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Parkinson’s disease (PD) is a neurodegenerative disorder that negatively

affects millions of people. Early detection is of vital importance. As recent

researches showed dysarthria level provides good indicators to the computer-

assisted diagnosis and remote monitoring of patients at the early stages.

It is the goal of this study to develop an automatic detection method

based on newest collected Chinese dataset. Unlike English, no agreement

was reached on the main features indicating language disorders due to

vocal organ dysfunction. Thus, one of our approaches is to classify the

speech phonation and articulation with a machine learning-based feature

selection model. Based on a relatively big sample, three feature selection

algorithms (LASSO, mRMR, Relief-F) were tested to select the vocal features

extracted from speech signals collected in a controlled setting, followed by

four classifiers (Naïve Bayes, K-Nearest Neighbor, Logistic Regression and

Stochastic Gradient Descent) to detect the disorder. The proposed approach

shows an accuracy of 75.76%, sensitivity of 82.44%, specificity of 73.15%

and precision of 76.57%, indicating the feasibility and promising future for

an automatic and unobtrusive detection on Chinese PD. The comparison

among the three selection algorithms reveals that LASSO selector has the best

performance regardless types of vocal features. The best detection accuracy

is obtained by SGD classifier, while the best resulting sensitivity is obtained by

LR classifier. More interestingly, articulation features are more representative

and indicative than phonation features among all the selection and classifying

algorithms. The most prominent articulation features are F1, F2, DDF1, DDF2,

BBE and MFCC.
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Introduction

In China, the incidence rate of Parkinson’s disease (PD)
is 1.7% in the population over 65 years old. There are nearly
3 million patients with Parkinson’s disease (PWP) in China,
accounting for half of the total number of PWP in the world,
and about 100,000 new patients are diagnosed every year.
Currently there is no medical cure for PD, but if patients receive
timely diagnosis and treatment at the early stage of the disease,
early intervention can be applied to delay the disease progress
and safeguard daily lives (Singh et al., 2007). Clinical studies
have shown that PWP often show some characteristic speech
disorders in the early stage (Ho et al., 1999). In 1970, Darley et al.
(1969) first studied the pronunciation characteristics of PWP,
and found that PWP usually have low volume, increased breath
sound, single tone hoarseness and other problems, indicating
speech is a useful signal for distinguishing PWP from healthy
people (Little et al., 2009; Sapir et al., 2010). Speaking is
a highly complex movement that requires the coordination
of many nerves and muscles. PWPs commonly have motor
deficits, mainly involving the oral, pharyngeal and jaw muscles.
Laryngeal and vocal cord tremor, asymmetrical vocal cord
closure time, jaw joint dyskinesia and respiratory disorders all
lead to voice tremor, unclear speech, slowed speech rate and
sunken intonation. At present, there are four main groups of
language features used to detect PWP: phonatory, articulatory,
prosodic and cognitive-linguistic (Moro-Velazquez et al., 2021).

Phonatory features model abnormal patterns in the vocal
fold vibration, whose features were extracted mainly from
sustained vowels. Phonation in PWP is characterized by bowing
and inadequate closure of vocal folds (Hanson et al., 1984).
Articulation deficits in PD patients are mainly associated
with reduced amplitude and speed of lip, tongue and jaw
movements (Ackermann and Ziegler, 1991), as a result of
delayed movements of their tuning organs and a stiff and
inflexible tongue, whose features were extracted mainly from
running speech (Orozco-Arroyave et al., 2016; Kuruvilla-
Dugdale et al., 2020). Prosodic features are paralinguistic, such
as pitch variation or the representation of emotions among
others (Harel et al., 2004). The cognitive-linguistic analysis
examines the vocabulary, phrase construction and the existence
of word repetitions (Illes et al., 1988). Among the four types
of features, phonation and articulation features are better
obtainable, with good constancy to Unified Parkinson’s Disease
Rating Scale (UPDRS) and thus most applied in speech analysis
on PWP (Dromey et al., 1995; Tykalova et al., 2017; Moro-
Velazquez et al., 2021).

PD causes abnormal vocal fold vibration, which can be
reflected by the presence of noise and other perturbations
caused by incomplete closure (Rusz et al., 2011), abnormal
phase closure and phase asymmetry or vocal tremor (Perez
et al., 1996). Dysfunction measures including noise or frequency
and amplitude perturbations are applied to assess the severity
of PD in telemonitoring situations (Little et al., 2009; Tsanas

et al., 2010, 2014). The problem is that recordings are done in
noisy environment and different equipment draw in different
noise, thus affecting dysphonia features being extracted. Studies
by Novotny (Novotny et al., 2014) indicate that imprecise
consonant articulation can indicate PD-related symptoms.
However, it used DDK speech only, which restrict the possible
articulatory combinations. Other works employ frequency
features, namely Mel Frequency Cepstrum Coefficients (MFCC)
and Band Bark Energies (BBE) from running speech, and
other features obtained after the segmentation of specific
regions, providing good results (Orozco-Arroyave et al., 2016).
It is evidenced that the speech of PWP has lower values of
relative fundamental frequency, which is the ratio between the
fundamental frequency in the cycles of a vowel before or after
a voiceless consonant and the typical fundamental frequency
during the utterance (Little et al., 2009; Sapir et al., 2010).
Other studies perform the tracking of vowel formants during
articulation, including onset and offset (Skodda et al., 2012; Bang
et al., 2013; Whitfield and Goberman, 2014) and found that
as formants reflect the position of the tongue, a reduction of
the articulation ranges could subsequently limit the frequency
ranges of the formants.

A comparison of PD detection techniques is performed
using the acoustic materials extracted from sustained vowels and
running speech test, proving that two acoustic materials have
better detection performance than utilizing sustained vowels
only (Rusz et al., 2013); Bocklet et al. (2013) used phonatory,
prosodic and articulatory features jointly, yielding results of 80%
of accuracy in PD detection. In any case, all study efforts focus
on identify the most representative features for PWP detection
but have not reached agreement. The main features for speech
sample classification vary across languages (Eyigoz et al., 2020).
Different feature extraction methods and different datasets can
also obstruct the unification of features (Karan et al., 2020;
Zhang et al., 2021). It is one of the main goals for related studies
to reduce the number of features by choosing the most relevant
for PWP detection.

To date, the majority of studies examining the key
characteristics of hypokinetic dysarthria and their relationship
to speech intelligibility have been conducted with speakers
of English. However, extending this research to languages
other than English is important for both theoretical and
clinical reasons. Because acoustic cues that strongly influence
intelligibility in PD may vary cross-linguistically, which is vital
in assessment and treatment planning (Hsu et al., 2017). At
present, the speech signal diagnosis for PD patients in China is
still in its infancy. Hsu et al. (2017) made a comparison between
Mandarin speakers and English speakers on key features of
hypokinetic dysarthria. In 2011, Zhang et al. (2011) verified
the feasibility of PD Chinese speech detection. Based on
their study (Zhang, 2017; Haq et al., 2019) concentrated on
phonetic measurements like vocal perturbation and nonlinear
measurements to classify PWP. However, they only focused
on the vowel pronunciation of PD patients. Although other
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studies (Su and Chuang, 2015; Fang et al., 2020; Li et al., 2020)
filled in this gap through collecting speech samples from vowel
pronunciation and running speech test jointly, most of them
focus only on time-variant features like MFCC, etc. So this study
also intends to figure out if other proposed features recognized
can support accurate classification in Chinese speech. Thus it is a
worthwhile approach to implement the detection by integrating
the automatic feature selection method in case that the system
can identify the best representative features by comparing the
best detection results based on the newly collected dataset.

Meanwhile existing studies have proposed many machine
learning methods to automatically detect PWP although most
are based on the manually selected features. Hazan et al.
(2012) chose three F1-F2-based acoustic metrics, Formant
Centralization Ratio (FAR), Vowel Articulation Index (VAI)
and F2i/F2u (the second formant of vowel i divided by the
second formant of vowel u), using the Support Vectors Machine
(SVM) with a radial basis function (RBF) kernel for the
classification. The best accuracy reached 94%. Gullapalli and
Mittal (2022) used various classifiers like Logistic Regression,
SVM, KNN, CNN, Deep Neural Network, Boosting, Bagging,
Random Forest, and illustrate a comparison on their accuracies,
based on MFCC, JTFA, MDVP and TQTW as main features.
To date, feature selection has been successfully used in medical
applications, where it cannot only reduce dimensionality and
but also help us understand the causes of a disease better
(Remeseiro and Bolon-Canedo, 2019). Some studies also applied
machine learning methods to feature selection. Lamba et al.
(2022) tested several combinations of three feature selection
approaches (mutual information gain, extra tree, and genetic
algorithm) and three classification algorithms (Naive Bayes,
KNN, and Random Forest). The combination of genetic
algorithm and Random Forest classifier has shown the best
performance with 95.58% accuracy. Solana-Lavalle et al. (2020)
used Wrappers feature subset selection with four classifiers
(KNN, Multi-layer perceptron, SVM, and Random Forest),
obtaining the highest accuracy of 94.7% with SVM. The fully
automatic model mentioned above performs well in corpora
such as English and German, but it is still unknown whether
this kind of model can be well applied to the detection of
Chinese PD.

In this study, data are collected from two types of speech
tasks (namely sustain vowel sound and running speech test),
and a completely automatic model is proposed. Multiple
speech signals are extracted and are fed into the hybrid
combinations of three feature selectors and four classifiers,
detecting PWP automatically. The final detection results are
used to compare the performance of both selection algorithms
and classifying algorithms. The manuscript is organized as
follows. Section “Materials and methods” elaborates the dataset
and discusses the automatic PD detection model, with classifier
validation methods and evaluation metrics. In section “Results,”
experimental results are given in details. Section “Discussion”

makes a discussion about the results. Some concluding remarks
are given in the section “Conclusion.”

Materials and methods

Automatic detection model

In this study, an automatic detection model is proposed,
including feature extraction, feature selection and tester
classification, as shown in Figure 1.

When the data are collected, noise reduction is firstly
conducted. The noise-reduced speech signal is applied to
feature extraction processing, and two types of static vector
features are extracted, respectively. The feature extraction is
run on the open-source algorithm on GitHub.1 For feature
selection module, the study chose three algorithms to filter the
extracted features to compare the best selection algorithm that
can integrated in the proposed model. For feature classifying,
four algorithms are tested to determine the best to be
embedded in the model.

Database

Clinical practice has shown that sustained vowels (Tsanas
et al., 2014) and running speech (Ackermann and Ziegler, 1991)
are good materials for detection. This study uses two corpora for
testing analysis: sustained vowels and tongue twisters. Tongue
twister is regarded as challenging to pronounce because of
meeting problems of using correctly the mouth and tongue.
It could be assumed that dysarthria would manifest especially
during trying to pronounce togue twister by PD due to the
deterioration of articulators (Vilda et al., 2017). Data were
collected at National Research Center of Geriatric Diseases,
Tongji Hospital under the supervision of SLP professionals.
100 Mandarin-speaking people were recorded. 50 are diagnosed
as PD (25 female, 25 male) and 50 healthy people (25
female, 25 male). The 50 PD patients have an average age of
63.57 ± 11.31 years (mean ± SD) and a mean disease duration
of 6.08± 3.17 years. According to Hoehn and Yahr (HY) staging
scale, all patients were in stage 1–3 (1–1.5 as early stage and 2–
3 as middle stage). None of them has a history of language or
speech disorders. Their mean motor score according to part III
of MDS_UPDRS was 36.43 ± 17.39. Each person (50 PWP, 50
HC) was recorded three times for each of four speech samples,
and a total of 1,200 speech signals were collected for the dataset.
The first two recording tasks are sustained vowels (“aaa. . .” and
“eee. . .” in Chinese Pinyin), from which the 6-s stable segments
are extracted; the other two are short sentences (“si shi si zhi
shi shi zi” and “yi zhi da hua wan kou zhe yi zhi da hua ha

1 https://github.com/jcvasquezc/DisVoice
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FIGURE 1

Automatic Parkinson’s disease detection model.

ma”). The voice recordings have been obtained in a realistic
environment using a Rode NT-USB microphone 10 cm away
from the mouth. And the sampling rate of data was 96 kHz. Data
has been stored in a WAVE (.wav) file format. Sustained vowels
were used in the phonatory analysis, while running speech test
(sentence 1, sentence 2) was added for articulation analysis.
Spectral subtraction (SS) (Boll, 1979) is used to clean up the
noisy speech signal.

Feature selection algorithm

Three algorithms, Least Absolute Shrinkage and Selection
Operator (LASSO), minimum-Redundancy-Maximum-
Relevance (mRMR), and Relief-F are applied for automatic
feature selection. Each of them is applicable to the selection of
high-dimensional data sets and has a wide range of applications
in many fields. The number of features is set on the random
rule. The most representative features can be determined upon
comparing the accuracy of the final classification results.

Least Absolute Shrinkage and Selection
Operator

The LASSO (Fonti and Belitser, 2017), mainly for feature
selection of high-dimensional data allows the coefficients of
features to be compressed even to zero. Capable of making up
for the deficiencies of least squares and stepwise regression for
local optimal estimation, it can effectively solve the problem of

multicollinearity existing among the features. The LASSO is a
particular case of the penalized least squares regression with
L1-penalty function.

The LASSO estimate can be defined by:

β̂ lasso
= arg min

1
2

N∑
i = 1

yi−β0−

p∑
j = 1

xijβj

2

+ λ

p∑
j = 1

∣∣βj
∣∣ (1)

LASSO transforms each and every coefficient by a constant
component λ, truncating at zero. Hence it is a forward-
looking variable selection method for regression. It decreases
the residual sum of squares subject to the sum of the absolute
value of the coefficients being less than a constant. LASSO
improves both prediction accuracy and model interpretability
by combining the good qualities of ridge regression and subset
selection. If there is high correlation in the group of predictors,
LASSO chooses only one among them and shrinks the others
to zero. It reduces the variability of the estimates by shrinking
the some of the coefficients exactly to zero producing easily
interpretable models (Muthukrishnan and Rohini, 2016).

Minimum-Redundancy-Maximum-Relevance
Minimum-Redundancy-Maximum-Relevance (mRMR)

algorithm (Solana-Lavalle et al., 2020) is a typical feature
selection algorithm based on spatial search. It extracts features
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of maximum relevance to the target variable while ensuring
minimum redundancy between each other. In this algorithm,
both redundancy and correlation are used as the metric of
mutual information. The steps involved are:

1. Calculate the mutual information of each special xi with
category C:

I (xi;C) (2)

2. The average of the mutual information between all
features and the category C is calculated to obtain an
approximation of D. A subset S of features containing m features
is drawn so that the value of D calculated using the features
within S is maximized:

maxD (S;C)D =
1
|S|

∑
xi∈S

I (xi;C) (3)

3. Eliminate the redundancy between the selected m
features:

minR (S) R =
1
|S|2

∑
xi,xj∈S

I
(
xi; xj

)
(4)

4. Calculate set S of features with maximum-relevance-
minimum-redundancy:

mRMR = max

 1
|S|

∑
xi

I (xi;C)−
1
|S|2

∑
xi;xj∈S

I
(
xi; xj

) (5)

Relief-F
Relief-F (Park and Kwon, 2007), as the more effective filter-

style feature evaluation algorithm is proposed for regression
problems where the target attributes are continuous values.
Relief algorithm assigns each feature weights, subsequently
updated. Features with higher correlation with labels are given
higher weights, and vice versa. The steps involved are:

1. Let the training data set be D, the number of samples
sampled be m, the feature weight threshold be δ, and the number
of nearest samples be k, the feature weights of each characteristic
of the output be T.

2. Set all feature weights to zero and make T the empty set.
3. For i = 1, 2, · · ·m: (a) Select a random sample Rfrom

D; (b) finds k nearest-neighbor samples Hj(j = 1, 2, · · · k)
of R from the sample set of the same category, and k
nearest-neighbor samplesMj(C) of Rfrom the sample set of
different categories.

4. For A = 1 to N. All features do:

W (A) =W (A)−
k∑

j = 1

diff
(
A,R,Hj

)
mk

+

∑
Ceciass(R)

p(C)
1−p(Class(R))

∑k
j = 1 diff

(
A,R,Mj (C)

)
mk

(6)

Classifier

Four classifying algorithms, Naive Bayes, K-Nearest
Neighbor (KNN), Logistic Regression and Stochastic Gradient
Descent are trained by the dataset to explore the best for
the whole model.

Naïve Bayes
The input space vector X ⊆ Rn is the set of n-dimensional

vectors and the output space vector is the set of class labels
Y = {c1, c2, · · · , ck}. The input is the feature vector x ∈ X
and the output is the class label y ∈ Y . X is a random vector
defined on the input space X , and Y is a random variable
defined on the output space Y . P(X,Y) is the joint probability
distribution of X and Y .

In the Naïve Bayes, for a given input x, the posterior
probability distribution P(Y = ck|X = x) is calculated
by the learned model, and the class with the highest
posterior probability is used as the class output of x. The
posterior probability calculation is performed according
to Bayes’ theorem. Finally, by the substitution calculation
of the formulars, the Naive Bayesian classifier can be
expressed as:

y = arg maxP (Y = ck)
∏

j

P
(

X(j) = x(j)
∣∣∣ Y = ck

)
(7)

K-Nearest Neighbor
K-Nearest Neighbor (KNN) assumes a given training dataset

in which the strength classes have been determined. New
instances are predicted based on the categories of their k-nearest
neighboring training instances, e.g., by majority voting. KNN
does not have an explicit learning process, but uses the training
dataset to partition the feature vector space and serve as a
“model” for its classification. The core idea of the algorithm is
that a sample belongs to a class if most of its k-nearest samples
belong to that class. And the measurement of distance generally
adopts the Euclidean distance:

d
(
x, y

)
=

√√√√ n∑
k = 1

(
xk−yk

)2 (8)

Logistic Regression
The LR algorithm is a typical and mature classification

algorithm, which performs well especially in binary
classification problems. Since speech data have many
features, each of which has certain level of influence on
the final classification result and needs to be linearly
weighted. The output of LR is not the exact category,
but a probability, and if the result is closer to 0 or 1, the
higher the confidence of the classification result is higher.
Weighting of each feature can be adjusted by the classification
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result during the training process, making the classification
result more accurate.

Regression routine steps are as follows:
(1) Find the prediction function.

hθ (x) = g
(
θTx

)
=

1
1+e−θT x

(9)

The value of hθ(x) indicates the probability that the result
will take 1. For input x, the probability that the classification
results in category 1 and category 0, respectively, are:

P
(
y = 1

∣∣ x; θ
)
= hθ (x) (10)

P
(
y = 0

∣∣ x; θ
)
= 1−hθ (x) (11)

(2) Find the loss function.
The Cost-function and J-function are as follows, and they

are derived based on the maximum likelihood estimation.

Cost
(
hθ (x) , y

)
=

{
−log

(
hθ (x)

)
y = 1

−log
(
1−hθ (x)

)
y = 0

(12)

J (θ) =
1
m

m∑
i = 1

Cost
(
hθ (xi) , yi

)
= −

1
m[ m∑

i = 1

(
yi log hθ (xi)+

(
1−yi

)
log
(
1−hθ (xi)

))]
(13)

(3) Minimize the loss function and find the regression
parameter θ.

θj := θj−α
1
m
∑m

i = 1
(
hθ (xi)−yi

)
xi

j (14)

Stochastic Gradient Decent
An arbitrary hyperplane w0, b0 chosen and then the

objective function is continuously minimized using Stochastic
Gradient Descent. Assuming that the set of misclassified
points M is fixed, the gradient of the loss function L(w, b) is
as follows:

∇wL
(
w, b

)
= −

∑
xi∈M

yixi (15)

∇bL
(
w, b

)
= −

∑
xi∈M

yi (16)

Select a random misclassification point (xi, yi) and
update w, b:

w← w+ ηxiyi (17)

b← b+ ηyi (18)

where η(0 < η ≤ 1) denotes the step size, also known as the
learning rate in statistics. The loss function L(w, b) can be
reduced by iterations until it is 0, which means that the point
is correctly classified.

Performance metrics

There are four results for the detection: TRUE POSITIVE
(TP) if a PD patient is correctly identified and otherwise FALSE
NEGATIVE (FN), TRUE NEGATIVES (TN) if healthy subjects
correctly diagnosed and otherwise FALSE POSITIVES (FP).

Accuracy, sensitivity, specificity, precision, false alarm
rate, Matthew correlation coefficient, F1 score and the
receiver operating curve (ROC) are used to make statistical
analysis on the results.

Accuracy represents the percentage that the classification is
correct.

Accuracy =
TP+ TN

TP+ TN+ FP+ FN
(19)

Sensitivity or recall is the probability that the outcome of
diagnosing PD is positive given that the subjects have PD.

Sensitivity =
TP

TP+ FN
(20)

Specificity represents the proportion that the outcome of PD
is negative given that the subject is healthy.

Specificity =
TN

TN + FP
(21)

Precision is the probability that the outcome of diagnosing
PD is true.

Precision =
TP

TP + FP
(22)

The false alarm rate (FAR) is the probability that the
outcome of diagnosing PD is false.

FAR =
FP

TP + FP
(23)

The Matthews correlation coefficient (MCC) is a correlation
coefficient between the observed and predicted binary
classifications. It returns a value between –1 and +1. When
MCC = 1, it means that machine learning system perfectly
predict the category of the object; When the value is 0, it
indicates that the predicted result is worse than the random
prediction result; When MCC = –1, it illustrates that the
predicted classification is completely inconsistent with the
actual classification.

MCC =
TP × TN− FP × FN

√
(TP+ FP) (TP+ FN) (TN+ FP) (TN+ FN)

(24)
The F1 score is the harmonic mean of precision and recall.

F1 = 2
precision × sensitivity
precision+ sensitivity

(25)

The receiver operating characteristic (ROC) curve is the plot
of the Sensitivity against the false positive rate (FPR = 1−
Specificity) in a binary classifier when its threshold is varied.
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FIGURE 2

Tenfold cross-validation schematic.

Training and test set

Feature vectors, from PD or HC, are stored into two
sets: C1 for PD patients, C2 for HC. Each set is separated
into ten fragments, C1 =

{
C1,1,C1,2, · · · ,C1,10

}
and C2 ={

C2,1,C2,2, · · · ,C2,10
}

. A fragment C1,i (from C1) and a
corresponding fragment C2,i (from C2) are randomly combined
into Ci. The result of these random mixings is tenfold
{C1,C2, · · ·C10}, where each fold contains instances from PD
and HC. Among the ten folds, one is picked for testing of a
classifier and the other nine are left for training. (Solana-Lavalle
et al., 2020). To be specific, in this study, the speech data with
5 PD and 5 HC are used as the test set, and the speech data
with 45 PD and 45 HC are used as the training set. The tenfold
cross-validation schematic is shown in Figure 2.

Results

Table 1 presents the description of the two main types of
features extracted from the speech signal and the corresponding
number of features within each group.

TABLE 1 Features extracted from speech signals.

Feature set Description Total
features

Phonation Jitter, Shimmer, APQ, PPQ, DF0, DDF0, LogE. 28

Articulation BBE_on (22 levels), BBE_off (22 levels);
MFCC_on (12 levels), MFCC_off (12 levels);
DMFCC_on (12 levels), DMFCC_off (12
levels);
DDMFCC_on (12 levels), DDMFCC_off (12
levels);
F1 (1 level), DF1 (1 level), DDF1 (1 level);
F2 (1 level), DF2 (1 level), DDF2 (1 level).

488

Twenty-eight phonation features were extracted. There
are seven descriptors, each of which has four values:
mean, standard deviation, skewness, and kurtosis. The
seven descriptors are Jitter, Shimmer, Pitch Perturbation
Quotient (PPQ), Amplitude Perturbation Quotient (APQ),
First Derivative of the Fundamental Frequency (DF0), Second
Derivative of the Fundamental Frequency (DDF0), and
Logaritmic Energy (LogE).

TABLE 2 Features obtained by using three features selection
algorithms (std stands for standard deviation).

Feature
subset

Features

LASSO mRMR Relief-F

Phonation
features

Kurtosis_Jitter,
kurtosis_Shimmer,
kurtosis_DF0,
kurtosis_PPQ,
kurtosis_APQ.
(5)

Kurtosis_Jitter,
mean_Jitter,
mean_Shimmer,
std_PPQ,
skewness_Jitter,
std_APQ,
skewness_Shimmer.
(7)

Std_LogE,
skewness_LogE,
mean_DF0,
kurtosis_Shimmer,
mean_LogE,
mean_DDF0,
skewness_PPQ,
skewness_DDF0,
kurtosis_APQ,
skewness_APQ,
skewness_DF0,
kurtosis_PPQ.
(12)

Articulation
features

Mean_MFCCon_3,
mean_MFCCon_4,
mean_MFCCoff_3,
mean_F1, mean_F2,
std_F1, std_DDF1,
std_F2, std_DDF2,
mean_MFCCon_6.
(10)

Mean_F2,
mean_BBEon_2,
mean_BBEoff_1,
mean_DDMFCCoff_1,
std_F1, std_DDF1,
std_DDF2, mean_F1,
mean_BBEon_3,
std_F2.
(10)

Mean_MFCCon_3,
mean_MFCCoff_3,
mean_BBEoff_6,
mean_MFCCon_4,
mean_MFCCoff_4,
mean_BBEoff_7,
mean_F1,
mean_MFCCoff_7,
mean_F2,
mean_MFCCon_7.
(10)
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Four hundred and eighty-eight articulation features were
extracted. There are 122 descriptors, each of which has 4
values: mean, standard deviation, skewness and kurtosis. The
122 descriptors are be segmented into 14 categories: Bark
Band Energies in onset transitions (BBE_on), Bark Band
Energies in offset transitions (BBE_off), Mel Frequency
Cepstral Coefficients in onset transitions (MFCC_on),
Mel Frequency Cepstral Coefficients in offset transitions
(MFCC_off), First derivative of the MFCCs in onset transitions
(DMFCC_on), First derivative of the MFCCs in offset
transitions (DMFCC_off), Second derivative of the MFCCs
in onset transitions (DDMFCC_on), Second derivative of the
MFCCs in offset transitions (DDMFCC_off), First Formant
Frequency (F1), First Derivative of F1 (DF1), Second Derivative
of F1 (DDF1), Second Formant Frequency (F2), First Derivative
of F2 (DF2) and Second Derivative of F2 (DDF2). Each category
has a different number of levels, as shown in Table 1.

Table 2 presents a description of the selected features. For
phonation, each algorithm screens 5, 7, and 12 features for
classification each time; for articulation, each algorithm screens
10, 20, 30, and 40 features for classification each time. The
best performing feature set and its size corresponding to each
algorithm are listed in Table 2.

Tables 3–5 show the PD detection performance of four
different classifiers (Naïve Bayes, KNN, Logistic Regression,

Stochastic Gradient Descent) when they are tested with a
phonation feature set selected by three selection algorithms
(LASSO, mRMR, Relief-F). The best results are highlighted in
boldface. The best performance metric values for phonation-
based PD detection are Accuracy = 0.4941, Sensitivity = 0.7058,
Specificity = 0.8070, precision = 0.5100, FAR = 0.4900,
MCC = 0.0413, F1score = 0.5449. Most these best results appear
when the LASSO algorithm is used to select the features. The
best-performing classifier is different across different features.

Tables 6–8 show the PD detection performance of the
four classifiers, when they are tested with an articulation
feature set automatically selected. The best results are also
highlighted in boldface. The best performance metric values
for articulation-based PD detection are Accuracy = 0.7576,
Sensitivity = 0.8244, Specificity = 0.7315, precision = 0.7657,
FAR = 0.2343, MCC = 0.5100, F1score = 0.7901. All these best
results also appear when the LASSO algorithm is used to select
the features.

Discussion

For all three selection algorithms, the most prominent
features are F1, F2, DDF, BBE and MFCC, which are all from
articulation features. F1, F2, DDF1 and DDF2 can represent

TABLE 3 PD-detection performance metrics for four different classifiers by using phonation features selected by Least Absolute Shrinkage and
Selection Operator selection algorithm.

Accuracy Sensitivity Specificity Precision FAR MCC F1score

KNN 0.4898 0.7058 0.7058 0.4344 0.5656 0.0413 0.5378

LR 0.3726 0.5167 0.3777 0.3680 0.6320 −0.0837 0.4298

SGD 0.3391 0.4900 0.3400 0.3382 0.6618 −0.1810 0.4002

NB 0.4941 0.1483 0.8070 0.1531 0.8469 −0.0330 0.1507

The best results are highlighted in bold.

TABLE 4 Parkinson’s disease-detection performance metrics for four different classifiers by using phonation features selected by
minimum-Redundancy-Maximum-Relevance selection algorithm.

Accuracy Sensitivity Specificity Precision FAR MCC F1score

KNN 0.4475 0.6501 0.6501 0.3832 0.6168 –0.0133 0.4822

LR 0.3184 0.3989 0.3400 0.2906 0.7094 –0.2865 0.3362

SGD 0.3558 0.6544 0.1547 0.1350 0.8650 –0.2110 0.2238

NB 0.3141 0.3628 0.4000 0.2281 0.7719 –0.2290 0.2801

The best results are highlighted in bold.

TABLE 5 Parkinson’s disease-detection performance metrics for four different classifiers by using phonation features selected by Relief-F
selection algorithm.

Accuracy Sensitivity Specificity Precision FAR MCC F1score

KNN 0.4354 0.6497 0.6497 0.3697 0.6303 –0.0486 0.4712

LR 0.4351 0.5711 0.4201 0.4471 0.5529 –0.0108 0.5015

SGD 0.4143 0.4067 0.5374 0.3105 0.6895 –0.0337 0.3522

NB 0.4399 0.4128 0.5222 0.3593 0.6407 –0.0708 0.3842

The best results are highlighted in bold.
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TABLE 6 PD-detection performance metrics for four different classifiers by using articulation features selected by Least Absolute Shrinkage and
Selection Operator selection algorithm.

Accuracy Sensitivity Specificity Precision FAR MCC F1score

KNN 0.5017 0.5851 0.5851 0.4556 0.5444 0.1110 0.5123

LR 0.7453 0.8244 0.6885 0.7586 0.2414 0.5100 0.7901

SGD 0.7576 0.7717 0.7315 0.7657 0.2343 0.5041 0.7687

NB 0.3981 0.5267 0.4080 0.3896 0.6140 −0.0418 0.4479

The best results are highlighted in bold.

TABLE 7 PD-detection performance metrics for four different classifiers by using articulation features selected by
minimum-Redundancy-Maximum-Relevance selection algorithm.

Accuracy Sensitivity Specificity Precision FAR MCC F1score

KNN 0.4605 0.6648 0.6648 0.3987 0.6013 −0.0395 0.4985

LR 0.5063 0.6156 0.4584 0.5416 0.4584 0.0627 0.5763

SGD 0.5734 0.5706 0.5988 0.5557 0.4443 0.1688 0.5630

NB 0.3266 0.4644 0.3333 0.3192 0.6808 −0.2448 0.3783

The best results are highlighted in bold.

TABLE 8 PD-detection performance metrics for four different classifiers by using articulation features selected by Relief-F selection algorithm.

Accuracy Sensitivity Specificity Precision FAR MCC F1score

KNN 0.5482 0.6383 0.6383 0.5076 0.4924 0.1295 0.5655

LR 0.6994 0.7839 0.6450 0.7160 0.2840 0.4277 0.7484

SGD 0.6743 0.7217 0.6326 0.6919 0.3081 0.3590 0.7065

NB 0.5534 0.5361 0.6276 0.5020 0.4980 0.1457 0.5185

The best results are highlighted in bold.

resonances in the vocal tract (Pah et al., 2022) and the
capability of the speaker to hold the tongue in a certain
position (Ladefoged and Harshman, 1979). BBE and MFCC are
common dynamic signals. It was found that oral rotation can
be represented by the dynamic characteristics of speech signals
(like BBE and MFCC). Although the oral rotation rate of PWP
did not decrease significantly, there was a balance among speed,
intensity and accuracy. Besides, MFCCs were also computed as a
smooth representation of the voice spectrum that considers the
human auditory perception. The features mentioned above may
mainly reflect the pitch, speed and intelligibility of the tester’s
speech (Moro-Velazquez et al., 2021), echoing UPDRS, which
can reflect the five levels of speech status from 0 to 4 in the scale
(Zhang et al., 2017).

It is quite noticeable that articulation-type features are
generally more representative than phonation analysis in this
study. The reason may be that, the signals employed in
phonatory approaches (sustained vowels) are much simpler than
those used for articulatory analyses (running speech), including
less variability and a smaller amount of kinetic information.
Moreover, running speech contains vowels and sonorant
segments and therefore methodologies using connected speech
can indirectly characterize certain phonatory aspects (Moro-
Velazquez et al., 2021). In addition, articulation relates to more

voice organs than phonation features (Hanson et al., 1984;
Ackermann and Ziegler, 1991). Phonation features like Jitter and
Shimmer are used as significant influential factors in classifiers,
with good performance of the results (Orozco-Arroyave et al.,
2014; Mekyska et al., 2015; Moro-Velazquez et al., 2021). But
in the present study, all phonation feature subsets provide
relatively low classification accuracy. Further studies based on
more Chinese dataset are expected to explore the reasons.

FIGURE 3

Comparison of Matthews correlation coefficient values from
different models.
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FIGURE 4

Comparison of the best classification performances based on three FS algorithms and two types of features. (A) The best classification
performance based on LASSO algorithm. (B) The best classification performance based on mRMR algorithm. (C) The best classification
performance based on Relief-F algorithm.

As Figure 3 shows, the MCC values for the detection with
the phonation features are almost all negative small numbers
while the MCC for the articulation features are mostly positive
big numbers. Therefore, it is recommended that articulation
features can the primary detection feature set applied. Further
studies can be made to identify the most representative
articulation features when more Chinese language materials
are used to test the proposed detection model. Six positive
performance values are further compared as shown in Figure 4.
The articulation (indicated by blue) and phonation (indicated
by pink) are put together to show that the articulation feature
is better than the phonation feature, indicating articulation can
better reflect the phonetic features of Chinese PWP. This finding
is quite consistent with the conclusion reached by Vásquez-
Correa et al. (2018). It can be inferred that the proposed model
can automatically generate good indicators for the following

automatic speech character classification, replacing the manual
feature selection.

Meanwhile, it was found that the MCC values of the
final detection results were not satisfactory enough. There are
several possible reasons:Firstly, the speech data used in this
study were from patients at HY1-3 stages, with relatively low
degree of dysarthria, and pronunciation defects were not quite
obvious. Secondly, the classification features are automatically
selected by the model, and the number of input features is
large, which may result in overfitting and cause some errors.
Thirdly, different from English language, each hieroglyph in
Chinese has an individual meaning and corresponds to one
syllable, which means each syllable conveys an idea, and the
combination of syllables will be different according to different
contextual meanings. Chinese speakers normally require more
time to think before speaking, causing some pauses, not due
to PD (Pavlovskaya and Hao, 2020). Chinese speakers breathe
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less regularly than English speakers when speaking, which in
turn may lead to a misjudgment that Chinese test subjects have
unstable vocalizations.

Among the three feature selection algorithms, LASSO
performs the best. The main reason may lie in that the
parameter estimation of LASSO algorithm with good continuity
is suitable for the selection model of high-dimensional data,
which is the main characters of the collected signal. Among
the four classification algorithms, Logistic Regression performs
the best. To observe the final performance results, LASSO &
LR and LASSO & SGD are the best combinations of feature
selection and classifier with the accuracies of 0.7453 and 0.7576,
respectively. Interestingly, for English corpus, the commonly
used Wrappers feature subset selection and the classifying
techniques like KNN, SVM, MLP and Random Forest do not
perform well for Chinese corpus in this study. More speech
materials should be collected to train the detection model,
and comparing the results with the performance of those
algorithms in case.

Overall, the results prove the feasibility of applying a fully
automatic model to Chinese PD detection is feasible, even
though the results are not satisfactory when compared with the
detection model based on the English corpus (Solana-Lavalle
et al., 2020). But the combined performance of LASSO with
LR and SGD are both above 0.7, quite convincing to motivate
further development on the proposed detection including
automatic feature selection and classification when there are
no universally accepted representative features for PWP early
detection.

Conclusion

The novel contribution of this study is establishing an
automatic model with machine learning methods based on
Mandarin language dataset, dealing the whole process of PD
detection based on speech signals from extraction, selection to
classifying automatically. It is possible that the gap-filling in
setting up representative feature reservoirs for Chinese language
can be accelerated through automatic feature selection model.

The current study only proved its feasibility and future work
should be focused on developing robust and accurate methods
for the automatic and unobtrusive detection for Chinese PWP,
and a dedicated algorithm for feature extraction specific to
Chinese speech features.

This study also gives good hints for feature selection and
classifier strategy. The most representative feature set of PWP
is articulation, from which ten features automatically selected
is enough for the following classifier. To improve the accuracy
of detection, bigger dataset should be collected to test whether
the articulation features are the best representative for Chinese-
speaking PD. LASSO performs the best feature selection and
LR performs the best classification, while two combinations of

LASSO & LR and LASSO & SGD all performs well. So, in this
study, the best model proposed is to filter 10 articulation features
with LASSO algorithm and use them in SGD or LR classifier.
Further studies can be made to explore the rules of selecting
among LASSO & LR or LASSO & SGD.
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