 
the Davydov model. Their energies and 
stability are compared with that of the one-
quantum state. From the results of above 
thermal averages, he drew the conclusion 
that the wave function with a two-quantum 
state can lead to more stable soliton 
solutions than the wave function with a one-
quantum state, and that the usual Langevin 
dynamics ,whereby the thermal lifetime of 
the Davydov soliton is estimated, must be 
viewed as underestimating the soliton 
lifetime. 
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However, by checking carefully Eq.(13) 
(A. C. Scott 1990), we can find that the 
Cruzeiro-Hansson wave function does not 
represent exactly the two-quantum state. To 
find out how many quanta the state Eq.(13) 
indeed contains, we have to compute the 
expectation value of the exciton number 

operator. 
 

nn n
N B B

+
=∑ , in this state, Eq.(13), and 

sum over the sites, i.e., the exciton numbers 
N are 

    

( ) ( )

n n i m j l e x i m n n j l e x

n i j lm n

n j j n j n j n n l n l l n n l

n j n l

N B B 0 B B B B B B 0

4  

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ

+ ∗ + + +

∗ ∗ ∗ ∗

= < > = < >

= + + + =

∑ ∑

∑ ∑

     (14) 

 

where we use the relations 
 

2
[ , ] , 1

n j nj nl

nl

B B σ ϕ+ = =∑  

1

0 0 0 0

0 0 ... 0

ex n ex ex n n ex

ex n m ex

B B B

B B B

+ +

+

< > = < >

= < > = =
 

      
Therefore, the state, Eq.(13), as it is put 

forward (A. S. Davydov, and A.D.Suprun 
1973) in Eq.(13) deals, in contradiction to 
the author’s statements, with four excitons 
(quanta), instead of two excitons. Obviously 
it is not possible to create the four excitons 
by the energy released in the ATP hydrolysis 
(about 0.43 eV). Thus the author’s wave 
function is still not relevant for protein 
molecules, and his discussion and 
conclusion are all unreliable and implausible 
in that paper (A. C. Scott 1990). 

 
We think that the physical significance of 

the wave function, Eq.(29), is also unclear, 
or at least is very difficult to understand. As 
far as the physical meaning of Eq.(29) is 
concerned, it represents only a 
combinational state of single-particle 
excitation with two quanta created at sites n 

and m; ( ){ },{ },nm l lu P tϕ  is the probability 

amplitude of particles occurring at the sites n 
and m simultaneously. In general, n=m and 

mnnm ϕϕ≠ϕ  in accordance with the 

author’s idea. In such a case it is very 
difficult to imagine the form of the soliton 
formed by the mechanism of self- trapping of 
the two quanta under the action of the 
nonlinear exciton-phonon interaction, 
especially when the difference between n 
and m is very large. Hansson has also not 
explained the physical and biological 
reasons and the meaning for the proposed 
trial state. Therefore, we think that the 
Cruzeiro-Hansson representation is still not 
an exact wave function suitable for protein 
molecules. Thus, the wave function of the 
systems is still an open problem today. 

 
Subsequently, Cruzeiro L.et al (D.A. 

Baylor and A.L. Hodgkin 2003; A.F. Huxley, R. 
Nidergerke 1954; A. S. Davydov 1975; A. S. 
Davydov 1976) and Pouthier et al (A. S. 
Davydov and A.A. Eremko 1977; A. S. 
Davydov et al. 1978) proposed a dynamical 
model of nonconserving Davydov monomer 
involving a nonconserving Davydov 
Hamiltonian for the energy transport, in 
which they thought that the Davydov’s model 
cannot describe the conversion of that 
energy into work, because it conserves the 
number of excitations. With the aim of 
describing conformational changes, they 
considered a nonconserving generalization 
of the model, which is found to describe 
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essentially a contraction of the hydrogen 
bond adjacent to the site where an excitation 
is present. Unlike the one-site Davydov 
model, that contraction is time dependent 
because the number of excitations is not 
conserved. However, considering the time 
average of the dynamical variables, the 
results reported here tend to the known 
results of the Davydov model. 

 
Meanwhile, K.Moritsugu et.al (A. S. 

Davydov and N.I. Kislukha 1976) and 
H.Fujisaki et al. considered the anharmonic 
coupling between the amide-I mode and 
intramolecular normal modes. These models 
are helpful for solving the problem of bio-
energy transport in protein molecules. 

 
In one words, the above soliton theories 

of bio-energy transport in protein molecules 
attract the careful attention of the 
bioenergetics community. Obviously, they 
cannot explain every aspect of bio-energy 
transport and protein dynamics, but they are 
motivating exciting question and new 
experiments. There are clearly still many 
open problems and no single theory 
presently has answers to all questions. 
However, most of these models stay only in 
the designs of mechanism of bio-energy 
transport, a deepened and complete 
investigation lacks now. Therefore it now is 
quite required to continue work on the 
extension and improvement of these 
theories for forming a complete and correct 
theory of bio-energy transport in protein 
molecules.   

 
Pang’s theory of bio-energy and its 
properties in protein molecues 
 

The results obtained by many scientists 
over the years show that the Davydov model, 
whether it be the wave function or the 
Hamiltonian, is indeed too simple, i.e.., it 
does not denoted elementary properties of 
the collective excitations occurring in protein 

molecules, and many improvements to it 
have been unsuccessful, as mentioned 
above. What is the source of this problem? It 
is well known that the Davydov theory on 
bioenergy transport was introduced into 
protein molecules from an exciton-soliton 
model in generally one-dimensional 
molecular chains (Davydov and A.A.Serikov  
1972; L. S. Brizhik and A. S.Davydov 1984; 
H. Fohlich 1952). Although the molecular 
structure of the alpha-helix protein is 
analogous to some molecular crystals, for 
example acetanilide (ACN) (in fact, both are 
polypeptides; the alpha-helix protein 
molecule is the structure of three peptide 
channels, ACN is the structure of two 
peptide channels. If comparing the structure 
of alpha helix protein with ACN, we find that 
the hydrogen-boned peptide channels with 
the atomic structure along the longitudinal 
direction are the same except for the side 
group), a lot of properties and functions of 
the protein molecules are completely 
different from that of the latter. The protein 
molecules are both a kinds of soft 
condensed matter and bio-self -organization 
with action functions, for instance, self-
assembling and self-renovating. The 
physical concepts of coherence, 
order ,collective effects, and mutual 
correlation are very important in bio-self-
organization, including the protein molecules, 
when compared with generally molecular 
systems (H. Fohlich 1983; K. H. Spatschek 
and F. G. Mertens 1994; F. A. Popp, K. H. Li 
and Q. Gu, 1993; Mae Wan Ho, F. A. Popp, 
U. 1994; Pang Xiao-Feng 2000). Therefore, 
it is worth studying how we can physically 
describe these properties. We note that 
Davydov operation also is not strictly correct. 
Therefore, we think that a basic reason for 
the failure of the Davydov model is just that 
it ignores completely the above important 
properties of the protein molecules.  

 
Let us consider the Davydov model with 

the present viewpoint. First, as far as the 
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Davydov wave functions, both 

>> 21 DandD , are concerned, they are 

not true solutions of the protein molecules. 
On the one hand, there is obviously 
asymmetry in the Davydov wave function 
since the phononic parts is a coherent state, 
while the excitonic part is only an excitation 
state of a single particle. It is not reasonable 
that the same nonlinear interaction 
generated by the coupling between the 
excitons and phonons produces different 
states for the phonon and exciton. Thus, 
Davydov’s wave function should be modified, 
i.e., the excitonic part in it should also be 
coherent or quasicoherent to represent the 
coherent feature of collective excitation in 
protein molecules. However, the standard 
coherent (D. W. Brown 1986) and large-n 
excitation states (X. Wang et al. 1989) are 
not appropriate for the protein molecules 
due to the above reasons. Similarly, Forner’s  
and Cruzeiro-Hansson’s two- quantum 
states do not fulfill the above request. In 
view of the above discussion, we proposed 
the following wave function of two-quanta 
quasi-coherent state for the protein 
molecular systems (Pang Xiao-Feng 2001;  
Pang Xiao-Feng, and Y.P. Feng Yuan-Ping 
2005; Pang Xiao-Feng, Zhang Huai-Wu, Yu 
Jia-Feng, Feng Yuan-Ping 2005; Pang Xiao-
Feng, Yu Jia-Fengand Liu Mei-Jie 2010; 

Pang Xiao-feng, Feng Yuan Ping, Zhang 
Huai-wu and S. M. Assad 2006; Pang  Xiao-
Feng 2001; Pang Xiao-Feng 2001; Pang 
Xiao-Feng 2002; Pang Xiao-Feng 2001; 
Pang Xiao-feng 2001; Pang Xiao-Feng and 
Chen Xiang-Rong 2002; Pang Xiao-feng 
and Chen Xiang-Rong, 2002; Pang  Xiao-
Feng and Chen Xiang-Rong, 2001; Pang  
Xiao-Feng 2001; Pang  Xiao-feng 2001;  
Pang Xiao-Feng 2001; Pang Xiao-Feng, Luo 
Yu-Hui, 2004; Pang Xiao-feng, Yu Jia-feng 
and Luo Yu-hui, 2005; Pang Xiao-Feng, 
Zhang Huai-Wu, and Yu Jia-feng and Luo 
Yu-hui 2005; Pang Xiao-feng, and Y.H. Luo, 
2005; Pang Xiao-feng and Zhang Huai-wu, 
2005; Pang Xiao-feng, 2008; Pang Xiao-
feng, 2008; Pang Xiao-feng  2010; Pang 
Xiao-Feng1,2 and LIU Mei-Jie, 2009; Pang 
Xiao-feng 2009; Pang Xiao-feng and Lui 
mei-jie, 2009; Pang Xiao-feng, 2008; Pang 
Xiao-feng, Yu Jia-feng and Lao Yu-hui.  
2007; Pang Xiao-feng, 2007; Pang Xiao-
feng, Yu Jia-feng and Lao Yu-hui. 2007; 
Pang Xiao-feng and Liu Mei-jie, 2007; Pang 
Xiao-feng, Zhang Huai-Wu ,Yu Jia-feng and 
Luo yu-hui, 2006; Pang Xiao-feng, Zhang 
Huai-Wu, 2006; Pang Xiao-feng, Chen 
Xianron, 2006; Pang Xiao-feng, Zhang Huai-
wu, 2006; Pang Xiao-feng, 2003; Pang Xiao 
feng, 2012; Pang Xiao-Feng, 2007).  

( ) ( ) ( ) ( ) ( )

( ) ( )
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1 1
0

2 !
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n n
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i
t P t u

h

ϕ β ϕ ϕ
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β π

+ +
  

Φ > = > > = + + >  
   

 
× − − >   

 

∑ ∑

∑

    (15) 

 

where nB
+
（ Bn ） is boson creation 

(annihilation) operator for the exciton, 

phex 0and0 >> are the ground states of the 

exciton and phonon, respectively, 
n

u and Pn 

are the displacement and momentum 

operators of the lattice oscillator at site n , 
respectively. λ  is a normalization constant, 

we assume hereafter that 1=λ for 
convenience of calculation, except when 
explicitly mentioned. The ( )n

tϕ , 
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( ) ( ) ( )n n
t t u tβ = < Φ Φ >  and 

( ) ( ) ( )n nt t P tπ =< Φ Φ > are there sets of 

unknown functions. 
 

    A second problem arises for the Davydov 
Hamiltonian (A. S. Davydov, 1973; A. S. 
Davydov, 1991; A. S. Davydov, 1979; 
A.S.Davydov, 1983; A. S. Davydov, 1982). 
The Davydov Hamiltonian takes into account 
the resonant or dipole-dipole interaction of 
the neighboring amide-I vibrational quanta in 
neighboring peptide groups with an electrical 
moment of about 3.5D, but why do we not 
consider the changes of relative 
displacement of the neighboring peptide 
groups arising from this interaction? Thus, it 
is reasonable to add the new interaction 

term, ( )( )2 1 1 1n n n n m n
u u B B B Bχ + +

+ + +− + , into the 

Davydov Hamiltonian to represent 
correlations of the collective excitations and 
collective motions in the protein molecules, 
as mentioned above (A. S. Davydov, 1973; 
A. S. Davydov, 1991; A. S. Davydov, 1979; 
A.S.Davydov, 1983; A. S. Davydov, 1982). 
Although the dipole-dipole interac- tion is 
small as compared with the energy of the 
amide-I vibrational quantum, the change of 
relative displacement of neighboring peptide 
groups resulting from this interaction cannot 
be ignored due to the sensitive dependence 
of dipole-dipole interaction on the distance 
between amino acids in the protein 

molecules, which is a kind of soft condensed 
matter and bio-self- organization. Thus, we 
replace Davydov’s Hamiltonian (Pang Xiao-
feng, (2000); [Pang Xiao-feng (2001a); Pang 
Xiao-feng, and Y.P.Feng Yuan-ping (2005); 
Pang Xiao-feng et al. (2005); Pang Xiao-
feng,et al. (2010a); Pang Xiao-feng, et al. 
(2006a); Pang  Xiao-feng, (2001b); Pang 
Xiao-feng, (2001c); Pang Xiao-feng, (2002); 
Pang Xiao-feng , (2001d); Pang Xiao-feng, 
(2001e); Pang Xiao-feng and Chen Xiang-
rong (2002a); Pang Xiao-feng and Chen 
Xiang-rong, (2002b); Pang Xiao-feng and 
Chen Xiang-rong (2001); Pang Xiao-feng 
(2001f); Pang Xiao-feng, (2001g); Pang 
Xiao-feng (2001h); Pang Xiao-Feng and Luo 
Yu-Hui (2004); Pang Xiao-feng, et al. 
(2005a); (2005b); Pang Xiao-feng, and 
Y.H.Luo, (2005); Pang Xiao-feng and Zhang 
Huai-wu,（2005); Pang Xiao-feng, , (2008a); 
(2008b); Pang Xiao-feng (2010b); Pang 
Xiao-Feng and LIU Mei-Jie, (2009); Pang 
Xiao-feng，(2009); Pang Xiao-feng and Lui 
mei-jie,Int. (2009); Pang Xiao-feng, (2008c); 
Pang Xiao-feng et al. (2007a); Pang Xiao-
feng, (2007a); Pang Xiao-fenget al. (2007b); 
Pang Xiao-feng and Liu Mei-jie, ( 2007); 
Pang Xiao-feng, et al. (2006b); Pang Xiao-
feng and Zhang Huai-Wu, (2006a); Pang 
Xiao-feng and Chen Xianron, (2006); Pang 
Xiao-feng and Zhang Huai-wu, (2006b); 
Pang Xiao-feng, (2003); Pang Xiao feng, 
(2012)) by  

( ) ( )

( ) ( )( )
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       (16)  

 

where 0ε =0.205ev is the energy of the 

exciton ( C=0 stretching mode). The present 

nonlinear coupling constants are 21andχχ . 

They represent the modulations of the on-
site energy and resonant (or dipole-dipole) 
interaction energy of excitons caused by the 
molecules displacements, respectively .M is 

the mass of a amino acid molecule and w is 
the elasticity constant of the protein 
molecular chains. J is the dipole-dipole 
interaction energy between neighboring sites. 
The physical meaning of the other quantities 
in Eq.(16) are the same as those in the 
above explanations. 
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The Hamiltonian and wave function shown 
in Eqs.(31)-(32) are different from Davydov’s. 
We added a new interaction term,

( )( )2 1 1 1
,

n n n n n nn
u u B B B Bχ + +

+ + +− +∑  into the 

original Davydov Hamiltonian. Thus the 
Hamiltonian now has an one-by-one 
correspondence on the interactions and can 
represent the features of mutual correlations 
of the collective excitations and of collective 
motions in the protein molecules. We here 
should point out that the different coupling 
between the relevant modes was also 
considered by Takeno et al. (L.Cruzeiro et al. 
(1988); L.Cruzeiro-Hansson, (1993); 
L.Cruzeiro-Hansson, (1992); A. C. Scott, 

(1990) W. rneroF && , (1991a); W. rneroF && , 
(1991b)) and Pang [Pang Xiao-feng, (1990); 
Pang Xiao-feng, (1994); Pang Xiao-feng, 
(1999a); Pang Xiao-feng, (1993a); Pang 
Xiao-feng, (1993b); Pang Xiao-feng, (1993c); 
Pang Xiao-feng, (1993d); Pang Xiao-feng, 
(1993e); Pang Xiao-feng, (1993f); Pang 
Xiao-feng, (1994); Pang Xiao-feng, (1993g); 
Pang Xiao-feng, (1996); Pang Xiao-feng, 
(1993h);  Pang Xiao-feng, (1993i); Pang 
Xiao-feng, (1997a); Pang Xiao-feng, 1997b); 
Pang Xiao-feng, (1987); Pang Xiao-feng, 
(1995); Pang Xiao-feng, , (1996); Pang 
Xiao-feng, (1997c); Pang Xiao-feng, 1994; 
Pang Xiao-feng et al. (2000);  Pang Xiao-
feng, (1999b) in the Hamiltonian of the 
vibron-soliton model for one-dimensional 
oscillator-lattice and protein systems, 
respectively, but the wave functions of the 
systems they used are different from 
Eqs.(15)-(16). 

 
Obviously, the new wave function of the 

exciton in Eq.(15) is not an excitation state 
of a single particle, but rather a coherent 
state, or accurately, a quasicoherent state 
because it is just an effective truncation of a 
standard coherent state, retains only fore 
three terms of expansion of a standard 
coherent state, at the same time, when the 

)(t
n

ϕ  is small, for example, )(t
n

ϕ <<1, it 

also can approximately represent 
mathematically as a standard coherent 
state[(K. H. Spatschek and  F. G. 1994; F. A. 
Popp et al. 1993; Mae Wan Ho, et al. 1994; 
Pang Xiao-feng, (2000); [Pang Xiao-feng 
(2001a); Pang Xiao-feng, and Y.P.Feng 
Yuan-ping (2005); Pang Xiao-feng et al. 
(2005); Pang Xiao-feng,et al. (2010a); Pang 
Xiao-feng, et al. (2006a); Pang  Xiao-feng, 
(2001b); Pang Xiao-feng, (2001c); Pang 
Xiao-feng, (2002); Pang Xiao-feng , (2001d); 
Pang Xiao-feng, (2001e); Pang Xiao-feng 
and Chen Xiang-rong (2002a); Pang Xiao-
feng and Chen Xiang-rong, (2002b); Pang 
Xiao-feng and Chen Xiang-rong (2001); 
Pang Xiao-feng (2001f); Pang Xiao-feng , 
(2001g); Pang Xiao-feng (2001h); Pang 
Xiao-Feng and Luo Yu-Hui (2004); Pang 
Xiao-feng, et al. (2005a); (2005b); Pang 
Xiao-feng, and Y.H.Luo, (2005); Pang Xiao-
feng and Zhang Huai-wu, （ 2005); Pang 
Xiao-feng, , (2008a); (2008b); Pang Xiao-
feng (2010b); Pang Xiao-Feng and LIU Mei-
Jie, (2009); Pang Xiao-feng，(2009); Pang 
Xiao-feng and Lui mei-jie,Int. (2009); Pang 
Xiao-feng, (2008c); Pang Xiao-feng et al. 
(2007a); Pang Xiao-feng, (2007); Pang 
Xiao-fenget al. (2007b); Pang Xiao-feng and 
Liu Mei-jie, ( 2007); Pang Xiao-feng, et al. 
(2006b); Pang Xiao-feng and Zhang Huai-
Wu, (2006a); Pang Xiao-feng and Chen 
Xianron, (2006);  
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where 1)(
2

=∑n n
tϕ , n denotes the 

sites of amino acids. Therefore we refer to it 
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as quasi- coherent state due to these 
characteristics. Thus Eq.(15) can represent 
simultaneously the coherent features of 
collective excitations, phonons and excitons, 

in the proteins. The condition of )(t
n

ϕ <<1 

is also quite correct and resonable for the 
proteins consisting of amino acids of several 
hundreds or thousands because of 

1)(
2

=∑n n
tϕ . Therefore, Eq.(17) is justified 

and a correct representation. It is well known 
that the coherent state is certainly 
normalized, then it is natural that the 

)(t
n

ϕ in Eq.(31) or | Φ (t)> in Eq.(15) 

should be also normalized. Thus we should 
choose λ=1 in Eq.(15). This means that we 

cannot choose other values of 1≠λ in Eq. 

(15), or else, )(t
n

ϕ  cannot represent as a 

standard coherent state in Eq.(17). With that, 
in this case of 1≠λ , )(t

n
ϕ is neither a 

quasi-coherent state nor a excited state of 
single particle, that is,  it has not any 

biological and physical meanings in this case. 
This shows clearly that choice of λ=1 in 
Eq.(15) is correct and reasonable. In such a 
case it is not an eigenstate of number 
operator because of  
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Therefore, the ( )tϕ > represents indeed 

a superposition of multiquantum states. 
Concretely speaking, it is a coherent 
superposition of the excitonic state with two 
quanta and the ground state of the exciton. 
However, in this state the numbers of quanta 
are determinate instead of innumerable. To 
find out how many excitons this state 
contains, we here have to compute the 
expectation value of the number operator N 
in this state and sum over the states. The 
average number of excitons for this state is 
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where we utilize Eq.(8) and the following relations [S.Takeno, 1985]: 
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Therefore, the new wave function in 

Eq.(31) is a quasi-coherent state containing 
only two quanta, it is completely different 
from Davydov’s. The latter is an excitation 

state of a single particle with one quantum 
and an eigenstate of the number operator. In 
the meanwhile, as far as the form of new 
wave function in Eq.(31) is concerned, it is 
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either two- quanta states proposed by 

Forner [W. rneroF && , (1991);  W. rneroF && , 

(1991);  W. rneroF && , (1999); W. rneroF && , 

(1991);  W. rneroF && , (1992); W. rneroF &&

(1993);  H. Motschman, W. rneroF &&  and J. 
Ladik (1989). and Cruzeiro-Hansson 
[L.Cruzeiro, et al. (1988);  L.Cruzeiro-
Hansson, (1993); L.Cruzeiro-Hansson, 
(1992); A. C. Scott, (1990) ] or a standard 
coherent state proposed by Brown et 
al .[ A.H. Rornero, et al. (1999);  D. W. 
Brown, et al. (1986); D. W. Brown et al. 
(1987); D. W. Brown, et al. (1988); D. W. 
Brown, et al.  1990; D. W. Brown, et al. 
(1986); D. W. Brown (1988); D. W. Brown 
and Z. Ivic, (1989); K. Lindenberg et al. 
(1990) and Kerr et al’s (P. S. Lomdahl and W. 
C. Kerr, (1985); W. C. Kerr and P. S. 
Lomdahl, (1989) and Schweitzer et al’s 
multiquanta states[W. C. Kerr and P. S. 
Lomdahl, (1989); X. Wang, et al. (1989). 
Therefore, the wave function, Eq.(31), is 
new for the protein molecular systems. It not 
only exhibits the basic features of collective 
excitation of the excitons and phonons 
caused by the nonlinear interaction 
generated in the system but also agrees 
with the fact that the energy released in the 
ATP hydrolysis (about 0.43 eV) may only 
create two amide-I vibrational quanta, thus, 
it can also make the numbers of excitons 
maintain conservation in the Hamiltonian, 
Eq.(16). Meanwhile, the new wave function 
has another advantage, i.e., the equation of 
motion of the soliton can also be obtained 
from the Heisenberg equations of the 

creation and annihilation operators in 
quantum mechanics by using Eqs.(15) and 
(16), but cannot be obtained by the wave 
function of state of the system in other 
models, including the one-quanta state (A. S. 
Davydov, 1982; C.W.F. McClare, (1974); A. 
S. Davydov and A.D.Suprun, 1973;  A. S. 
Davydov, (1973);  A. S. Davydov, 1991) and 
the two-quanta state (L.Cruzeiro, et al. 
(1988); L.Cruzeiro-Hansson, (1993); 
L.Cruzeiro-Hansson, (1992); A. C. Scott 

(1990); W. rneroF && , (1991);  W. rneroF && , 

(1991);  W. rneroF &&  (1999);  W. rneroF && , 

(1991); W. rneroF && , (1992);  W. rneroF &&  
(1993); H. Motschman, et al. (1989)  
Therefore ,the above Hamiltonian and wave 
function, Eqs.(15) and (16),are reasonable 
and appropriate to the protein molecules. 

 
We now derive the equations of motion 

of the exciton and phonon in Pang’s model. 
In this case we first give the interpretation of 

)(tnβ and )(tnπ in Eq.(15). 
 
As it is known, the phonon part in the 

new wave function in Eq.(15) depending on 
the displacement and momentum operators 
is a coherent state of the normal model of 
creation and annihilation operators, then we 
can obtain the equation of motion for the 

)(tnβ utilizing the above results and 

following formulas of the expectation values 
of the Heisenberg equations of operators ,

nu and nP ,in the state )(tΦ ,
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At the ame time, we can obtain the 

dynamic equation of )(tnϕ  using a, basic 

assumption in the derivation, which is that 

)(tΦ in Eq.(31) is a solution of the time-

dependent dingeroShr &&  equation [A. S. 

Davydov, 1982; V.K.Fedyamin, 1977; [Pang 
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Xiao-feng (2001a); Pang Xiao-feng, and 
Y.P.Feng Yuan-ping (2005); Pang Xiao-feng 
et al. (2005); Pang Xiao-feng,et al. (2010a); 
Pang Xiao-feng, et al. (2006a); Pang  Xiao-
feng, (2001b); Pang Xiao-feng, (2001c); 
Pang Xiao-feng, (2002); Pang Xiao-feng , 
(2001d); Pang Xiao-feng, (2001e); Pang 
Xiao-feng and Chen Xiang-rong (2002a); 
Pang Xiao-feng and Chen Xiang-rong, 
(2002b); Pang Xiao-feng and Chen Xiang-
rong (2001); Pang Xiao-feng (2001f); Pang 
Xiao-feng , (2001g); Pang Xiao-feng (2001h); 
Pang Xiao-Feng and Luo Yu-Hui (2004); 
Pang Xiao-feng, et al. (2005a); (2005b); 
Pang Xiao-feng, and Y.H.Luo, (2005); Pang 

Xiao-feng and Zhang Huai-wu, （ 2005); 
Pang Xiao-feng, , (2008a); (2008b); Pang 
Xiao-feng (2010b); Pang Xiao-Feng and LIU 
Mei-Jie, (2009); Pang Xiao-feng ， (2009); 
Pang Xiao-feng and Lui mei-jie,Int. (2009); 
Pang Xiao-feng, (2008c); Pang Xiao-feng et 
al. (2007a); Pang Xiao-feng, (2007); Pang 
Xiao-fenget al. (2007b); Pang Xiao-feng and 
Liu Mei-jie, ( 2007); Pang Xiao-feng, et al. 
(2006b); Pang Xiao-feng and Zhang Huai-
Wu, (2006a); Pang Xiao-feng and Chen 
Xianron, (2006); Pang Xiao-feng and Zhang 
Huai-wu, (2006b); Pang Xiao-feng, (2003); 
Pang Xiao feng, (2012))]: 
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In this case the left-hand side of Eq.(15) is denoted by 
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Now again left-multiplying the both sides of Eq.(18)-(19) by )(tΦ ,we yield left-hand side of 

Eq.(18)-(19) to be  
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Similarly, for the right-hand side of Eq.(34) we can have  
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and utilizing the above equations and the relations 
 

[ ] [ ]∑∑ −+−+ −−=+−
n

mm

n

mmmm tttttt
2

1111 )()()()()(2)( ββββββ , 

( ) [ ]∑ ∑∑ 







++=Φ+Φ −+

+
−−

+

n m

mnnn

n

nnnn ttttttBBBBt
2*

11

*

11 )(1)()()()()()( ϕϕϕϕϕ , 

( )( ) [ ]{ }∑ ∑∑ 







+−=Φ−Φ −+

+
−+

n m

mnmm

n

nnnn tttttBBuut
22

1111 )(1)()()()()( ϕϕββ , 

( )( ) [ ][ ]{ }∑∑ −+−+
+
−−

+
− +−=Φ+−Φ

n

nnnmm

n

nnnnnn tttttttBBBBuut )()()()()()()()( *

11

*

11111 ϕϕϕϕββ                                         









+× ∑

m

m t
2

)(1 ϕ            

 
From the above equations we can obtain 
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Then the dynamic equation can also be obtained, which is represented by 
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 From Eq.(20) we see that the presence 
of two quanta for the oscillators increases 
the driving force on the phonon field by that 
factor when compared with the Davydov 
theory. 

 
A basic assumption in the derivation is 

that )(tΦ in Eq.(18) is a solution of the 

time- dependent dingeroShr && equation 

[V.K.Fedyamin,1977; (K. H. Spatschek and  
F. G. 1994; F. A. Popp et al. 1993; Mae Wan 
Ho, et al. 1994; Pang Xiao-feng, (2000); 
[Pang Xiao-feng (2001a); Pang Xiao-feng, 
and Y.P.Feng Yuan-ping (2005); Pang Xiao-
feng et al. (2005); Pang Xiao-feng,et al. 
(2010a); Pang Xiao-feng, et al. (2006a); 
Pang  Xiao-feng, (2001b); Pang Xiao-feng, 
(2001c); Pang Xiao-feng, (2002); Pang Xiao-
feng , (2001d); Pang Xiao-feng, (2001e); 

Pang Xiao-feng and Chen Xiang-rong 
(2002a); Pang Xiao-feng and Chen Xiang-
rong, (2002b); Pang Xiao-feng and Chen 
Xiang-rong (2001); Pang Xiao-feng (2001f); 
Pang Xiao-feng , (2001g); Pang Xiao-feng 
(2001h); Pang Xiao-Feng and Luo Yu-Hui 
(2004); Pang Xiao-feng, et al. (2005a); 
(2005b); Pang Xiao-feng, and Y.H.Luo, 
(2005); Pang Xiao-feng and Zhang Huai-wu,
（2005); Pang Xiao-feng, , (2008a); (2008b); 
Pang Xiao-feng (2010b); Pang Xiao-Feng 
and LIU Mei-Jie, (2009); Pang Xiao-feng，
(2009); Pang Xiao-feng and Lui mei-jie,Int. 
(2009); Pang Xiao-feng, (2008c); Pang Xiao-
feng et al. (2007a); Pang Xiao-feng, (2007); 
Pang Xiao-fenget al. (2007b); Pang Xiao-
feng and Liu Mei-jie, ( 2007); Pang Xiao-
feng, et al. (2006b); Pang Xiao-feng and 
Zhang Huai-Wu, (2006a); Pang Xiao-feng 
and Chen Xianron, (2006); 
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In the continuum approximation and from the above equation we get  
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and 0s v v= . Then the soliton solution of Eq.(22) is obtained, it is  
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These results are just the form and 

representation of carrier (soliton) of bio-
energy transport in Pang’s model.  
 

On the other hand, in order to investigate 
the influences of quantum and thermal effects 
on soliton state, which are expected to cause 
the soliton to decay into delocalized states, 
we postulate that the model Hamiltonian and 
the wave function in Pang’s model together 
give a complete and realistic picture of the 
interaction properties and allowed states of 
the protein molecules. The additional 
interaction term in the Hamiltonian gives 
better symmetry of interactions. The new 
wave function is a reasonable choice for the 
protein molecules because it not only can 
exhibit the coherent features of collective 
excitations arising from the nonlinear 
interaction between the excitons and 
phonons, but also retain the conservation of 
number of particles and fulfill the fact that 
the energy released by the hydrolysis 
reaction of ATP molecules can only excite 
two quanta. In such a case , using a 
standard calculating method ( Ｊ .
Ｐ.Cottingham and J. W. Schweitzer, (1989);  
J. W. Schweitzer, (1992) Pang Xiao-feng, 
(2000); Pang Xiao-feng (2001a); Pang Xiao-
feng, and Y.P.Feng Yuan-ping 2005; Pang 
Xiao-feng Zhang Huai-wu,Yu Jia-feng Feng 
Yuan-ping, (2005) and widely accepted 
parameters we found out the region 
encompassed of the excitation or the linear 

extent of the new soliton, p0 /r2X µπ=∆ , 

which is greater than the lattice constant r0 
i.e., 0rX >∆  as shown in table 1.  Otherwise, 

we calculated the amplitude squared of the 
new soliton using Eq.(23) in its rest frame, 

which is 2 2

0

| ( ) | s e c ( )
2

p p X
X h

r

µ µ
φ = . Thus 

the probability to find the new soliton outside 
a range of width r0 is about 0.10. This 
number can be compatible with the 
continuous approximation since the quasi-
coherent soliton can spread over more than 
one lattice spacing in the system in such a 
case. This proved that assuming of the 
continuous approximation used in the above 
calculation is valid because the soliton 
widths is large than the order of the lattice 
spacing, then the soliton stability is improved 
and enhanced. Therefore we should believe 
that the above calculated results obtained 
from Pang’s model is correct. 

 
The Lifetimes of Pang’s Soliton 
Transporting the Bio-energy in Protein 
Molecules at Biological Temperature  
 
Partially diagonalized form of the model 
Hamiltonian in Pang’s theory 
 

The lifetime of the soliton in the protein 
molecules is an centre or key problem in the 
process of bioenergy transport because it 
can determine that whether the soliton 
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possess certain biological meanings and 
can play an important role in the biological 
process, or speaking, only if the soliton has 
enough long lifetimes, then it is really used 
in the biological processes.  

 
However, this question of lifetime of the 

soliton is twofold. In the Langevin dynamics 
unpredictable effects arise from the 
semiclassical approximation. In the quantum 
treatment there is the problem that an exact 
wave function is lacking. In the Davydov 
model in Eqs.(1) － (4), both the wave 
function and the Hamiltonian of the systems, 
is too simple. A first problem of the model 
concerns the Davydov wave functions, both 
ID1 ＞  and ID2 ＞ . These are asymmetric 
since the phononic part is a coherent state, 
while, the excitonic part is an excitation state 
of a single-particle. It is not reasonable that 
the nonlinear interaction generated by the 
coupling between the excitons and phonons 
produces different states for the phonon and 
the exciton. Thus, the Davydov's wave-
function should be modified (V.K.Fedyamin, 
1977), i.e., the excitonic part in it should also 
be coherent or quasi-coherent (S.Yomosa, 
(1982); Gue Bai-lin and Pang Xiao-feng, 
(1987). However, the standard coherent 
state (G..E.Schulz and R.H.Schirmar, 1979) 
and large-`n excitation state are not 
appropriate to the protein molecules due to 
the reasons mentioned above. Similarly, 

s'rneroF &&  and Cruzeiro-Hansson’s                 
two-quanta states do not fulfill the above 
criteria. 
 
 

For convenience of calculation, we here 
represent the wave function of the system in 
Eq.(31) by (S.Yomosa, 1983)  
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Where we assume n||
2

i
i =ϕ∑ , where 

n is an integer, denotes the number of 
particle. The wave function, Eq.(40), does 
not only exhibit coherent properties, but also 
agrees with the fact that the energy released 
in the ATP hydrolysis (about 0.43ev) excites 
only two amide-I vibrational quanta, instead 
of multiquanta (n>2). Therefore, the 
Hamiltonian and wave function of the 
systems, Eqs. (31)-(32),or (40) are 
reasonable and appropriate to the protein 
molecules. Using the standard 
transformation in Eq.(32), where 
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    In a semiclassical and continuum approximations, from Eq.(36) we can obtain                      

the envelope soliton solution Eq.(38) in the Pang’s model, we now represent Eq.(38) by (Ｊ.
Ｐ.Cottingham and J. W. Schweitzer, (1989);  J. W. Schweitzer, (1992))  
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The energy of the new soliton is 
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Thus we can also find out that  
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This treatment yields a localized 

coherent structure with size of order 2 πr0/µp 
that propagates with velocity v and can 
transfer energy ES01 ＜ 02ε . Unlike bare 

excitons that are scattered by the 
interactions with the phonons, but this 
soliton state describes a quasi-particle 
consisting of the two excitons plus a lattice 
deformation and hence a priori includes 
interaction with the acoustic phonons. So 
the soliton is not scattered and spread by 
this interaction of lattice vibration, and can 
maintain its form, energy, momentum and 
other quasiparticle properties moving over a 
macroscopic distance. The bell-shaped form 
of the soliton Eq.(43) does not depend on 

the excitation method. It is self-consistent. 
Since the soliton always move with velocity 
less than that of longitudinal sound in the 
chain they do not emit phonons, i.e., their 
kinetic energy is not transformed into 
thermal energy. This is one important reason 
for the high stability of the Pang’s soliton. In 
addition the energy of the soliton state is 
below the bottom of the bare exciton bands, 

the energy gap being 3/J4 2
pµ  for small 

velocity of propagation. Hence there is an 
energy penalty associated with the 
destruction with transformation from the 
soliton state to a bare exciton state, i.e, the 
destruction of the soliton state requires 
simultaneous removal of the lattice distortion. 
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We know in general that the transition 
probability to a lattice state without distortion 
is very small, in general, being negligible for 
a long chain. Considering, it is reasonable to 
assume that such a soliton is stable enough 
to propagate through the length of a typical 
protein structure. However, the thermal 
stability of the soliton state must be 
calculated quantitatively. The following 
calculation addresses this point explicitly. 

 
We now diagonalize partially the model 

Hamiltonian in order to calculate the lifetime 
of the soliton in Eq.(43), using the quantum 
perturbation method (W. C. Kerr and P. S. 
Lomdahl , (1989); X. Wang, et al. (1989). 

Since one is interested in investigating the 
case where there is initially a soliton moving 
with a velocity v on the chains, it is 
conveniently to do the analysis in a frame of 
reference where the soliton is at rest.  In this 
case we should consider the Hamiltonian in 

this rest frame of the soliton, H
~

-vP, where P 
is the total momentum, and P=

∑ ++ −
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simple analytical expressions we make the 
usual continuum approximation. Thus it gave 
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where )x( ϕ  represents now the field operator corresponding to Bn in the continuum limit 

(whereas before it only indicated a numerical value), here L=Nr0, －π＜kr0＜π, and qω

≈(w/M)1/2 r0·|q｜ ,x=nr0. Since the soliton excitation is connected with the deformation of 
intermolecular spacing, it is necessary to pass in Eq.(47) to new phonons taking this 
deformation into account. Such a transformation can be realized by means of the following 
transformation of phonon operators (A. C. Scott, 1983) 
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which describe phonons relative to a chain with a particular deformation, where bq (b
+
q ) 

is the annihilation (creation) operator of new phonon. In this case the vacuum state for the 
new phonons is 
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which is a coherent phonon state (A. C. Scott, 1991), i.e. , bq| 00
~

ph =〉 . The Hamiltonian 

~
H  in Eq.(48) can now be rewritten as 
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To describe the deformation corresponding to a soliton in the subspace where there is 
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Which can be obtained from Eq(45) in such a case. From the above formulae we can 

obtain 

V(x)= )r/x(hsecJ2 0p
22
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 In order to partially diagonalize the Hamiltonian Eq.(50) we introduce the following 
canonical transformation[L. D.Landau,1933; V.K.Fedyamin, 1977] 

 

∑∑ ++ =ϕ=ϕ
j

j
*
jj

j
j A)x(C)x(  ),x(CA)x(                                                                   (53) 

where ∫ ∑ ∫ =′−δ=′δ=
j

2
jj

*
jljj

*
1 1|)x(C|dx),xx()x(C)x(C,dx)x(C)x(C                  (54) 

 

The operators +
sA  and +

kA  are the creation operators for the bound states Cs(x) and 

delocalized state Ck(x), respectively. The detailed calculation of the partial diagonalization 
and of corresponding Cs(x) and Ck(x) are described in Appenix A. Obtained partially 
diagonalized Hamiltonian is as follows 
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where qα  is determined by V(x) and the condition, ( qω －vq) qα =( qω +qv) ∗αq , which is 

required to get the factor, (1－ ss AA+ ),in the H
~

 in Eq.(55). Thus we find  
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and      J
3

2
W 2

pµ=    

For this qα , |
~
0 ＞ph in Eq.(49) is just the 

coherent phonon state introduced by 
Davydov. However, the bound state Cs(x) in 
Eq.(56a), unlike the unbounded state Ck(x) 
in Eq.(56b),is self-consistent with the 
deformation. Such a self-consistent state of 
the intramolecular excitation and 
deformation forms a soliton, which in the 
intrinsic reference frame is stationary. For 
Pang’s soliton described by the state vector 
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 in Eq.(55) is 
            

2
p2

0

22

0 J
3

4
)

Jr4

v
J22(|H

~
| µ−−−ε>=ψψ<

h
    

(60) 
 

Evidently, the average energy of H
~

 in 
the soliton state | ψ ＞, Eq.(60), is just equal 

to the above soliton energy, Esol, or the sum 
of the energy of the bound state in Eq.(56a), 
Es, and the deformation energy of the lattice, 

W, i.e., >=ψψ< |
~
H| Esol=Es+W. This is an 

interesting result, which shows clearly that 
the soliton formed by the above quasi-
coherent state by virtue of this mechanism is 
just a self-trapping state of the two excitons 
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plus the corresponding deformation of the 
lattice. However, it should be noted that 

>ψ|  is not an exact eigenstate of H
~

owing 

to the presence of the terms in H
~

 with +
kA

As and +
sA A -k.  

 
Transition probability and decay rate of 
Pang’s soliton as well its lifetimes in 
protein molcules 
 

We now calculate the transition 
probability and decay rate of the quasi-
coherent soliton arising from the perturbed 

potential by using the first-order quantum 
perturbation theory developed by 
Cottingham, et al. (Ｊ.Ｐ.Cottingham and J. 
W. Schweitzer, (1989); J. W. Schweitzer, 
(1992), in which the influences of the 
thermal and quantum effects on the 
properties of the soliton can be taken into 
account simultaneously. 
 

For the discussion of the decay rate and 
lifetime of the new soliton state it is very 

convenient to divide 
~
H  in Eq.(55) into 

H0+V1+V2 , where 
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where H0 describes the relevant quasi-particle excitations in the protein. This is a soliton 
together with phonons relative to the distorted lattice. The resulting delocalized excitations 
belongs to an exciton-like band with phonons relative to a uniform lattice. The bottom of the 

band of the latter is at the energy 3/J4 2
pµ  relative to the soliton, in which the topological 

stability associated with removing the lattice distortion is included.  
 
We now calculate the decay rate of the new soliton along the following lines by using 

Eq.(61) and V2 in Eq.(63) and quantum perturbation theory. Firstly, we compute a more 
general formula for the decay rate of the soliton containing n quanta in the system, in which 
the three terms contained in Eq.(31) is replaced by (n+1) terms of the expression of a 

coherent state exnn
n

10]B)t(exp[
1

>ϕ
λ

+∑ . Finally we find out the decay rate of the new 

soliton with two-quanta from it.  In such a case H0 is chosen such the ground state, |n> has 

energy W+n sE′  in the subspace of excitation number equal to n, i.e., 

∑ ∑ >=+>=<< +++

i k
kkssii n)lnAAAnl(An| BB|n . In this subspace the eigenstates have the 

simple form  |n-m,k1k2…km, {nq｝> 
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with  dq|
mn

ph0
~ −> =0. The corresponding energy of the systems is 
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sE′  is the energy of a bound state with one exciton, kE′  is the energy of the 

unbound(delocalized) state with one exciton. When m=0 the excitation state is a n-type 
soliton plus phonons relative to the chain with the deformation corresponding to the n-type 
soliton. For m=n the excited states are delocalized and the phonons are relative to a chain 
without any deformation. Furthermore except for small k, the delocalized states approximate 
ordinary excitons. Thus the decay of the soliton is just a transition from the initial state with 
the n-type soliton plus the new phonons: 
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with corresponding energy Es{nq ｝ =W+n ∑ −ω+′

q
qs )vq(E h nq to the final state with 

delocalized excitons and the original phonons: 
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with corresponding energy Ek{nq}=n ∑ −ω+′
q

qk )vq(E h nq caused by the part, V2, in the  

perturbation interaction V. In this case, the initial phonon distribution will be taken to be at 
thermal equilibrium. The probability of the above transitions in lowest order perturbation 
theory is given by 
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We should calculate the transition 
probability of the soliton resulting from the 
perturbed potential,(V1+V2), at first-order in 
perturbation theory. Following Cottingham 
and Schweitzer (A.S.Davydov, 1983)’s 
method, we estimate only the transition from 
the soliton state to delocalized exciton states 
caused by the potential V2, which can 
satisfactorily be treated by means of 

perturbation theory since the coefficient F
~

(k,q) defined by Eq.(58) is proportional to an 
integral over the product of the localized 
state and a delocalized state, and therefore 

is of order 1/ N . The V1 term in the 
Hamiltonian is an interaction between the 
delocalized excitons and the phonons. The 
main effect of V1 is to modify the spectrum of 

the delocalized excitatons in the weak 
coupling limit  (Jµp/ KBT0  <<1, the definition 
of T0 is given below). As a result the 
delocalized excitons and phonons will have 
their energies shifted and also have finite 
lifetimes. These effects are ignored in our 
calculation since they are only of second 
order in V1.  

 
The sum over l in Eq.(69) indicates a 

sum over an initial set of occupation 
numbers for phonons relative to the 
distorted lattice with probability distribution 

ph

lP , which is taken to be the thermal 

equilibrium distribution for a given 
temperature T. Since 
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here A is a new parameter introduced to describe the rate between the new nonlinear 
interaction term and the one in the Davydov’s model. 
 

To estimate the lifetime of the soliton we are interested in the long-time behavior of 
dt

wd
. 

By straightforward calculation, the average transition probability or decay rate of the soliton 
is given by 
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where the thermal average is 
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This rather unusual expression of Γn occurs because the phonons in the final state are 

related to a different deformation. However, the analytical evaluation of ),,( tkkU ′′  is a 

critical step in the calculation of the decay rate Γn. It is well known that the trace contained in 
),,( tkkU ′′  can be approximately calculated by using the occupation number states of 

single-particles and coherent state.  
 
However the former is both a very tedious calculation, including the summation of infinite 

series, and also not rigorous because the state of the excited quasiparticles is coherent in 
Pang’s model. Here we use the coherent state to calculate the ),,( tkkU ′′ , which is 

described in Appendix B. The decay rate obtained finally is 
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This is just a generally analytical 

expression for the decay rate of the soliton 
containing n quanta at any temperature 
within lowest order perturbation theory. Note 
that in the case where a phonon with 
wavevector k in Eq.(75) is absorbed, the 
delocalized excitation produced does not 
need to have wavevector equal to k. The 
wavevector here is only approximately 
conserved by the sech2[π(k-k’) 10 n2/r µ ] term. 

This is, of course, a consequence of the 
breaking of the translation symmetry by the 
deformation. Consequently, we do not find 
the usual energy conservation. The terms 
Rn(t) and )t(nξ  occur  in our calculation 

because the phonons in the initial and final 
states are defined relative to different 
deformations. 

 
We should point out that the 

approximations made in the above 
calculation are physically justified because 
the transition and decay of the soliton is 
mainly determined by the energy of the 
thermal phonons absorbed. Thus the 
phonons with large wavevectors which fulfil 
wavevector conservation make a major 
contribution to the transition matrix element, 
while the contributions of the phonons with 
small wavevector which do not fulfil 
wavevector conservation are very small, and 
can be neglected.   

 

From Eqs.(74) and (75) we see that the 

nΓ  and Rn(t) and )t(nξ  and 1nµ=µ  

mentioned above are all changed by 
increasing the number of quanta, n. 
Therefore, the approximation methods used 

to calculate nΓ and related quantities 
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(especially the integral contained in nΓ ) 

should be different for different n. We now 
calculate the explicit formula of the decay 
rate of the new soliton with two-quanta (n=2) 
by using Eqs.(74)-(75). In such a case we 
can compute explicitly the expressions of 
this integral and R2 (t) and )t(2ξ  contained 

in Eqs.(74)-(75) by means of approximation. 
As a matter of fact, in Eq.(75) at n=2 the 
functions R2 (t) and )t(2ξ  can be exactly 

evaluated in terms of the digamma function 
and its derivative. In the case when the 
soliton velocity approaches zero and the 
phonon frequency qω  is approximated by 

M/w |q|r0, as it is shown in Appendix C. 
For t ∞→ (because we are interested in the 
long-time steady behaviour) the asymptotic 
forms of R2(t) and )t(2ξ  are 
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At R0＜1 and T0＜T and R0 T/T0＜1 for 

the protein molecules, one can evaluate the 
integral including in Eq.(74) by using the 
approximation which is shown in Appendix C. 
The result is 
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The decay rate of the soliton, in such an approximation, can be represented, from Eqs.(74) 
and (80), by 
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This is the final analytical expression for the decay rate of the quasi-coherent solition 
with two-quanta. Evidently, it is different from that in the Davydov model (L. D.Landau,     
1933). To emphasis the difference of the decay rate between the two models, the 
corresponding quantity for the Davydov soliton is rewritten as [L. D.Landau,1933) 
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Equation (83) can also be found out 

from Eq.(74) at n=1 by using the Cottingham 
et al’s approximation (Ｊ.Ｐ.Cottingham and 
J. W. Schweitzer, 1989). 
 

The two above formulaes in Eqs. (82) 
and (83) are completely different, not only 
for the parameter’s values, but also the 
factors contained in them. In Eq.(82) the 
factor,
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in Eq.(82) due to the two-quanta nature of 
the new wavefunction and the additional 
interaction term in the new Hamiltonian. In 
Eq. (82) the η, R0 and T0 are not small, 
unlike in the Davydov model. Using Eq.(72) 
and the parameter values of alpha helix 
protein molecules, which are  
 

We first calculate the solution of 
Eqs.(15)-(19) numerically in the uniform and 
periodic proteins with single chain utilizing 
the above average values for these 
parameters in alpha helix protein molecules 
in Fig.1, which are 

 

 

221.55 10−= ×J J , (13 19.5)= −w N m ,
25(1.17 1.91) 10 114 ,−= − × = pM kg m  

12

1 62 10 ,χ −= × N     
12

2 (10 18) 10 ,χ −= − × N 10

0 4.5 10 .r m−= × ,                                                (85) 

 
we find out the values of η , R0 and To 

at T=300K in both models, which are listed 
in table 2. From this table we see that the η , 

Ro and To for Pang’s model are about 3 
times larger than those in the Davydov 
model due to the increases of µp and the 
non-linear interaction coefficient Gp. Thus 

the approximations used in the Davydov 
model by Cottingham, et.al ( Ｊ .
Ｐ.Cottingham and J. W. Schweitzer, 1989) 
can not be applied in our calculation for the 
lifetime of Pang’s soliton, although we 
utilized the same quantum-perturbation 
scheme. Hence we can audaciously 
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suppose that the lifetimes of Pang’s soliton 
are greatly changed. 

 
The lifetime of Pang’s soliton and its 
features 
 

The above expression, Eq.(78), allows 
us to compute and study numerically the 

decay rate, 2Γ , and the lifetimes of Pang’s 
soliton,τ= 1/ 2Γ , for above values of the 

physical parameters of the α-helical protein 
molecules in Eq.(85). Using the above 
parameter values and the above Eq.(83) 
and at v=0.2v0 and assuming the 
wavevectors are in the Brillouin zone then 
we can obtain the values of 2Γ  is between 

1.54×1010S-1-1.89×1010S-1. This corresponds 
to the soliton lifetimes,τ, is between 0.53×10-

10S  0.65×10-10S at T=300K, or speaking, 
τ/τ0=510-630, where τ0=r0/v0 is the time for 
travelling one lattice spacing at the speed of 
sound, which is (M/w)1/2=0.96×10-13S. In this 
amount of time the new soliton, travelling at 
two tenths of the speed of sound in the 
chain, would travel several hundreds of 
lattice spacings, that is several hundred 
times more than the time of Davydov soliton, 
which is τ/τ0<10 at 300K (S.Takeno, 1985)i.e. 
when Davydov soliton is transported at a 
half of the sound speed, it can only cover 
less than 10 lattice spacing in its lifetime.. 
The lifetime for Pang’s soliton is enough 
long for bio-energy transport. Therefore the 
quasi-coherent Pang’s soliton is a viable 
mechanism for the bio-energy transport 
along the protein molecules at biological 
temperature . 

 
We are very interested in the relation 

between the lifetime of the quasi-coherent 
soliton and temperature. Fig. 2 shows the 
relative lifetimes τ/τ0 of Pang’s soliton versus 
temperature T for a set of widely accepted 
parameter values mentioned above. Since 
one assumes that v＜v0, the soliton will not 

travel the length of the chain unless τ/τ0 is 
large compared with L/r0, where L=Nr0 is the 
typical length of the protein molecular chains. 
Hence for L/r0≈100, τ/τ0 ＞ 500 is a 
reasonable criterion for the soliton to be a 
possible mechanism of the bio-energy 
transport in protein molecules. The changes 
of lifetime of Pang’s soliton with the 
temperature are shown in Fig.3, which 
exhibits that the lifetime of Pang’s soliton is 
decreased rapidly as temperature increases, 
but below T=310K it is still large enough to 
fulfill the criterion. Thus, Pang’s soliton can 
play an important roles in biological 
processes. 

 
For comparison we plotted 

simultaneously log )/( 0ττ versus the 

temperature relations for the Davydov 
soliton and Pang’s soliton is showed in Fig.3. 
The temperature-dependence of log ( 0/ ττ ) 

of the Davydov soliton is obtained from Eq. 
(83). We find that the differences of values 
of 0/ ττ  between the two models are very 

large. The value of 0/ ττ  of the Davydov 

soliton is really too small, in which it can only 
travel fewer than the lattice spacings in half 
the speed of sound in the protein chain 
(S.Takeno, 1985; 1986). Hence it is true that 
the Davydov soliton is ineffective for the 
biological processes (S.Takeno, 1985; 1986). 

 
We can also study the dependence of 

the lifetime of Pang’s soliton on some 
special parameters by using Eqs.(8)and 
(Pang Xiao-feng, 1993i). In this case we still 
chose and used the parameter values 
mentioned above. In Pang’s model we know 
from Eq. (82) that the lifetime of the soliton 
depends mainly on these parameters of 
coupling constants (χ1+χ2), M, w, J, phonon 
energy h ω k, as well as on the composite 
parameters µ(µ=µp  ), R0 and T/T0. At a 
given temperature, τ/τ0 increases with 
increasing µ and T0. The dependences of 



the lifetime τ/τ0, on (χ1+χ2) and 
are shown in Figs. 4 and 5, respectively. 
Since µ is inversely proportional to the size 
of the soliton, and can determine the 
binding energy of Pang’s soliton in Pang’s 
model, therefore it is an important 
parameter. We may think it be an 
independent variable. In such a case the 
other parameters in Eq. (82) used still 
 
Table 1. Comparison of characteristic parameters in the Davydov model and in our new model

 R

New model 0.529
Davydov model 0.16

 

 

Fig. 2. Soliton lifetime τ relatively to 

parameters appropriate to the
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) and µ at 300K 
4 and 5, respectively. 
proportional to the size 

of the soliton, and can determine the 
binding energy of Pang’s soliton in Pang’s 
model, therefore it is an important 
parameter. We may think it be an 
independent variable. In such a case the 
other parameters in Eq. (82) used still the 

above values in Eq.(85). It is clear from 
Figs. 4 and 5 that the lifetime of Pang’s 
soliton, τ/τ0, increases rapidly with 
increasingµand (χ1+χ2). Furthermore, when 
µ≥5.8 and (χ1+χ2)≥7.5×10-11N, which are 
values appropriate to Pang’ s model, we 
find τ/τ0 ＞500.  

Table 1. Comparison of characteristic parameters in the Davydov model and in our new model

 

Ro To (K) 
10(×η

0.529 294 6.527 
0.16 95 2.096 

Soliton lifetime τ relatively to 0τ  as a function of the temperature T for 

parameters appropriate to theα-helical molecules in Pang’ model in Eq.(82).

 
 

 

 
 

 
 

It is clear from 
4 and 5 that the lifetime of Pang’s 

, increases rapidly with 
). Furthermore, when 

N, which are 
values appropriate to Pang’ s model, we 

Table 1. Comparison of characteristic parameters in the Davydov model and in our new model 

)s/1013
 

 
 

 

as a function of the temperature T for 

helical molecules in Pang’ model in Eq.(82). 
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Fig. 3. log(ττττ/ττττ0) versus the temperature T for the soliton. The solid line is result of Pang’ 
model inEq.(8), the dashed line is the result of Davydov model in Eq.(83). 

 
 

Fig. 4. ττττ/ττττ0 versus (χχχχ1+χχχχ2) relation in Eq.(82) 
 

For a comparison we showed also the 
corresponding result obtained using Eq.(83) 
in Fig. 5, where the values of original 
Davydov model are shown in a dashed line 
in this Figure.  We can see from this figure 
that the increase in lifetime of the Davydov 
soliton with increasing µ is quite slow and 
the difference between the two models 
increases rapidly with increasing µ.The 
same holds for the dependence on the 
parameter (χ1+χ2) , but the result for the 
Davydov soliton is not drawn in Fig. 4.  

 
These results verified again that the 

quasi-coherent soliton in Pang’s model is a 
likely candidate for the mechanism of bio-
energy transport in the protein molecules.  

 
In addition, Fig. 5 shows clearly that a 

basic mechanism and ways for increasing 
the lifetime of the soliton in protein 
molecules is to enhance the strength of the 
exciton-phonon interaction. 

 
In Fig.6 we plot τ/τ0 versus η. Since –η 
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designates the influence of the thermal 
phonons on the soliton, thus it is also an 
important quantity. We here may regard it 
also is an independent variable. In this case, 
other parameters in Eq.(82) are the values 
mentioned above. From this figure we see 
that τ/τ0 increases with increasing η. 
Therefore, to enhance η can also increase 
the value of τ/τ0. 

 
In order to understand clearly the 

behavior of the lifetime of  quasi-coherent 
soliton with varying parameter values in a 
wide range,we study further the variation of 
τ/τ0 in the limit taω →0 in Eq.(75) , i.e., this 

is in the initial case, in which we can 
evaluate analytically the values of R2(t) and 
ξ2(t). In fact, for taω ＜1  both R2(t)  and ξ2(t) 

have power-series expansions. 
 

To lowest order as taω
→0, one finds from 

Eq.(75): 
 
R2 (t)≈—R0[iπ

2
ωαt/6+3ζ(3)(ωαt)

2]             (86) 
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Fig. 5. ττττ/ττττ0 versus µ relation. The solid and dashed lines are results of Eq.(82) and 

Eq.(83),respectively 
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Fig. 6. ττττ/ττττ0 versus ηηηη relation in Eq.(82) 
 

when T/T0＞1 and π4R0T/2µT0＞1. The above integral is the generalization of the usual δ-
function for energy conservation in zero- temperature perturbation theory. Thus we can obtain 
from Eqs.(74) and (88) at n=2 the decay rate of the soliton as 
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The expression of the decay rate of Pang’s s 
oliton in this limit is different from Eq.(82). 
Therefore, studying properties of the lifetime 
of Pang’s soliton in such a case are helpful 
in understanding the behavior of the soliton. 
A summary of the results obtained from 
Eq.(89) are given in Figs.7-10.  
 

The dependence of lifetime on 
temperature T is shown in Fig.7, which has 
been obtained from the numerical evaluation 
of Eq.(89).  In Figs.8 and 9 we plot τ/τ0 
versus (χ1+χ2)   and versus  µ , respectively, 
at T=300K. From Figs.7-9 we see that τ/τ0 

increases as T decreases and with 
increasing µ and (χ1+χ2). Furthermore, it is 
clear from this Gaussian expression in 
Eq.(84) that the lifetime of Pang’ s soliton 
will be large if µand (χ1+χ2)are larger, but the 
Gaussian expression is very small for k and  
k’ between -π/r0 and +π/r0, i.e., in the 
Brillouin zero. Obviously, the temperature 
dependence of the lifetime of Pang’s soliton 
is mainly due to the temperature 
dependence of the width of the Gaussian, 
which decreases with decreasing 
temperature. The dashed line in Fig.9 is the 
result for the Davydov soliton under the 
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same conditions. It is clear that the lifetime 
of the Davydov soliton is lower than that of 
Pang’ s soliton, especially at large µ , 

although at low µ  the difference between 

them is small. Taking Fig.5 also into account 
we find that the lifetime of the Davydov 
soliton is indeed very low. However this is 
not the case for Pang’ s soliton. 
 

In Fig. 10 we plot τ/τ0 as a function of T0 
at T=300K. T0 is related to the Debye 
temperature of the systems, therefore it is 
also an important quantity. We here regard it 
as an independent variable and calculate 
and evaluate that the changes of τ/τ0 w ith 
varying T0 using Eq.(89). From this figure in 
Fig.10 we see that the lifetime of Pang’ s 
soliton is large if T0 is either large or small, 

because the Gaussian expression in Eq.(89) 
is very small for k and  k’ between -π/r0 and 
+π/r0. As a point of reference, note that these 
parameters have the values T/T0≈1.03 —

1.06, JT/KBT 2
0 =4.10 at 300K and µ=5.81-

5.96 depending on whether the widely 
accepted or the“three-channel”parameter 
values for the alpha-helical protein are 
assumed. From these results it is clear that 
using widely accepted, realistic parameter 
values, then Pang’ s model can satisfy the 
relation τ/τ0≥500 at 300K for large µ and 
large T0. HencePang’s soliton model 
provides a viable candidate for the bio-
energy transport processes in the protein 
molecules. 

 

 
 
 

Fig. 7. ττττ/ττττ0 versus T relation  in the new model in Eq.(87) 
 

 
 
 

Fig. 8.  ττττ/ττττ0 versus (χχχχ1+χχχχ2), relations in the new model in Eq.(87) 
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Fig. 9 . ττττ/ττττ0 versus µµµµ relation in the new model in Eq.(87), the dashed line is Davydov 
model’s data 

 

 
 

Fig. 10. τ/τ0 versus T0 relation 
 

The above results indicated clearly that 
Pang’s soliton, which is responsible for the 
bio-energy transport along the protein 
molecules is thermal stability and has at 
least, τ/τ0=515, or  0.55×10-10S at T=300K. 
In this time Pang’s soliton can transport over 
several hundreds of amino acid residues, 
which is larger about 300 times than that of 
Davydov’s soliton, no matter how changes of 
molecular structure of the protein molecules 
because the latter are closely related to 

these parameters mentioned above, such as 
(χ1+χ2) ,η,µ and T0 . 

 
The above calculations and results are 

helpful to resolve the controversies on the 
lifetime of Davydov’s soliton, which is too 
small in the region of biological temperature. 
Pang’s model containing the quasi-coherent 
wavefunction of the two-quanta nature and 
an added interaction in the Hamiltonian 
produced a stable soliton at biological 
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temperatures, Pang’s soliton has a long 
enough  lifetime. Therefore, the distinction of 
the natures and features of the two kinds of 
solitons in Pang’s and Davydov’s models [A. 
S. Davydov, (1973); A. S. Davydov, 1991; A. 
S. Davydov, (1979); A.S.Davydov, (1983); A. 
S. Davydov, (1982), ); [Pang Xiao-feng 
(2001a); Pang Xiao-feng, and Y.P.Feng 
Yuan-ping (2005); Pang Xiao-feng et al. 
(2005); Pang Xiao-feng,et al. (2010a); Pang 
Xiao-feng, et al. (2006a); Pang  Xiao-feng, 
(2001b); Pang Xiao-feng, (2001c); Pang 
Xiao-feng, (2002); Pang Xiao-feng , (2001d); 
Pang Xiao-feng, (2001e); Pang Xiao-feng 
and Chen Xiang-rong (2002a); Pang Xiao-
feng and Chen Xiang-rong, (2002b); Pang 
Xiao-feng and Chen Xiang-rong (2001); 
Pang Xiao-feng (2001f); Pang Xiao-feng , 
(2001g); Pang Xiao-feng (2001h); Pang 
Xiao-Feng and Luo Yu-Hui (2004); Pang 
Xiao-feng, et al. (2005a); (2005b); Pang 
Xiao-feng, and Y.H.Luo, (2005); Pang Xiao-
feng and Zhang Huai-wu, （ 2005); Pang 
Xiao-feng, , (2008a); (2008b); Pang Xiao-
feng (2010b); Pang Xiao-Feng and LIU Mei-
Jie, (2009); Pang Xiao-feng，(2009); Pang 
Xiao-feng and Lui mei-jie,Int. (2009); Pang 
Xiao-feng, (2008c); Pang Xiao-feng et al. 
(2007a); Pang Xiao-feng, (2007); Pang 
Xiao-fenget al. (2007b); Pang Xiao-feng and 
Liu Mei-jie, ( 2007); Pang Xiao-feng, et al. 
(2006b); Pang Xiao-feng and Zhang Huai-
Wu, (2006a); Pang Xiao-feng and Chen 
Xianron, (2006); Pang Xiao-feng and Zhang 
Huai-wu, (2006b); Pang Xiao-feng, (2003); 
Pang Xiao feng, (2012)) are shown in Table 
2. From this table we know that Pang’s 
model repulsed and refused the 
shortcomings of the Davydov model (A. S. 
Davydov, (1973); A. S. Davydov, 1991; A. S. 
Davydov, (1979); A.S.Davydov, (1983); A. S. 
Davydov, (1982). , the new soliton in Pang’s 
model is thermal stable, and has a long 
enough lifetime at biological temperature 
300K, thus it can play an important role in 
the biological processes. Thus, Pang’s 

theory is correct, it can resolve the 
controversy on the thermal stability and 
lifetime of the soliton excited in protein 
molecules, Pang’s soliton is a real carrier of 
bio-energy transport in the protein molecules 
in the living systems. 

 
In one word, we here proposed a new 

theory of bio-energy transport in the protein 
molecules in living systems based on some 
physical and biological reasons, where the 
energy is released from the reaction of 
hydrolysis of ATP molecules. In this new 
theory, Davydov‘s Hamiltonian and wave 
function of the systems are simultaneously 
improved and extended.A new interaction 
has been added to the original Hamiltonian, 
the original Davydov wave function of the 
excitation state of single particles for the 
excitons in the Davydov model have been 
replaced by a new wave function of two-
quanta quasi-coherent state in Pang’s model, 
in which the bio-energy is carried and 
transported by Pang’s soliton along protein 
molecular chains, which are  formed through 
the still self- trapping of two excitons, 
interacting amino acid residues, where the 
exciton is generated by vibrations of amide-I 
(C = O stretching) arising from the energy of 
hydrolysis of ATP. We gave the soliton 
solutions of dynamic equation and studied 
further their properties by analytical method 
in Pang’s model. The results obtained 
indicate that Pang’s model gave high non-
linear interaction energy for Pang’s soliton, 
which can cancel and suppress the linear 
disperseve energy, thus Pang’s soliton 
transporting the bio-energy has quite high 
binding energy and stability. Therefore, 
Pang’s model for the bio-energy transport 
differs completely from the Davydov model. 

 
We here calculated also  the lifetime of 

Pang’s soliton at the biological temperature 
300K using the non-linear quantum 
perturbation theory in a wide range of 



parameter values of α-helical protein 
molecules. The investigated results show  
that the lifetime of Pang’s soliton at 300K is 
large enough  and belongs to the order of 
10-10 second, or τ/τ0 ≥700, in which the 
soliton can transport over several hundred 
amino acid molecules. 

 
Therefore, we here exhibited the 

 
Table 2. Comparison of the Nature of the Solitons between Pang’s Model and Davydov’sModel

  Parameters 
Model 

Pang’s model 
Davydov model 

 

Fig. 11. The pump-probe response of the anomalous (1650
as of the normal band (1666

former
 

Hamm et al. (D. W. Brown,1986; 
Brown, (1987); [D. W. Brown, (1988); D. W. 
Brown, 1990; D. W. Brown, et al. (1986);  D. 
W. Brown, (1988); D. W. Brown and Z. Ivic, 
(1989). measured the lifetimes of the 
solitons by pump-probe spectroscopy in 
acetanilide and proteins. Fig
pump-probe response of both the 
anomalous (1650 cm − 1, filled circles) as 
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helical protein 
molecules. The investigated results show  
that the lifetime of Pang’s soliton at 300K is 
large enough  and belongs to the order of 

700, in which the 
soliton can transport over several hundred 

Therefore, we here exhibited the 

features of Pang’s soliton through comparing 
with those of Davydov’s soliton, in which we 
elucidated that Pang’s soliton can play an 
important role in biological processes with 
respect to the models of Davydov and 
others.. Thus we can judge that Pang’s 
model is a candidate of the bio
transport mechanism in protein molecules.

 

Table 2. Comparison of the Nature of the Solitons between Pang’s Model and Davydov’sModel

 
Lifetime at  
300K(S) 

Critical 
temperature(K) 

Number of amino acid 
traveled by soliton in 
lifetime 

10-9-10-10 320 Several handreds
10-12-10-13 <200 Less than 10 

 
 

probe response of the anomalous (1650 cm
− 1

, filled circles
the normal band (1666 cm

− 1
, open circles) of ACN after selectively exciting the 

former (D. W. Brown, et al. 1986). 

. (D. W. Brown,1986; D. W. 
Brown, (1987); [D. W. Brown, (1988); D. W. 
Brown, 1990; D. W. Brown, et al. (1986);  D. 

1988); D. W. Brown and Z. Ivic, 
measured the lifetimes of the 

probe spectroscopy in 
acetanilide and proteins. Fig. 11 shows the 

probe response of both the 
, filled circles) as 

well as of the “normal” band (1666
open circles) of ACN after selectively 
exciting the former (D. W. Brown; 1986)
early times, a bleach of only the anomalous 
band  occurs, which recovers on a fast 2
timescale. However, this relaxation is not 
complete, and a small negat
remains. This indicates that the system does 
not relax back into the initial ground state, 

 
 

 

 
 

 
 

features of Pang’s soliton through comparing 
with those of Davydov’s soliton, in which we 
elucidated that Pang’s soliton can play an 
important role in biological processes with 
respect to the models of Davydov and 

Thus we can judge that Pang’s 
model is a candidate of the bio-energy 
transport mechanism in protein molecules. 

Table 2. Comparison of the Nature of the Solitons between Pang’s Model and Davydov’sModel 

Number of amino acid 
traveled by soliton in 

Several handreds 

filled circles) as well 
) of ACN after selectively exciting the 

(1666 cm − 1, 
open circles) of ACN after selectively 

(D. W. Brown; 1986). At 
early times, a bleach of only the anomalous 
band  occurs, which recovers on a fast 2-ps 
timescale. However, this relaxation is not 
complete, and a small negative signal 
remains. This indicates that the system does 
not relax back into the initial ground state, 



but into a state that is either 
spectroscopically dark or outside of spectral 
window. On a somewhat longer timescale 
(35 ps), the energy still present in 
thermalizes. That is, the anomalous band 
loses intensity (a negative signal in the 
difference spectroscopy of Fig.
1666 cm − 1 band gains intensity, exactly as 
in the stationary spectra of Fig.
increase the temperature. Hence, after 
vibrational relaxation of the initially pumped 
state, energy relaxes through a unknown 
pathway, but then reappears as heat after 
35 ps. A very similar relaxation behavior was 
also found for the N–H band
1986). Therefore, we can determined from 
this experiment that the lifetime of the soliton 
excitation in ACN is 35ps. 
 

Hamm et al provided also a compelling 
evidence for vibrational self-trapping in NMA, 
which is similar with that in crystalline ACN 
because the former’s molecular structure 
resemble ACN’s. In particular, both crystals, 
ACN and NMA, have an orthorhombic 
structure and consist of quasi
hydrogen-bonded peptide units (
with structural properties that are similar to 
those of α-helices. Thus they are often 
regarded to be the model compound for 
peptides and proteins. However, the 
mechanism is expected to be generic and 
should occur in this crystal. Ne
convincing experimental evidence for self
trapping in NMA had been found so far. 
However, they carefully measured infrared 
spectra of NMA (A. C. Scott, 1990) 
probe experiment and compared the infrared 
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but into a state that is either 
spectroscopically dark or outside of spectral 
window. On a somewhat longer timescale 

ps), the energy still present in the crystal 
thermalizes. That is, the anomalous band 
loses intensity (a negative signal in the 
difference spectroscopy of Fig. 11 and the 

band gains intensity, exactly as 
in the stationary spectra of Fig. 8 when we 
increase the temperature. Hence, after 
vibrational relaxation of the initially pumped 
state, energy relaxes through a unknown 
pathway, but then reappears as heat after 

A very similar relaxation behavior was 
H band (D. W. Brown, 

. Therefore, we can determined from 
this experiment that the lifetime of the soliton 

Hamm et al provided also a compelling 
trapping in NMA, 

which is similar with that in crystalline ACN 
because the former’s molecular structure 
resemble ACN’s. In particular, both crystals, 
ACN and NMA, have an orthorhombic 
structure and consist of quasi-1D chains of 

eptide units (–CO–NH–) 
with structural properties that are similar to 

helices. Thus they are often 
model compound for 

peptides and proteins. However, the 
mechanism is expected to be generic and 
should occur in this crystal. Nevertheless, no 
convincing experimental evidence for self-
trapping in NMA had been found so far. 
However, they carefully measured infrared 

(A. C. Scott, 1990) by pump-
probe experiment and compared the infrared 

absorption spectra and the pump
spectra of the amide-I and NH modes of 
acetanilide (ACN) and N-methylacetamide 
as well as their deuterated derivatives. The 
amide-I bands of NMA shows a 
temperature-dependent sideband, but it is 
less distinct than in ACN in Fig.
other hand, the N–H band of NMA is 
accompanied by a sequence of satellite 
peaks, the spacings between which are 
larger than in ACN (which could be since 
NMA is lighter, and hence since lattice 
phonons are tentatively at higher 
frequencies). Comparing the pump
responses of these spectral anomalies in 
both crystals gave very similar results, 
providing evidence that vibrational self
trapping is indeed a common effect in 
hydrogen-bonded crystals. \ 

 
The generation of nerve impulse in nerve 
fiber arising from the bio-energy released 
by ATP hydrolyses reaction and its 
features of transport along the nerve 
fibers in living systems 
 
The basic structure of nerve fibers in life 
systems 
 

The unit of the nervous system in 
animals is the nerve cell or the neuron. It is 
the unit of structure and function of nervous 
system, its main function is to accept, 
process and transfer the nerve information, 
to complete the functions of the nervous 
system. It consists of nerve cells  having 
different sizes and forms, which is shown in 
Fig.12. 

 
 

 

 
 

 
 

absorption spectra and the pump-probe 
I and NH modes of 

methylacetamide 
as well as their deuterated derivatives. The 

I bands of NMA shows a 
dependent sideband, but it is 

less distinct than in ACN in Fig. 12. On the 
H band of NMA is 

accompanied by a sequence of satellite 
peaks, the spacings between which are 
larger than in ACN (which could be since 
NMA is lighter, and hence since lattice 
phonons are tentatively at higher 
frequencies). Comparing the pump-probe 
responses of these spectral anomalies in 
both crystals gave very similar results, 
providing evidence that vibrational self-
trapping is indeed a common effect in 

The generation of nerve impulse in nerve 
energy released 

by ATP hydrolyses reaction and its 
features of transport along the nerve 

The basic structure of nerve fibers in life 

The unit of the nervous system in 
animals is the nerve cell or the neuron. It is 

nit of structure and function of nervous 
system, its main function is to accept, 
process and transfer the nerve information, 
to complete the functions of the nervous 
system. It consists of nerve cells  having 
different sizes and forms, which is shown in 
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Fig.12. The structure of the neuron. (Pang Xiao-feng, 2007b; W.L.Liu, 1994) 
 
 

In addition to general structure of cell, 
which contains the membrane, cytoplasm 
and nuclear, the neuron or nerve cell is also 
composed of the membrane, cytoplasm and 
nuclear, but their sizes and shapes are 
different those of general cell. In particle, the 
neuron is a fiber cell and contains the cell-
body and many bumps, such as one axon 
and many dendrite, which are issued from 
the cell-body, in the cytoplasm there are an 
austenite (or Nissl substances ), which is a 
active part and the position of syntheses of 
protein molecules. At the same time, the 
neurons involve also the large number of 
micro-tube and micro-trabecular, which is 
formed through accumulated by a plenty of 
large number of polarized protein molecules, 
which resembles with a polymer formed by 
many dipoles in accordance with the style of 
order arrangement, it is also an acted sites 
of the narcotics of central nervous. In fact, 

the size and shape of different neurons are 
very distinct, but their structures are almost 
same, they can all be represented by Fig.12 
(Pang Xiao-feng, 2007b; W.L.Liu, 1994). 
  

The branch of the axon is called the 
lateral branch. The lengths of axon and 
lateral branch are not same, their differences 
are also very large, some are very short , 
which are about several micrometers, but  
the lengths of most of bumps in the neurons 
are very great, such as their lengths may 
reach 1m in the persons and animals. When 
the axons are contacted with other cell 
bodies, some structures of myelin sheathes 
may occur in the neurons for the persons 
and animals. However, the neurons without 
myelin sheathes exist also in some 
organisms. Experiments verified that thirty 
six carbon olefine acid (DHA) promotes the 
forms of the myelin sheathes in the 
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processes of extension and metabolism of 
the neural axons.  

 

The axon endings in Fig. 12 can both 
output electric-information and release the 
neurotransmitter to affect another neurons 
or non-nerve cells. This means that the 
axons and lateral brarches can all link with 
other -nerve cells by virtue of the 
synapseses and another cell bodies. Thus 
a completely neural signal transmission 
system is formed in this case.  

 
The dendrites and axons most 

vertebrates neurons and membranous 
organelles, which can synthesis cell-bodies 
and extra telecom and neurotransmitter 
release, in order to affect the close contact 
with it another, the axons and all collateral 
can be a nerve cell through the synapse 
and another cell precursors, and form a 
neural signal transmission system. The 
dendrites and axons of  most neurons in 
vertebrates are issued from their cell bodies 
ocated in the center of the cells. The cell-
body contains the nuclear and organelles 
having feature of membranous to 
responsible for synthesizing and processing 
protein molecules. At the same time, the 
synapses of the neuron are often located 
between the dendrites and cell-body, this 
means that the cell-body participate also  
the information integration and collection. 
The experimental results showed that the 
dendritic structure of a special nerve cells 
can enhance the calculation functions of 
nerve cells in the (W.L.Liu, 1994). 

 
The form of the synaptic structures and 
its properties in nerve cell membrane  
 

The synaptic structures have very 
important roles in the nerve activities, its 
structure and features are worth to study 
seriously. Its form is described as follows. 

 
The axons at the grown position in the 

neuron are grown and extended some larger 
cones, in this case their cone end of 
the protuberance or bumps can contact or 
combine to form a function wide organ with 
the bottom of axons or dendrites or cell-body 
of neighboring neuron. The organ between 
two neurons is referred to as the synaptic as 
shown in Fig.13 ((Pang Xiao Feng, (2011); 
Pang Xiao-feng, (2011);  W. X. Zhu and L Li, 
2000; M. Peyrard, et al., 1992). Synaptic is a 
contact area and small gap having 
exceptional function, which can transport 
and transfer the neural signals from one 
neuron to other neuron. However, they are 
not continuous in the protoplasm. The 
synaptic is, in essence, the association 
origin of function between two nerve cells 
and the position of contact of structures. 
Through the associations and their works, 
the neurons and receptor cells as well as the 
effect or cells are associated together to 
form a complete system of transmission of 
neural signals. There are not the 
transmission and transport of neural signals 
without the synaptic. Therefore the synaptic 
is a key origin in neurobiology.  

It is estimated that the human brain has 
about 1014 ~ 1015 synapses. Single synaptic 
is a complex of incoming - outgoing unit of 
signs, which is just a basic feature of the 
neurons. All neurons are all linked together 
through them. The related linkage between 
two neurons or seaking, the synaptic 
contains three parts: the before-part of 
synaptic of active cells or their protuberance 
given out, after-part of synaptic of cells 
accepted activation or their protuberance 
and the part or gap etween them. Therefore, 
the correct forms of linkage of the synapses 
require not only the right guidance of growth 
of the protuberances along the surface of 
cells and extracellular pathways, but also 
the specific identification between the 
presynaptic and postsynaptic cells. At the 
same time, it demands also stability of 
synapses in the activation in the motion of 
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time and space. 

 
 

Fig. 13. synaptic structure in the neuron (Pang Xiao-feng, 2007b; W.L.Liu, 1994). 
 

In biology, the synaptic connections, or 
speaking shape or form of e synaptic are 
various. If an axon or a lateral branch are 
terminated in another neurons , then it is 
called the axis - body synapse, but the 
synapnic between the axons and dendrites 
is called the axon-dendrite synapntic,  the 
synaptic between two axons is the axon-
axon synaptic. If one axon is terminated on 
the skeletal muscle fibers, then it is referred 
to as the neuromuscular endplate.  

 
A basic feature of the synaptic 

transmission are the valve and one single 
direction of the transfer, its information of 
transfer can be integrated and has a 
plasticity, i.e., its efficiency and functions 
are variable, the capacity of transferred 
information are higher and have the multi-
purposes. These features are the 
foundation of orderly neural activity and 

learning and memory of animals and 
persons ((Pang Xiao-feng, 2007b; W.L.Liu, 
1994). 

 

In the central nervous system, the typical 
presynaptic and postsynaptic compositions 
are closely associated on the membrane 
each other, which will lead to the alienation 
of contacted membrane, thus the two layer 
membranes should be separated by a 
narrow synaptic gap. The synaptic gap is an 
analogue matter of basement membrane, 
which is derived from the before- and after-
 membranes. The materials in the synaptic 
gap are all the protein molecules, which 
involved the alkaline amino acid with high 
concentrations, its interstitial matter has the 
sialic acid and glycoprotein, etc. In the side 
of pre-synaptic there are the synaptic 
corpuscles of swollen and tapered 
protuberance, in which many vesicles with a 
lot of neurotransmitter of high concentration 
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are contained.  
 

The synaptic has three types of chemical 
synaptic and electric synaptic and their 
hybrid. The chemical synaptic and electric 
synaptic, specially, the former exist widely in 
all animals and Human beings, but the latter 
exists only in the invertebrate and lower 
vertebrate animals, their nerveinformations 
are transferred by means of the variations of 
electric potentials among the gap junctions 
of synapses, in which the circuit impedance 
between two neurons is very larger, but their 
electric-potentialare lower. The chemical 
synaptic is widely existent in the nervous 
systems in the breastfeeding animals, its 
transport of the nerveinformations are 
carried out by virtue of the release and 
transport of chemical materials, which are 
called as the neurotransmitters, or 
messenger, such as the endocrine hormone, 
neural hormone of cells , etc. Chemical 
synapses is the most complicated synapses 
in the nervous system, their connections 
possess a specificity, such as its transport of 
nerveinformation has a exact direction from 
one neurons to another neurons and polarity. 
Its polarity is mainly determined by a group 
of synaptic vesicles and paralleling 
membranes. There is a gap with the size of 
20nm between the membranes of two 
neurons in the parallel membrane, its 
density of material is larger, specially for the 
pair-side membrane involving the 
protuberance of synaptic vesicles.  
 

The comparison of properties of chemic 
and electric synapses is shown in Table 3. 
 

The structure of the chemical synapses 
is shown in Fig.14. It contains the submicro-
structures of the synaptic endplate, synaptic 
vesicles, front membrane of synaptic, after-
membrane of synaptic,synaptic vesicles and 
postsynaptic membrane. The synapsin 1 in 
the front membrane is a protein molecule 
and a heterodimer constructed by the 

protein molecules with the molecular weigh 
of 166kDa and are related to the synaptic 
vesicles. After the synapsin 1 is in 
phosphorylation state, it is separated from 
the vesicles membranes and combination 
with the cytoplasmic membrane through cell 
skeleton, thus some neurotransmitters are 
released in this case. The phosphorylation is 
agan catalyzed by the calcium/calcium 
modulin dependent protein kinase 1, which 
can activated by the internal flow Ca2 +, 
when a nerve impulse occurs. The 
determined compositions in the postsynaptic 
membrane are the membrane receptor, 
thickening of postsynaptic (PSD) and the 
enzymes, which can make PSD 
phosphorylation and dephosphorylation. The 
thickening of postsynaptic is mostly formed 
by the cytoskeleton of the membrane, which 
contains the many microtubules, nerve 
filaments, and combines  many proteins and 
proteolytic enzymes. The main composition 
of PSD is the peptides of 50kDa or proteins. 
The above components are all shown in 
Fig.14, in which the calcium/calmodulin 
protein kinase ⅡⅡ(CaM Ⅱ) is a major 
biochemical components of synapses and 
exists mainly in the presynaptic endings and 
PSD,  and  it is also one of the homologous 
kinase family. It is consisted of 12 subsites 
with weighs of 50 ~ 60 kDa , which is a 
larger polymer of proteins, its basical 
function is itself phosphorylation of subunits. 
So-called itself phosphorylation is just make 
the kinases have a function of switch, then 
the kinas can still maintain itself bio-activity 
after short calcium-information signals are 
accepted. This feature is very advantageous 
to the long-time activity of the postsynaptic 
and their variations. Otherwise, there are 
another some scaffolding proteins in the 
postsynaptic, which contains the actins and 
the protein of 43kDa (Pang Xiao-feng, 
2007b; W.L.Liu, 1994), Pang Xiao feng, 
2006]. 



 
Table 3. The comparisons of properties of chemic and electric synapses

feng, 2007b; W.L.Liu, 1994)
 

The chemic synapses 

the affection of action potential of the presynaptic on electric 
potential of after membranes is small

presynaptic potential caused a large number of synchronous 
releasing of neurotransmitters by the small bubble under 
of cooperation of  Ca2 +   

the releses of eurotransmitter produce the appearing of
different  potentials of postsynaptic membrane, its sizes can be 
integrated, the postsynaptic potential can be invertedwhen it is 
varied  

there is synaptic vesicles in this case

it can be both  excited and nhibited

it is easily influenced in chemicalfactors

its effect can be sux(0.1)mmarized 
also a integrated effect 

 

Fig. 14. The configuration and biochemical properties of chemical synapses, where 
mp denotes the corpuscles in the membrane, PSD d
postsynapses (Pang Xiao

 
The Nerve Excitation and form of 
Impulse under Influence of 
Released from Hydrogetic Reaction 
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Table 3. The comparisons of properties of chemic and electric synapses (Pang Xiao
feng, 2007b; W.L.Liu, 1994); Pang Xiao feng, 2006) 

The electric synapses 

the presynaptic on electric 
potential of after membranes is small 

the action potential of presynaptic is a direct 
factor of the transport  

presynaptic potential caused a large number of synchronous 
releasing of neurotransmitters by the small bubble under action 

without this effect 

the releses of eurotransmitter produce the appearing of local and 
of postsynaptic membrane, its sizes can be 

the postsynaptic potential can be invertedwhen it is 

the postsynaptic potential has not been 
inverted,when it is varied  

there is synaptic vesicles in this case without synaptic vesicle 

it can be both  excited and nhibited it can only be excited  

it is easily influenced in chemicalfactors it is not influenced 

its effect can be sux(0.1)mmarized  in the  space and time, it has 1：1，few integration 

 
14. The configuration and biochemical properties of chemical synapses, where 

mp denotes the corpuscles in the membrane, PSD denotes the thickening of 
(Pang Xiao-feng, 2007b; W.L.Liu, 1994); Pang Xiao feng, 2006)

and form of Nerve 
of Bio-energy 

Hydrogetic Reaction of 

 

Forms of action electric-potential and 
nerve impulse on nerve mechanisms
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the action potential of presynaptic is a direct 

the postsynaptic potential has not been 

 

14. The configuration and biochemical properties of chemical synapses, where 
enotes the thickening of 

Pang Xiao feng, 2006) 
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What is nerve excitement?  It is that the 
nervous tissues give out a strong reaction, 
when its strength reaches or exceeds the 
certain threshold. This phenomenon appears 
also in the muscle tissue. Its main feature 
and performance are that the electric-
potential across the cytoplasmic membranes 
generated a fast variation. In this case the 
strength of variation of electric-potential is 
used to characterize and mark the state and 
intensity of the nerve-excitation. We here will 
discuss the excitation states of the nerve 
and its features and representations in the 
nerve system. 

 
As it is known, the molecular structure of 

the neurons is also same with those of 
general cells, although their configurations 
have some differences, such as the 
distributions of the ions of Na+, K+ and Cl-  on 
the membrane of the neurons are same with 
those of other cells, i.e.,  they are all non-
uniformly distributed in the side and outside 
of the cell membrane , in which the number 
of  Na+ ions in its outside are more than 
those in its inside, but the distributions of K+ 
and  Cl-  are just inverse, namely he 
numbers of  K+ and Cl- ions in the inside of 
cell membrane are more than those in its 
outside. This means that an electric potential 
is formed and appeared on the cell 
membrane due to the non-uniform of 
distribution of the charges or ions in the 
inside and outside of cell membrane, this is 
necessary to results in the differences of 
permeability of ions to the cell membrane. 
Thus the electric-potenial is formed , which 
is called the resting potential of cell or the 
potential of numbers,  its size is about -40 – 
-70mV, i.e., the electric-potential in inside of 
cell membrane is lower than that in its 
outside, which was verified by the 
experiments and theory of biophysical theory. 
These results manifested clearly there are 
many ions in inside and outside of cell 
membrane, but the numbers for different 

ions are different. These phenomena 
indicated that   there are also some 
channels of the ions on the cell membranes, 
which are formed by membrane -spanning 
proteins molecules, but their electric 
resistances of different ions are different. 
The above resting potential of cell 
membrane can be determined and obtained 
using the above results. 

 
In particle, in the nervous tissues the 

compositions of the inside and outside 
electrolytes are also different, such as the 
concentrations of Na+ and Cl －  are more 
many in the outside of the axons of active- 
squid, but much less in its , but the 
distribution of K + is just opposite. In the 
resting state, the charge distributions in the 
inside and outside of the cell membrane in 
the nerve fibers is still negative in the interior 
and position in the exterior, thus its electric 
potential is about  70mV , its membrane 
resistance is 103 Ω/cm3, its membrane 
capacitance is 1 mf/cm ((Pang Xiao feng, 
2006; Chen yi zhang, 1995; Han Jie shen, 
1993; Cheng, Jie Ji and Ling Ke chun, 1981; 
P. Hamm, I.R. (2007); W. Fann, et al. (1990); 
P. Hamm and G.P. Tsironis, (2007)) 

 
The huge differences of permeabilities 

and resistances of these ions on the cell 
membrane in the squid animal lead on to 
their large distinctions of electric-
potentials.The researches indicated the 
differences of the potentials can be 
represented by PK：PNa：Pcl ＝ 1：0.04：
0.45, where PK、PNa and PCl are the electric-
potentials of K+, Na+ and Cl- ion on the 
membrane. This result exhibited that K+ 
plays important part in the form of resting 
electric potential of huge axons in the squid. 
In this case, most of the K + ions are in free 
states, but half of Na + ions either are in the 
combined states or form some products in 
the cells, otherwise, Ca2+ ions are almost 
completely in the combined states with 



 
 

 

 
 

BIONATURE : 2018 
 
 

 
(198) 

 

 

some negative ions or in organelles 
(mitochondria, etc.) in the cells. Therefore 
the permeability of Na + on the membrane is 
small in resting states of cells. 

 
The above properties of permeability of 

ions can be checked by some experiments, 
for example, the variations of permeability of 
ions on the membrane was measured, when 
some specific inhibitors are added in it. For 
instance, the water-soluble paralytic poison - 
tetrodotoxin (TTX), which are extracted from 
some fishes and newts in California, are 
added in the gaps between their axons, the 
experiments found that the channels and 
corresponding movements of Na + ions in 
the nerve and muscle fibers are stopped 
completely. If the TTXs are injected in the 
axons, the permeability of Na+ ions is not 
changed. However, if the frog toxin (BTX), 
which is a kind of steroid alkaloids, is 
injected in the above animals, it will result in 
the depression of resting electric-potential 
and increases of the permeability of Na+ ions. 
If the inhibitors of four procedures (TEA) are 
injected in the axon, then the permeability of 
Na+ ions have been not varied, but it can 
stop completely the movement of K+ across 
the membrane. These experimental results 
not only conform the validity of the above 
results but also exhibited that the 
movements of K+ across the membrane are 
completely independent relative to that of 
Na+ ions. This represented also that the 
penetration abilities of different ions on the 
membranes have a strong specificity. The 
identified effects of the inhibitors of TTX and 
TEA on the permeability of Na + and K + 
make that we can assume that the transport 
of the ions across the membranes are 
carried out by virtue of protein - lipid 
compounds or ion channels. Thus each ion 
has itself special channel of ions. The 
tetrodotoxins stopped the transport of Na+ 
because they have closed the channels of 
sodium ions in the area of one square 

micron. The experimental measures 
indicated that there are 100 channels of Na+ 

in the area of one square microns. In the 
resting or inactivity state, it is estimated 
experimentally that the conductivity of Na+ in 
a sodium channel is about 4 10-12 Ω - 1 , but 

about 12 10-12 Ω - 1  for K+ in the potassium 
channe ((Pang Xiao-feng, 2007b; W.L.Liu, 
1994; (Pang Xiao feng, 2006; Chen yi zhang, 
1995; Han Jie shen, 1993; Cheng, Jie Ji and 
Ling Ke chun, 1981; P. Hamm, I.R. (2007); 
W. Fann, et al. (1990); P. Hamm and G.P. 
Tsironis, (2007); R.H. Austin, 2003; Pang XF, 
2007) 

 
On the other hand, in resting state the 

permeability of potassium ions across the 
excited membrane of cell is larger than that 
of sodium ions. In addition, some 
macromolecules or ions with negative 
charges inside cell membrane cannot 
penetrate the membrane, based on these 
results  we can establish the relationship of 
these ions between the inside and outside 
cell membranes. In this case, we mark these 
different ions in inside and outside cell 
membrane by the subscript 1, 2 . Because 
again there are also some ions with negative 
charge of monovalence as mebtioned above, 
which is denoted by P-, Thus we can 
represented the relationship of the chemical 
potentials of these ions in outside and inside 
cell membrane in the equilibrium state  on 
the basis of the conditions of equality of the 
chemical potentials and charges in the 
inside and outside the cell membrane of the 
ions of K＋and Cl－, which is denoted (Pang 
Xiao-feng, 2007b) by 

 
++

=
21 kk µµ ，

−−
=

21 clcl µµ      （25） 
 

where iµ is the chemical potential of 

the ion. In the ideal solution, the chemical 
potentials can be represented by 
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φµµ FZCRT iiii ++= ln)0(
         (26) 

 

where
)0(

iµ  is the chemical potential in 

the standard state, Ci is the concentration 
of the ion in the solution, Zi is chemical 
valence of the ion, φ  is the resting electric -

potential of corresponding element,  F is 
Faraday constant. 
 
From Eqs. (25-26) we can obtain 
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The following results can be obtained from 
Eqs.(27)-(28) 
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Equation（29） is called as Gibbs-Dsnnan 
condition ， ν is Donnan proportional 
constant. 
 
From Eqs. （ 27 ） -(28) we can gain the 
potential of the ion across the membrane 
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Because the resting potential is mainly 
caused by the permeability of K + ions, if the 
concentration y of potassium ions [K +]2 = 20 
mmol and [K+] 1 = 100mmol are inserted in 
Eq.(27) –(28)we can easily obtain  φ k＝－

75mV, this is basically consistent with the 
experimental value of resting electric 
potential value of －70mV measured . This 

verified clearly that the distribution of the 
ions on the cell membrane described 
mentioned above are correct. This 
conformed strongly that the resting electric-
potential of the membrane is produced by 
the permeability of K + ions (Pang Xiao-feng, 
2007b; W.L.Liu, 1994; Pang Xiao feng, 2006; 
Chen yi zhang, 1995; Han Jie shen, 1993; 
Cheng, Jie Ji and Ling Ke chun, 1981; P. 
Hamm, (2007); W. Fann, et al. (1990). 

 

If second condition: 
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is used we can find out the following 
relationship 
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The theorem of work of sodium pump 
and potassium pump and their as well 
use of bio-energy on the nerve 
membranes 
 

As it is known from the above results, 
the ions of Na+, K+ and Cl- can be displaced 
and flowed along the ionic channels on the 
cell membranes due to their nonuniformities 
of distribution, which promote the fluxes of 
Na+,

, K+ and Cl-  along their directions of 
decrease of electric chemical potentials. 
Thus some ion-currents are occurred on the 
membrane. This results in just occurring of 
the electric signs in the cells. Obviously, the 
electric signs are, in essence, generated 
due to the open and close of the ionic 
channels. In the normal state Na+ ions are 
shifted from the outside cell membrane to its 
interior, but t the displacement of K+ and Cl- 

are just inverse and to the outside 
membrane from its interior. Very clearly, 
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these fluids will induce the variations of 
distribution of these ions from the non-
uniform state to the uniform state, thus the 
electric-signs of the cells will decreased, 
which are not advantageous for the growth 
of the cell or life. In this case it is quite 
necessary to maintain the ion concentration 
gradient on both sides of the cell membrane 
mentioned above. In order to gain this 
purpose, its basic method to construct and 
grow some ion pumps, such as the sodium 
pump and potassium pump, which can hand 
and carry Na+ ions to the outside membrane 
from inside membrane , and can hand and 
carry also K+ ions to the inside membrane 
from outside membrane, respectively. Thus 
the nonuniform distribution of Na+ ions and 
K+ ions or their gradients of concentration on 
the cell membrane can be always 
maintained or restored also in active life 
bodies using these ionic pumps . In other 
words these ion pumps can provide the bio-
energies to carry away these ions to 
specifying positions to maintain the 
gradients of concentration of these ions in 
both sides of the cell membrane to a certain 
level, then all life activities can remain and 
continue, if the bio-energy is supplied 
enough . Or else, the life activities will be 
completely stopped. Therefore we can say 
that the Na+ and K+ pumps and the supply of 
bio-energy play very important roles in the 
life activities [(Pang Xiao-feng, 2007b; 
W.L.Liu, 1994); Pang Xiao feng, 2006, Chen 
yi zhang, 1995; Han Jie shen, 1993; Cheng, 
Jie Ji and Ling Ke chun, 1981; P. Hamm, 
(2007); W. Fann, (1990). 

 

However, how can these ion pumps be 
constituted and grown?  Very clearly, the 
work can be carried out and finished by 
some special protein molecules or enzymes, 
which can also bring away and carry away 
these ions to specifying positions. These 
proteins or enzymes are some rotary motor 
–proteins or ATP synthases, such as the 
rotary motor –protein as shown in Fig. 15, 

DNA helicase motor and RNA 
polysaccharide enzymes motor. We here will 
elucidate the structures and functions of the 
ion pump in the ATP s synthase in Fig. 15, 
which can shoulder the work of syntheses of 
ATP and can provide the bio-energy.  The 
enzyme is composed of the part of proton 
conduction,F0 , and its part of promotion, F1. 
When the protons traverse the F0, ATP 
molecules will be synthesized in F1, thus the 
bio-energies generate immediately by 
means of the hydrolyses reaction of ATP 
molecules. This reaction is reversible. In this 
case, the bio-energy can promote the 
protons to move along the inverse directions, 
if the hydrolyses reaction of ATP molecules 
occurs in F1. Because F1 can catalyze the 
hydrolysis of ATP molecules, then it is called 
as F1-ATP enzyme. The ATP synthesized 
enzymes exist also in the inner membrane 
of the mitochondrial and the serosa in the 
bacteria as well as capsule membrane in the 
chloroplasts. 

 
In the process of syntheses of ATP 

molecules, the chemical potential of the 
protons must be consumed and expended, 
but the chemical potential can be 
complemented by the biological membrane 
including the light-chemical systems. When 
ATP enzymes rotate the protons along the 
inverse direction, the hydrolyses of ATP 
molecules occur, thus the electric-chemical 
potential of the protons is also formed in this 
case. 

 
However, the transmission mechanism 

of the protons in the reverse reaction is 
always related to the hydrolysis of ATP 
molecules. As it is known, the syntheses and 
hydrolyses of ATP molecules are carried out 
by the F1-ATP enzymes on the enzyme 
membrane. F1-ATP enzyme has a strong 
activity of hydrolyses of ATP molecules, but 
F0 part of the enzyme can also cause the 
shift of the protons and promote further their 
movements of across the membranes. The 
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distance between the part of F1-ATP enzyme 
in the hydrolytic enzymes and the proton 
transmission area is about 8nm, they are 
linked by γ sub-base. Therefore, the 
syntheses and hydrolyses of ATP molecules 
and proton transmission are completed 
through the mutual combination among 
them using the γ sub-base, in which the 
increment of rotation is about 1200, but the 
direction of γ base will be rotated about 
1200 ,when one hydrolysis reaction of ATP 
molecules is appeared , thus its efficiency is 
close to 100%. 

 
Obviously, the structure features of 

rotary motor- ATP synthase and its functions 
can use to explain and elucidate the 
mechanism of sodium pump and potassium 
pump in nerve systems mentioned above, in 
which the sodium pump carry and bring the 
Na+ from the inside cell membrane to 
outside cell membrane, but the potassium 
pump carry and bring the K+ from the outside 
cell membrane to inside cell membrane to 
maintain the gradients of concentration of 
these ions in both sides of the cell 
membrane. These functions are carried out 
in virtue of its special identification abilities 
to the sodium and potassium ions through 
their rotation features and special atomic 
weighs and moved stats as well as the sizes 
of combination positions such as F0 and F1 
of the motor ATP synthase. 

 
Certainly, the motions and states of the 

motor ATP synthase are very complicated, if 
they are in detail investigated. These 
problems are worth to study deeply and 
completely. 

 
At present, we again elucidated in detail 

the essences and properties of work of 
sodium pump and potassium pump in the 
nerve systems. 

 
In practice, the Na+ ions and K+ ions 

with water flow together along their channels, 
if these ions move along their ionic channels 
across the cell membranes. Once they are 
flowed over the cell membranes, then water 
will be taken off from these ions. In this case 
these ions in the dehydrations can be 
absorbed by other polar groups in these 
ionic channels. In order to maintain the ion 
concentration difference between the inside 
and outside membrane of the nerve fiber 
cells at the required level, the sodium pump 
must work constantly and make the 
hydrolysis of ATP molecules release 
continuously the bio- energy in the entire life 
period. 

 
In the nerves systems of the crab, about 

50% of metabolic energy were used in the 
sodium pump in the nerve fibers in the 
resting state. In the crab the hydrolysis of 
ATP molecules is together finished by ATP-
enzyme, K +, Na + and mg 2+., where ATP-
enzyme is a part of the membrane, its other 
part is in outside cell membrane. In this case 
there are an interaction between the 
enzymes in the outside membrane and K+ in 
the outside cells . 

 
Generally speaking, when K+ exists, the 

work of potassium pump will be stopped, the 
sodium channels are opened duo to the 
excitation of Na+ in this case, then the 
sodium pump start its work to make or to 
forces Na+ ions up- shift along the direction 
of increase of its concentration. In this time, 
Na+ ions are displaced and transferred into 
the inside membrane by virtue of its ionic 
motions in channels and their interactions 
with some moved carriers, which guarantees 
the the gradient of its concentration between 
both sides of cell membrane and the 
transport of Na + ions in plasma. 

 
On the other hand, K+ ions will be also 

shifted to the inner of cells under action of 
the difference of electric- potential generated 



 
 

 

 
 

BIONATURE : 2018 
 
 

 
(202) 

 

 

by the active transport in Na + ions. 
Therefore, the flowing of the Na + don't 
depend on the difference of electric -
potential in the cell membrane (which is right 
in the case of below the interval of threshold 
values), but the flowing of K + ions in inside 
cell is increased with the increase of the 
difference of electric-potential between both 
sides of cell membrane. This is just so-called 
the effect of the electric coupling between 
Na + and K + ion transport in the nerve 
systems. These results were confirmed in 
the researched results of the giant axons in 
the Grape snail obtained by Γ. Coase 
autumn, et al [(Pang Xiao-feng, 2007b; 
W.L.Liu, 1994); Pang Xiao feng, 2006, Chen 
yi zhang, 1995; Han Jie shen, 1993; Cheng, 
Jie Ji and Ling Ke chun, 1981; P. Hamm, 
(2007); W. Fann, (1990); P.Hamm and G.P. 

Tsironis, 2007; R.H. Austin, 2003; Pang XF; 
2007) 

 
From the above investigations we can 

conclude that we must use bio-energy to 
maintain the nonuniformal distribution of Na+ 
ions and K+ ions and their gradients of 
concentration on the cell membrane using 
the sodium pump and potassium pump as 
well as the bio-energy released by 
hydrolysis reaction of ATP molecules. It is 
very interesting that these processes can go 
on and be finished simultaneously in these 
ionic pumps under action of the bio-energy. 
Therefore we concluded that there are not 
works of the sodium pump and potassium 
pump as well as life activity of cell without 
the bio-energy.   

 
 

Fig. 15. The structure of rotary motor – synthase (Pang Xiao feng, 2006, Chen yi zhang, 
1995; Han Jie shen, 1993; Cheng, Jie Ji and Ling Ke chun, 1981; P. Hamm, (2007); W. 

Fann, (1990); P.Hamm and G.P. Tsironis, 2007; R.H. Austin, 2003; Pang XF; 2007)) 
 

Forms of Action Electric-potential and 
Nerve Impulse under Action of Bio-
energy in the Nerve Systems 
 

We know from the above investigations 
that the ions of Na+, K+ and Cl- are not the 
uniform distribution in the inside and outside 
cell membrane and their permeabilities 
across the membrane are also different, thus 

there is a resting electric- penitential of  -40 - 
-70mV in cell membrane, which arise from 
the motion of K+ ions. This means that the 
distribution of electric-potential of the 
membrane is the positive in outside 
membrane and negative in inside membrane, 
respectively, namely, the membrane is in the 
polar state in the resting state, which is just 
the state of polarization of cell membrane. 
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However, when the cells are stimulated 

by a small electric signs, then its states and 
features will be changed. If a glass capillary 
electrode is inserted in the inside of the cells, 
then the depressions of the absolute value 
of negative differences of electric-potential 
between the inside and outside membrane e 
in a short period of time are inspected and 
observed. The values of decreases of the 
differences of electric-potential are further 
depressed with the increasing distance 
between measured and stimulated 
electrodes. This indicated that the electric-
potential is localized. In general, when the 
stimuli are small, the changes of the 
negative potential in the inside membrane 
are small, which does not exceed a 
threshold. However, if the stimulated 
intensity is increased to exceed the 
threshold, then the electric-potentials of 
many excitable cells will be varied greatly 
and fast to become the positive values in 
inside membrane and negative in outside 
membrane from the above state at the time 
of 0.5ms. Subsequently, the change will 
increase continuously with increasing time, 
and makes the positive electric-potential 
reaches a maximum value (about 50 mV) at 
a determined time, which is called the 
depolarization of the membrane. After this , 
the electric-potential will gradually decrease 
to original value at about 1ms, which is 
called stored polarization of the membrane. 
However, the depressed state of the electric-
potential cannot sopped and is depressed 
continuously to a minimum, which is referred 
to as superpolarization. This changes of the 
electric-potential is referred to as an action 
electric-potential, which is represented in  
Fig. 16. 

 
The action electric-potential indicated 

clearly the changed features and rules of the 
electric- potential on cell membrane and 
ionic permeability across the cell 

membranes with varying time under action 
of external electric sign and influences of 
bio-energy. The variations can be described 
as follows. In the resting state the cell 
membrane is in the polarization state, its 
electric – potential is about -40 - -60 mV, 
which is caused by the motions and the 
increases of permeability of K+ ions. 
However, the depolarization is caused by 
the increases of permeability of Na+ ions 
across the membrane under the influence of 
sodium pump and bio-energy released in the 
hydrolyses reaction of ATP molecules, which 
carry away Na+ ions from the inside 
membrane into the outside membrane, thus 
the electric-potential in the outside 
membrane is increased, its strength is larger 
than that in inside membrane, thus the cell 
membrane is in the depolarization state, in 
which the electric- potential is lifted as 
shown in Fig. 16. However, once the 
electric-potential reach a maximum, the 
potassium pump is started to work, it carries 
K+ ions into the inside membrane from the 
outside membrane, thus the electric- 
potential is depressed and the cell 
membrane is in restored polarization state. 
the membrane is further in the 
superpolarization state with increasing time 
due to the inertial motion of K+ ions, which 
are shown in Fig.16.  Therefore, the electric-
potential across the membrane of the 
neurons are determined and controlled by 
the relative permeabilities of ions of Na+, K+ 
and Cl- , and their concentration gradient 
across membrane, but the bio-energy, which 
cause the concentration gradient of the ions 
in both sides of membranes, are carried out 
by the above ionic pumps, but their energies 
are obtained from the hydrolyses reaction of 
ATP molecules. The ionic pumps can not 
only pump initiatively out some ions but also 
bring these ions into the cells to maintain 
always the concentration gradient across 
membrane at a solid level. In this case the 
sodium pump can pump out three Na+ in the 
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outside of cell membrane to inside 
membrane , but the potassium pump can 
pump out two K+ to inner membrane from 
outside membrane to change the electric 
potential on the cell membrane. When the 
variation of electric-potential of the axon 
membrane exceeds its threshold, then the 
action electric-potential is triggered, thus the 
excitement of the neurons occurs in the 
nervous system. 

 
The action electric-potential is an 

electric signs, or speaking, it is essentially a 
nerve electric-impulse having certain 
electric-signs, its signs is great, rapid 

change and has a solid shape.  It is 
exhibited and represented in the electric- 
potential having the constancies of size and 
form, its change of whole shape can be 
controlled in several milliseconds and 
depend not on the types and possess of the 
stimulation, and possess the nature of the 
"all or nothing". The action electrical- 
potential has not the distinction of size, but it 
can transport the nervous -biological 
information along the nerve fiber 
membranes in a stable wave form with 
certain frequency i, the higher of its 
frequency, the fast of its speed. 

 
 

 
Fig. 16. The action electric-potential of cell membrane l[(Pang Xiao-feng, 2007b; 

W.L.Liu, 1994)., Pang Xiao feng, 2006, Chen yi zhang, 1995; Han Jie shen, 1993; Cheng, 
Jie Ji and Ling Ke chun, 1981; P. Hamm, (2007); W. Fann, (1990); P.Hamm and G.P. 

Tsironis, 2007; R.H. Austin, 2003; Pang XF; 2007)]. 
 

Once the action electric- potential 
reached the nerve terminal, then it will 
trigger and release some nerve 
neurotransmitters, in this case its secretion 
rate are also very higher. Obviously, this kind 
of action electric-potential is generated 
under synergistic action of Na + and K + ions 
in their channels. Because the open and 
close of two ion channels go on very 
accurately, then the contrary variation of the 
depolarization of following membrane and its 
difference of electrical -potential are quickly 
completed, if the action electrical- potential 

occurs, this means that the electrical-
potential in inside cell is higher than that in 
outside cell. Subsequently, they back to the 
level of resting electrical- potential. In the 
change case of the action electrical-potential, 
it will be propagated along the axons from 
one neurons to other in the speed of 120m/s 
through the synapses up to the central 
nervous systems and the brain to cause 
nerve excitement. 

 
Quite clearly, the action electrical-

potential is determined by the motions and 
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distributions of ions of Na+, K+ and Cl-. 
Thus the electrical-potential across cell 
membrane under action of constant electric-
field across membrane e is represented 
l[158-160, W. Fann, (1990); P.Hamm, G.P. 
Tsironis, (2007); R.H. Austin,.et al. (2003);  
Pang XF. (2007)  by 
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where PK 、 PNa and PCl denote the 

permeabilities of Na, K and Cl ions across 
the cell membrane, respectively，[ ]o and [ ]i 
are the concentrations of ions in inside and 
outside membranes, respectively. Evidently, 
the electrical-potential across cell membrane 
in Eq.(32) are related only to Na, K and Cl 
ions, but only if the electric-potential in the 
inside membrane is lifted and the 
permeability of Na ions across the 
membrane from outside to inside is 
increased , then the  values of the electric-
potential across membrane will be changed 
to the positive from negative in the inner 
membrane. Subsequently, Na ions will 
infiltrate in the inner nerve fiber membrane, 
thus the electrical-potential will be lifted, 
which will lead to increases of osmotic 
quantity and speed of Na ions. However, 
when the electrical-potential in the inner 
membrane is lifted to certain value, a 
hysteresis effect occurs. In this case the 
permeability of K ions across the membrane 
is also increased. Because the 
concentration of Na ions in the inner fiber 
membrane are higher, then they can 
outwardly osmoses to the exterior of 
membrane. When the action electrical-
potential is formed, the permeability of K 
ions will be increased and is faster than that 
of Na ions after o.33ms, then the electrical-
potential will return to original value (-70eV) 
from the maximum (+50mV). This effect 

cannot be varied although the influence of 
ion movement of penetration exist because 
it depend only the speed of motion of K ions 
to the outside of membrane. 

 
The Na ions in the nerve-fiber 

membrane, which are in the rising period of 
action electrical- potential in Fig. 16, can 
pump out from the inner membrane by the 
sodium pump. This phenomenon can be 
verified in the following experiments. 

 
(A). Its maximum is increased, if the 

concentration of Na ions in the 
solution in outside membrane is lifted. 
On the contrary, if the concentration 
of Na+ ions in outside membrane is 
depressed, then its maximum is 
decreased. 

(B). The maximum is decreased, when 
the concentration of Na ions in the 
solution in inside membrane is lifted. 

(C). The experiment found that the 
generation of action electrical-
potential is accompanied  always with 
the increases of shifted speed of Na 
ions along the direction of increase of 
the gradient of electrical -chemical 
potential. In the great nerve fibers in 
the squid, one time of the action 
electrical- potential will result the Na 
ions of 3.1nmol./cm2 to come in the 
fiber cell. The experimental results 
can explain qualitatively the 
increases of permeability of Na ions 
across the membrane, if the action 
electrical- potential appears . This 
can be verified by the experimental 
values of the permeability of the ions 
of Na+, K+ and Cl- across the 
membrane, for Na+, K+ and Cl- their 
proportions are from 1:0.04:0.45 in 
resting case to 1:20:0.45 in the 
depolarization state and appearing of 
action electrical- potential. This 
experimental results affirm that the 
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rising period of action electrical- 
potential or occurring of its 
depolarization effect in Fig.16 arises 
from the lifting of concentration or 
penetration of Na ions across 
membrane. Thus this verified that the 
analyses and results mentioned 
above are correct. 

 
In practice, the experiment of the 

radioactive tracer of sodium atomic motion 
in the squid indicated that the flowed 
quantities of movements of Na and K ions 
are small in its generated period, such as in 
the giant axon of the squid, about (3-4) x 10-

12 mol/cm2 of Na + are shifted and absorbed 
only, the same number of K + ions are lost 
and moved during the action electrical- 
potential or the period of electric-impulse. 
This indicated that the variation of 
concentration of Na or K ions are very small, 
are only one over one hundred thousand of 
the total numbers during one period of 
impulse of action electrical-potential. This is 
due to the inertia effect of depolarization 
functions of the membrane , which results in 
the depolarization effect of the membrane. In 
this case the nerve fiber membrane cannot 
occur second reaction of stimulus, only if the 
permeability of these ions are restored to 
original state, these ions can react to 
external stimulus after the time of 0.5-2 ms.  
Otherwise, the temperature can also greatly 
influence the above changes. If the 
temperature is varied from 6 to 7, then the 
permeability of K ions increases, but the loss 
of Na ions is increased, thus the amplitude 
of the action electrical-potential will be 
decreased more. 

 
The above results manifest clearly that 

the bio-energy released in the hydrolysis 
reaction of ATP molecules plays key and 
important parts in works of sodium pump 
and potassium pump as well as the 
generation of action electrical-potential, 

there are not works of sodium pump and 
potassium pump as well as the generation of 
action electrical-potential without the bio-
energy. 

 
The Transport of Nerve Impulse on the 
Nerve Membranes the Sodium Pump 
and Potassium Pump 
 

The above investigations manifested 
that the energy released from hydrolytic 
reaction of ATP molecules are imported to 
trigger the work of sodium pump and 
potassium pump, let the sodium ions and 
potassium ions move along their channels to 
form the excitement of nerve membrane and 
to further produce and launch some nerve 
impulses. Fig. 17 indicated the excitation of 
an impulse. If the bio-energy is imported and 
provided continuously to the sodium pump 
and potassium pump, then the transport of 
the nerve impulse can be formed, then the 
impulse will be transported along the nerve 
fiber membranes, which can be represented 
in Fig.17. Concretely speaking, in the 
front before part of the excited area or first 
end the cell membrane is in the restored 
polarization state, which is denoted in “static 
membrane “ in this figure. Subsequently, the 
cell membrane is in a polarization state due 
to the stimulus of externally applied 
electrical-signs, such as electric current or 
field, in which the sodium current is formed 
due to the action of sodium pump and the 
bio-energy, meanwhile, where the electric-
potential of the membrane is also varied to 
the negation in the outside membrane from 
the positive in the inside membrane. In the 
linkage region between the excited area and 
non-excited area there are the lifting of the 
electrical-potential of membrane and its 
depolarization due to that the sodium current 
flow over the membrane from inner to 
exterior in the non-excited area. When the 
electrical-potential of membrane reach the 
threshold value in this region, then the 
action electrical-potential and an impulse 
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occur in new excited area. 
 
In the subsequent part of the excited 

area the potassium current will also occurs 
due to form of the potassium pump and 
influence of the bio-energy, which makes 
the membrane restore to the polarize state. 
In this case the current, which is started 
from original excited area, makes the cell 
membrane reach the threshold in new 
region, thus one new excitation and 
corresponding new action electrical- 
potential are formed, its formed process can 
be denoted in the excitation – depolarization 
– restored polarization, which is shown in 
Fig.17. This process is gone repeatedly on, 
then the transfer of action electrical- 
potential along the nerve membranes is 
appeared and carried out. In this case. This 

is just the mechanism of the transfer of 
action electrical- potential. 

 
The Confirmation of Feature of Terahertz 
Wave of Transport of Nerve imPulse 
along the Neve Fibers arIsing from the 
Bio-energy 
 

At present, a key problem is to confirm 
the features of the above action electric –
potential or nerve electric-impulse. However, 
how can we determine this feature of the 
nerve electric-impulse ？ What are its 
features? what are the methods determining 
the features of the nerve electric-impulse？ 
These problems have been not studied up to 
now, but they are quite worth to investigate 
deeply and carefully in this case. 

 

 
 

Fig. 17. Form of nerve excitement in the nerve system (W. Fann, (1990); P.Hamm, 
G.P. Tsironis, (2007); R.H. Austin,.et al. (2003);  Pang XF. (2007))  

 
We know from above investigations that 

the nerve impulse, or the action electric- 
potential shown in Fig.16, is formed and 
produced in virtue of periodic, hard and fast 
rule changes of distribution of the sodium 
and potassium ions in the inner and surface 
of nerve membranes as well as periodic 
works of sodium pump and potassium pump 
arising from the bio-energy released from 
the hydrolyses reaction of ATP molecules as 
mentioned and described above. We can 

say that there is not the nerve impulse 
without the works of sodium pump and 
potassium pump, or the bio-energy. 
Therefore the works of sodium pump and 
potassium pump, or the bio-energy play a 
key and important role in the form of the 
nerve impulse. Very clearly, the bio-energy, 
which results in works of sodium pump and 
potassium pump. However, the bio-energy 
released from the hydrolyses reaction of 
ATP molecules must be carried and 
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transported to the sodium pump and 
potassium pump by Pang’s soliton from the 
reaction position to the positions of work of 
sodium pump and potassium pump, 
respectively. Hence there are not also the 
works of sodium pump and potassium pump 
without the transport and transmission of 
Pang’s soliton. This implies that the form 
and features of the nerve impulse are 
related directly and closely with the 
properties of Pang’s soliton, or speaking, the 
properties of Pang’s soliton determined the 
features of the nerve impulse. 

 
As it is well known, Pang’s soliton has 

always a certain or limited lifetime. So called 
the lifetime is just the times of existence and 
life of Pang’s soliton or the delayed and 
maintained times of bio-energy transport in 
the life systems. If Pang’s soliton is more 
than and exceed this lifetime, then Pang’s 
soliton and transport of bio-energy as well 
as the works of the sodium pump and 
potassium pump will be disappeared and 
eliminated all and immediately, namely, the 
sodium pump and potassium pump can only 
work in the lifetime, the nerve impulse also 
can only occur in this lifetime of Pang’s 
soliton, rather than in any or all times 
because the bio-energy or Pang’s soliton 
exists only in its lifetimes. Therefore, the 
features of the nerve impulse are closely 
related to the lifetimes of Pang’s soliton, or 
peaking. the lifetimes of Pang’s soliton can 
determine the features of the nerve impulse, 
namely, only if the times forming the nerve 
impulse are exactly in the lifetime of Pang’ 
soliton, then a stable nerve impulse can be 
produced , or else, it cannot be formed. This 
showed clearly that the nerve impulse 
formed in this case should have certainly 
special features and properties, i.e., it is 
demanded necessarily that the time forming 
the nerve impulse must be limited and 
controlled by the lifetime of Pang’s soliton, 
namely it must be shorter than he lifetime of 

Pang’s soliton transporting the bio-energy 
because the nerve impulse can obtain and 
absorb the sufficient and enough bio-energy 
supplied Pang’s soliton for its form in this 
case. Then the nerve impulse formed in this 
case is affirmatively stable. Or else, the 
nerve impulse cannot be formed, or, formed 
nerve impulse it is also not stable because 
the nerve impulse can obtain and absorb not 
the sufficient and enough bio-energy 
supplied from Pang’s soliton in its formed 
process. 

 
As it is known from the above result, the 

lifetime of Pang’s soliton transporting the 
bio-energy is 0.53×10-10S  0.65×10-10S in the 
protein molecules. Otherwise, Hamm et al (P. 
Hamm, I.R. (2007);  W. Fann, (1990); 
P.Hamm, (2007); R.H. Austin,. (2003); Pang 
XF. (2007) measured the lifetimes of the 
solitons by pump-probe spectroscopy in 
acetanilide and protein molecules, its result 
is 35Ps=35×10-12S, which approaches quite 
the above lifetimes of Pang’s soliton . 

 
In accordance with this request and the 

above values of the lifetimes of Pang’s 
soliton and the experimental result of the 
soliton we can decide and determine that 
the feature and frequencies of the nerve 
impulse. In this case we judged that the 
nerve impulse is not a millimeter wave, but 
the terahertz wave. Its reasons are 
described as follows. 

 
As it is well known that the wavelengths 

of millimeter wave is 1-10 millimeter, then its 
frequency is 3x1010 Hz -3x1011 Hz. This 
means that the times forming one impulse 
with millimeter wave are about (1/3)x(10-10 –
10-11 ) second. Obviously, the times are 
longer than or approach the lifetime of 
0.53×10-10S  0.65×10-10S for Pang’s soliton 
and 35×10-12S of experimental value of the 
soliton transporting the bio-energy released 
from the hydrolyses reaction of ATP 
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molecules. Thus we can affirm that the 
nerve impulse arising from the bio-energy is 
not absolutely the millimeter wave in 
accordance with the above rules and 
standards. 

 
Inversely, we can conform and affirm that 

the nerve impulse is a real terahertz wave 
because the latter possess the frequencies 
of 1011-1012 Hz. Thus the times forming and 
producing one nerve impulse with terahertz 
wave are about (10-11 –10-12 ) second. Very 
clearly the times are all shorter than the 
lifetimes of Pang’s soliton and the 
experimental value of the soliton 
transporting the bio-energy . This means 
that the terahertz wave can be easily formed 
and is also very stable in the nerve systems 
in this case according to the above rules and 
standards. Thus we can affirm that the nerve 
impulse arising from the bio-energy is 
absolutely a real terahertz wave in 
accordance with the above rules and 
standards. 
 

CONCLUSION 
 

Thus the above investigations affirmed 
and conformed that the nerve impulse 
arising from the bio-energy released from 
hydrolyses reaction of ATP molecules is a 
real terahertz wave. This s first time to verify 
and demonstrate that the nerve impulse 
occurred in nerve system is a kind of 
terahertz wave. This conclusion has very 
important significance in biology and nerve 
science. 
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