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Introduction: Alzheimer’s disease (AD) is a common neurodegenerative disease.

The concealment of the disease is the difficulty of its prevention and treatment.

Previous studies have shown that mitophagy is crucial to the development of AD.

However, there is a lack of research on the identification and clinical significance

of mitophagy-related genes in AD. Therefore, the purpose of this study was to

identify the mitophagy-related genes with the diagnostic potential for AD and

establish a diagnostic model for AD.

Methods: Firstly, we download the AD gene expression profile from Gene

Expression Omnibus (GEO). Limma, PPI, functional enrichment analysis and

WGCNA were used to screen the differential expression of mitophagy-

related AD gene. Then, machine learning methods (random forest, univariate

analysis, support vector machine, LASSO regression and support vector

machine classification) were used to identify diagnostic markers. Finally, the

diagnostic model was established and evaluated by ROC, multiple regression

analysis, nomogram, calibration curve and other methods. Moreover, multiple

independent datasets, AD cell models and AD clinical samples were used to verify

the expression level of characteristic genes in the diagnostic model.

Results: In total, 72 differentially expressed mitophagy-related related genes

were identified, which were mainly involved in biological functions such as

autophagy, apoptosis and neurological diseases. Four mitophagy-related genes

(OPTN, PTGS2, TOMM20, and VDAC1) were identified as biomarkers. A diagnostic

prediction model was constructed, and the reliability of the model was verified

by receiver operating characteristic (ROC) curve analysis of GSE122063 and

GSE63061. Then, we combine four mitophagy-related genes with age to establish

a nomogram model. The ROC, C index and calibration curve show that the

model has good prediction performance. Finally, multiple independent datasets,

AD cell model samples and clinical peripheral blood samples confirmed that

the expression levels of four mitophagy-related genes were consistent with the

results of bioinformatics analysis.

Discussion: The analysis results and diagnostic model of this study are helpful for

the follow-up clinical work and mechanism research of AD.
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Introduction

Alzheimer’s disease (AD) is a common neurodegenerative
disease, whose clinical features include cognitive functional
impairment (decline in memory ability, behavioral ability, and
life performance) and insidious onset (Knopman et al., 2021).
According to statistics, AD patients are still increasing rapidly every
year, which will bring severe challenges to the society. Therefore,
the early diagnosis and prevention of AD is very important
(Scheltens et al., 2021). At present, the diagnosis of AD is based
on relevant behavioral characteristics and brain imaging, but it
is still difficult to achieve early diagnosis (Porsteinsson et al.,
2021; Mahaman et al., 2022). Therefore, it is necessary to screen
and construct more accurate specific biomarkers and diagnostic
models for AD. And these biomarkers can also be used as effective
therapeutic targets for AD.

Mitophagy is a selective autophagy process, which is a
mechanism to maintain mitochondrial quality by eliminating
dysfunctional mitochondria, and is crucial for cellular homeostasis
(Onishi et al., 2021). Mitochondria are the main source of
intracellular reactive oxygen species (ROS), and high ROS
will directly interfere with cell integrity. At the same time,
mitochondria are also energy factories, and the function of
neurons is heavily dependent on mitochondrial function, so
mitochondrial dysfunction is closely related to neurodegenerative
diseases (Garza-Lombó et al., 2020; Cardanho-Ramos and Morais,
2021; Trigo et al., 2022). Mitophagy can remove defective
mitochondria, so mitophagy may be a potential strategy for
the prevention and treatment of neurodegenerative diseases.
A previous study has shown that reduced mitophagy function
is thought to be the cause of many neurodegenerative diseases
such as AD, Parkinson’s disease (PD), Huntington’s disease
(HD), and amyotrophic lateral sclerosis (ALS) (Cen et al., 2021;
Jiao et al., 2022). Studies have also shown that resveratrol can
reduce Aβ1−42-induced cell death by increasing mitophagy (Wang
et al., 2018). Therefore, a comprehensive analysis of the key
regulatory genes of mitophagy has the potential of AD diagnostic
markers and the construction of corresponding diagnostic models
can effectively guide clinical decision-making and provide more
treatment options for AD patients. Previous studies have revealed
associations between genes associated with autophagy, aging,
immunity and ferroptosis, and the diagnosis of AD, but the
association between mitophagy genes and AD has not been
reported.

The purpose of this study was to analyze the different
datasets of AD in Gene Expression Omnibus (GEO) from
different angles. Limma, PPI analysis, functional enrichment
analysis and weighted correlation network analysis (WGCNA)
were used to determine the differential expression of mitophagy-
related AD genes. Then, machine learning methods [random
forest, univariate analysis, support vector machine (SVM),
minimum absolute contraction and selection operation (LASSO)
regression, and SVM classification] were used to filter and identify
diagnostic markers. Finally, ROC, multivariate regression analysis,
nomogram, and calibration curve were used to establish and
evaluate the diagnostic model. Furthermore, multiple independent
datasets, AD cell models, and AD clinical samples were used
to verify the expression levels of genes characteristic of the

diagnostic model. In conclusion, our study has clinical significance
and provides more candidate markers for the diagnosis and
mechanism of AD.

Materials and methods

Data acquisition

Four AD-related datasets were downloaded from the GEO
database: GSE63060, GSE63061, GSE5281, and GSE122063. Details
of the four datasets can be found in Supplementary Table 1.
Genes involved in mitophagy were obtained from different
databases and literatures. (1) Pathway Unification database1:
Search for “mitophagy” in the database. (2) GO,2 KEGG,3

MSigDB v6.24: Search for “MITOPHAGY” and “AUTOPHAGY
OF MITOCHONDRION” in the database. (3) Previous literature:
Search for “mitophagy” in the PubMed. A total of 137 genes
involved in mitophagy were obtained (Supplementary material 1;
Chen H. -N. et al., 2019; Xu et al., 2022; Zhang et al., 2022).

Screening of differentially expressed
mitophagy-related gene

The “normalize Between Arrays” function in limma package
was used to standardize and normalize the GSE63061 dataset, and
then all the protein coding genes in GSE63061 were extracted
from the expression profile based on gencode.v22.annotation.gtf
file. The protein coding genes were compared with all mitophagy-
related genes to obtain overlapping genes. Then limma package
(version 3.40.6) was used to analyze the differences expressed of
overlapping genes to obtain the differentially expressed mitophagy-
related genes (DE-MRGs) between the AD sample group and the
control group. The screening criteria were | log2 Fold Change
(FC)| >1, false discovery rates (FDR) <0.05, and p < 0.05
(Xie et al., 2022). Finally, Sangerbox 3.05 (Shen et al., 2022)
was used to display the DE-MRGs as volcano maps and heat
maps.

Functional enrichment analysis of
DE-MRGs

With gene annotation in org.Hs.eg.db (version 3.1.0) as
background, cluster Profiler (version 3.14.3) in R was used for
enrichment analysis, and the minimum gene set=20, p < 0.05 and
FDR <0.25 were considered statistically significant (Yu et al., 2012).
GO analysis included cell composition, biological processes (BP),
and molecular function (MF).

1 https://pathcards.genecards.org/

2 http://geneontology.org/

3 https://www.genome.jp/kegg/

4 http://software.broadinstitute.org/gsea/msigdb

5 http://sangerbox.com/
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Construction of protein–protein
interactions

The interaction network of DE-MRGs was constructed
using the STRING v11.5.6 Confidence score ≥0.4 (Szklarczyk
et al., 2021). Then, Cytoscape v3.8.1 was used to visualize the
interaction network. In addition, Cytoscape plugin Molecular
Complex Detection (MCODE) was used to select subnetworks
with the highest score. Finally, functional enrichment analysis was
performed for the genes in the subnetwork.

Weighted correlation network analysis

All the protein coding genes in GSE122063 were extracted from
the expression profile based on gencode.v22.annotation.gtf file.
Take the protein coding gene as the background. Firstly, the outlier
genes and samples were removed by goodSamplesGenes method
in WGCNA package. Then, WGCNA was used to build a scale-
free co-expression network. Topological overlap matrix (TOM)
was constructed to measure the average network connectivity of
each gene after obtaining appropriate β threshold. The genes with
similar expression profiles were divided into different modules
using the dynamic tree cutting method, and the parameters were
min module size=30, deep split=2, merge cut height=0.25. The
hierarchical clustering method was used to construct the tree graph.
Finally, the correlation between characteristic genes and traits
(AD and health) in each module was calculated, and the core
modules were screened. The module with the highest correlation
and statistical significance was identified as the most critical module
for further analysis.

Establishment and evaluation of
diagnostic model of Alzheimer’s disease
through least absolute shrinkage and
selection operator logistic regression
and machine learning

Protein–protein interactions subnetwork gene and core module
characteristic gene from WGCNA were compared to obtain
overlapping genes. Univariate analysis of the overlapping genes
was performed with traits (AD and health) as dependent variables.
Select p < 0.05 gene for further analysis. In order to verify
the accuracy of univariate analysis results, we use random forest
algorithm to re-analyze overlapping genes. In the random forest
algorithm, the number of trees was set to 500. the random
algorithm was used to sort genes according to the average decline
of Gini index. The Random Forest in R software was adopted to
establish the random forest classification model. The key genes
were obtained by combining the results of the two algorithms.
Then, LASSO logical regression analysis and SVM were used
to further verify the key genes. Glmnet package was used for
LASSO logical regression analysis. The λ value was determined

6 https://string-db.org/

by cross-validation method. The principle of selecting λ value is
to minimize the mean square error of Lasso model. The model
variables were determined by λ and regression coefficient plots,
in which the variables with zero standardization coefficient can be
considered to be eliminated by the Lasso regression model. SVM
was carried out with e1071 package, and a classifier was constructed
to screen out the core genes, and the receiver operator characteristic
(ROC) curve was drawn to evaluate the diagnostic potential
of SVM classifier. Finally, the candidate characteristic genes of
AD diagnostic model were identified according to the results of
LASSO and SVM analysis. Then, multivariate logistic regression
analysis was performed on the candidate characteristic genes, and
selected the final parameters genes (p < 0.05) of the diagnostic
model. The diagnostic model formula was: β + α 1 × expression
(gene 1) + α 2 × expression (gene 1) + . . .. + αn × expression
(gene n). Where β was constant and α was the standardized
coefficient of logical regression. In order to evaluate the prediction
accuracy of the model, we use GSE63061 and GSE122063 as the
verification sets and use pROC package to draw receiver operating
characteristic (ROC) curve.

Establishment and evaluation of
nomogram

Using rms package, a nomogram model of AD diagnosis was
established by integrating the expression levels of all key genes
and the age of patients analyzed by logistic regression. In order to
evaluate the prediction ability of the model, we calculate the C index
and draw a calibration curve to compare the difference between
the predicted value and the actual observed value. In addition,
GSE63061 was taken as the validation set and the ROC curve was
plotted to verify the practicability and reliability of the model.

Gene set enrichment analysis

Based on GSE63061 expression profile, the related pathways
and molecular mechanisms were evaluated from Molecular
Signatures Database.7 The parameters were set to: minimum gene
set=5, maximum gene set=5000, 1,000 resampling times, p < 0.05,
and FDR <0.25 were considered statistically significant.

Cells culture

Human neuroblastoma cell line SH-SY5Y was purchased
from BeNa Culture Collection (BNCC, China). The culture
medium of SH-SY5Y cells was 90% Duchenne Modified Eagle
Medium (DMEM, Gibco, USA) + 10% fetal bovine serum (Gibco,
USA) + penicillin/streptomycin (100U Maple ml Sigma, USA).
The culture condition was 5% CO2, 37◦C constant temperature
incubator. The AD cell model was constructed using Aβ25−35
(25 µM, Sigma, China), and the specific steps were referred to
previous literature (Xie et al., 2022).

7 http://www.gsea-msigdb.org/gsea/downloads.jsp
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FIGURE 1

Overview of the research procedure of this study.

Real-time quantitative polymerase chain
reaction

Peripheral blood samples from 10 AD patients and 10 healthy
people (Supplementary material 2) were collected and real-
time quantitative polymerase chain reaction (RT-qPCR) was used
to detect the expression trend of characteristic genes in the
diagnostic model. The Ethics Committee of the Third Affiliated

Hospital of Naval Medical University approved the sample
collection procedure. Total RNA was extracted from peripheral
blood using RNAprep Pure high efficiency total RNA extraction
kit (TIANGEN, China). RNA Easy Fast Animal Tissue/Cell
Total RNA Extraction Kit (TIANGEN, China) extracts total
RNA from cells. RT-PCR was performed using the FastKing
one-step RT-PCR kit (TIANGEN, China). The gene primers
were designed by primer 5, and the sequences were shown
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FIGURE 2

Identification of differentially expressed genes involved in mitophagy in Alzheimer’s disease of GSE63061. (A) Principal component analysis of
GSE63061. (B) Venn showing common genes between GSE63061 dataset and mitochondrial autophagy related genes. (C) Volcano of differentially
expressed mitophagy-related genes. The red dots represent the significantly upregulated genes and the blue dots represent the significantly
downregulated genes. (D) Heatmap of the differentially expressed mitophagy-related genes in Alzheimer’s disease and control samples.

in Supplementary Table 2. The primer was synthesized by
Sangon (China). The expression of GAPDH was used as
internal control. The relative expression was calculated by
2 −11Ct.

Statistical analysis

Statistical analysis was performed using SPSS software (version
26.0) and GraphPad Prism (version 8). Student t-test was used
between the two groups. All data were expressed as mean ± SD.
p < 0.05 was considered statistically significant.

Results

Identification of differentially expressed
genes involved in mitophagy in
Alzheimer’s disease

The analysis process of this study is shown in Figure 1.
GSE63061 contained 13,578 genes. Principal component analysis
(PCA) showed that there was a good distinction between AD
patient samples and control group samples (Figure 2A). According
to the mitophagy database and previous literature, a total of
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TABLE 1 Top 10 (up and downregulated) of differentially expressed
mRNAs in Alzheimer disease samples and control group samples
of GSE63061.

Symbol logFC AveExpr t p-Value

Upregulation

ATG12 2.458483132 6.466785025 27.73996362 1.85E−81

ATG2A 2.530469661 6.93783585 30.82663493 5.86E−91

VDAC1 2.56977612 8.477693809 31.41246822 1.05E−92

PARL 2.796552618 7.159291659 29.41240847 1.14E−86

PINK1 2.951862381 7.32612586 29.30820345 2.38E−86

TSC2 3.267276371 6.369663987 275.4741279 1.40E−87

TSPO 3.282525521 10.16413545 76.99654729 3.93E−237

UBA52 3.310429917 11.51632613 132.1792498 1.85E−81

UBB 3.583647984 12.39026765 25.99957764 7.14E−76

UBC 3.90127177 13.08726982 30.93784185 2.72E−91

Downregulation

TOMM20 −3.91204516 12.83983717 −43.64434194 3.24E−125

MAP1LC3B −3.84962311 13.86826967 −33.7668447 1.57E−99

TOMM40 −3.82296030 13.1309709 −43.998551 4.67E−126

PTGS2 −3.54614553 12.20801839 −38.45374496 2.76E−112

WIPI1 −3.40558536 11.85569631 −42.14113211 1.36E−121

TOMM5 −3.35246474 11.21257411 −37.84021705 1.12E−110

MFN1 −2.96459138 11.88619632 −20.62264994 1.22E−57

TOMM22 −2.39164620 12.34485273 −24.57755563 3.45E−71

ATG5 −1.69328886 10.99609617 −8.747743475 2.28E−16

137 genes involved in the process of mitophagy were obtained
(Supplementary material 1). After comparing GSE63061 genes
with all mitophagy-related genes, 114 overlapping genes were
identified (Figure 2B). Then, according to the differential gene
screening criteria, 72 differentially expressed mitophagy-related
genes (DE-MRGs) in AD were obtained, including 63 upregulated
genes and 9 downregulated genes (Table 1). Volcano and heat maps
were used to demonstrate DE-MRGs (Figures 2C, D).

GO and KEGG enrichment analysis of
DE-MRGs in Alzheimer’s disease

To explore the potential functional relationships of these
DE-MRGs, we used DAVID to perform functional analysis
of DE-MRGs (including GO and KEGG). The results showed
that in addition to autophagy related pathways, DE-MRGs
were also involved in several BP. BP mainly involve oxygen
content regulation, cell apoptosis regulation and protein targeting
regulation. MFs mainly include epigenetic regulation and protein
binding regulation. In terms of cell components (CC), vacuole
membrane, mitochondrial outer membrane, and organelle
membrane were the main components. In addition, KEGG results
showed that DE-MRGs were mainly enriched in apoptosis, NF-
κB signaling pathway, Ferroptosis, Nod-like receptor signaling
pathway, and PD (Figure 3).

Construction of protein–protein
interaction network and determination
of hub genes

Then, the interactions between DE-MRGs were analyzed by
PPI network, which contained 71 nodes and 679 edges, as shown
in Figure 4A. In order to further screen the hub genes in PPI,
MCODE plug-in was used to further analyze the PPI, and a sub-
network with the highest score (score = 24.188) was obtained,
comprising 33 nodes and 389 edges (Figure 4B). A total of 33
genes contained in the subnetwork were identified as hub genes.
Then 33 hub genes were analyzed by GO and KEGG. In terms
of BP, 33 genes were enriched in cellular nutrition, starvation
response, oxidative stress, and apoptosis. In terms of CC, they were
mainly concentrated in vacuole membrane, synaptic membrane,
and organelle membrane. In terms of MF, ubiquitination, GTPase
binding, and BH domain binding were mainly involved. In the
enrichment analysis of KEGG, they were mainly involved in
autophagy, cell senescence, Ferroptosis, Nod-like receptor signaling
pathway, and p53 signaling pathway (Figure 4C).

Construction of weighted gene
co-expression network and identification
of core modules

GSE122063 expression profiles (56 AD samples and 44 control
samples) were downloaded from GEO database to construct
WGCNA. After removing outlier genes and samples, a scale-free
co-expression network was constructed. The results show that the
scale independence reaches 0.9 when the soft threshold power
was confirmed to be 2 (Figure 5A), and the adjacency matrix
obtains a relatively high average connectivity value (Figure 5B).
Subsequently, four different coexpression modules were completely
identified by dynamic tree cutting (Figure 5C). In addition,
correlations between modules and phenotypes were analyzed. As
shown in Figure 5D, the turquoise module (576 genes) showed
the highest correlation with AD (r = −0.81, p = 6e−08) and
was selected for further analysis. Five overlapping genes (DNM1L,
OPTN, PTGS2, TOMM20, and VDAC1) involved in mitophagy in
AD were identified by comparing the turquoise module genes with
33 hub genes (Figure 5E).

Establishment and evaluation of
Alzheimer’s disease diagnostic prediction
model

To further understand the role of five overlapping genes
involved in mitophagy in the diagnosis and prediction of AD,
we expect to screen model characteristic genes from the five
overlapping genes to construct a diagnostic prediction model.
Firstly, we performed univariate analysis of five genes based
on GSE122063 expression profiles. OPTN, PTGS2, TOMM20,
and VDAC1 were identified for further analysis (Table 2). The
results of random forest algorithm analysis were consistent with
univariate analysis. OPTN (42.90%), PTGS2 (27.50%), TOMM20
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FIGURE 3

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes Enrichment analysis of the differentially expressed mitophagy-related genes.
BP, biological process; CC, cellular component; MF, molecular function.

(15.20%), and VDAC1 (13.90%) were important characteristic
genes (Figure 5F), in which the accuracy, accuracy and F1 values
of the training set were 100% (Figure 5G). The accuracy and
accuracy of the test set were 73.30%, and the F1 value was
84.60% (Figure 5H). Then, we used LASSO regression analysis
and SVM classification to verify the above screening results.
The results of Lasso regression showed that the four genes
(OPTN, PTGS2, TOMM20, and VDAC1) had ideal fit (the optimal
sparsity parameter λ was 0.02, R2 = 0.80, Figures 5I, J). SVM
classification algorithm also showed that these four genes had
significant classification effects. The accuracy, accuracy and F1
values of the training set and test set were 100% (Figures 6A,
B). Moreover, the area under the curve of SVM-ROC was 100%
(Figure 6C). These results indicate that OPTN, PTGS2, TOMM20,
and VDAC1 are potential markers for the diagnosis of AD. Finally,
multivariate logistic regression analysis was conducted for the
four genes, and the p-values of the four genes were all less than
0.05. The four key DE-MRGs were used to construct a diagnostic
prediction model. Table 3 lists the logistic regression coefficients
of the four DE-MRGs. The diagnostic prediction formula was
y = 1.231 + 0.033 × expression (OPTN) + 0.032 × expression
(VDAC1)−0.135 × expression (PTGS2)−0.048 × expression
(TOMM20). ROC analysis results based on GSE122063 expression
profile showed that the area under the curve of the diagnosis and

prediction model was 0.965 (Figure 6D), indicating that the model
had good prediction ability. Subsequently, the model was used to
verify the GSE63061 dataset, and the results showed that the AUC
was 0.806 (Figure 6E), which further confirmed the prediction
accuracy and stability of the diagnostic model.

Evaluation of the characteristics of the
diagnostic prediction model

Based on the GSE63061, we combined OPTN, PTGS2,
TOMM20, and VDAC1 genes with age to construct the nomogram
corresponding to the diagnosis and prediction model of AD
(Figure 6F). The results show that the C index of the nomograph
was 0.730, indicating that the model has recognition ability.
Subsequently, the nomogram calibration curve for the diagnosis
and prediction of AD showed good agreement between the
training set and the validation set (Figure 6G). ROC results
showed that the AUC of nomograph model was 0.730, indicating
that the nomograph model diagnosis model had high feasibility
(Figure 7A). In addition, ROC curves were drawn based on the
expression levels of OPTN, PTGS2, TOMM20, and VDAC1 genes
in the GSE63061. Four DE-MRGs have high diagnostic value
for AD. Among the AD samples, VDAC1 showed the highest
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FIGURE 4

(A) Protein–protein interaction network he differentially expressed mitophagy-related genes. (B) Sub-network of protein–protein interaction
network by MCODE plug-in. (C) Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes Enrichment analysis of the hub genes in
sub-network. BP, biological process; CC, cellular component; MF, molecular function.

diagnostic value (AUC = 0.8300), and the areas under the curve
of the other three genes were as follows: OPTN (AUC = 0.726),
PTGS2 (AUC = 0.742), and TOMM20 (AUC = 0.784) (Figure 7B),
suggesting that these four genes have the potential to be
diagnostic biomarkers of AD. To further understand the potential
biological role of these four genes in AD, we performed gene
set enrichment analysis (GSEA) using KEGG gene sets. GSEA

results show that these four genes are mainly involved in several
neurodegenerative diseases (PD, AD, HD, long-term depression,
and ALS), neural function related pathways (neurotrophic
signaling pathway, axon guidance, neuroactive ligand receptor
interactions, and glycosphingolipid biosynthesis ganglion series),
metabolism-related pathways (amino acid metabolism and glucose
metabolism), and immune-related pathways (Figure 8).
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FIGURE 5

(A) Scale-free co-expression network. (B) Soft threshold and average connectivity value. (C) Dendrogram of all differentially expressed genes
clustered. (D) Correlations between modules and phenotypes. (E) Venn showing common genes between turquoise module genes and hub genes
in PPI subnetwork. (F) Histogram shows the proportion of importance of random forest features (independent variables). (G) Confusion matrix heat
map shows the classification results of training sets in GSE122063 by random forest classifier. (H) Confusion matrix heat map shows the
classification results of test sets in GSE122063 by random forest classifier. (I) Result of least absolute shrinkage and selection operator (LASSO)
logistic regression algorithm. (J) Lasso regression cross validation diagram. Ordinate: model mean square error. Abscissa: the logarithm of λ.

Verification of key four DE-MRGs in
different datasets, AD cell models, and
clinical samples

We download the GSE63060 (peripheral blood samples) and
GSE5281 (brain tissue samples) to verify the expression levels
of four key DE-MRGs. OPTN, PTGS2, TOMM20, and VDAC1

showed significant differences in both peripheral blood and tissue
samples. In AD samples, the expressions of OPTN and VDAC1
were upregulated, while the expressions of PTGS2 and TOMM20
were downregulated (Figures 9A, B). Subsequently, SH-SY5Y cells
were treated with Aβ25−35(25 µM) to establish AD cell model. The
expression levels of OPTN, PTGS2, TOMM20, and VDAC1 in AD
cell model were verified by qPCR. The results showed that mRNA
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TABLE 2 Univariate analysis of five genes.

B SE Wald Significance Hazard ratio 95% confidence interval for
the hazard ratio

Lower Upper

DNM1L −0.189 0.22 0.742 0.389 0.827 0.538 1.273

OPTN 1.635 0.426 14.734 0.000124 5.128 2.226 11.817

VDAC1 1.403 0.349 16.13 0.000059 4.069 2.051 8.07

PTGS2 −10.413 5.255 3.926 0.048 0.00003 1.01E–09 0.893

TOMM20 −3.323 0.886 14.061 0.000177 0.036 0.006 0.205

FIGURE 6

(A) Confusion matrix heat map shows the classification results of training sets in GSE122063 by support vector machine (SVM) classification
algorithm. (B) Confusion matrix heat map shows the classification results of test sets in GSE122063 by SVM classification algorithm. (C) The ROC
curve verified the feasibility of the diagnosis of the SVM classification algorithm. (D,E) The ROC curve verified the feasibility of the diagnosis of the
diagnostic prediction model. (F) Nomogram visual diagnostic prediction model. (G) Calibration curves verify the consistency of nomogram.
***p < 0.001, **p < 0.01, *p < 0.05.

expression levels of four genes were consistent with bioinformation
analysis (Figure 9C). In addition, to verify the reliability of four
key DE-MRGs, peripheral blood samples from 10 AD patients
and 10 healthy volunteers were collected for RT-qPCR. The results

showed that mRNA expression levels of PTGS2 and TOMM20 in
AD group were decreased compared with those in control group
(p < 0.05). The results of OPTN and VDAC1 were upregulated
(p < 0.05) (Figure 9D). These results suggest that these four
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TABLE 3 Multivariate logistic regression analysis of four genes.

Unstandardized
coefficients

Standardization
coefficient

t Significance 95% confidence
interval for the hazard

ratio

Collinear statistics

B SE β Lower Upper Allowance VIF

(Constant) 1.231 0.271 4.549 0.000016 0.694 1.768

OPTN 0.033 0.008 0.217 4.161 0.00007 0.017 0.049 0.725 1.379

VDAC1 0.032 0.013 0.136 2.502 0.014 0.007 0.058 0.669 1.494

PTGS2 −0.135 0.019 −0.54 −7.238 1.17E−10 −0.172 −0.098 0.355 2.817

TOMM20 −0.048 0.02 −0.187 −2.452 0.016 −0.088 −0.009 0.341 2.933

FIGURE 7

(A) The ROC verify the feasibility of the diagnosis of nomogram. (B) ROC curve for the four genes in the diagnostic prediction model.

genes have potential as diagnostic and prognostic biomarkers for
AD.

Discussion

Alzheimer’s disease is a common neurodegenerative disease
(Kumar and Bansal, 2022), and it has always been the focus of
researchers to explore the pathogenic factors and mechanisms
of AD. In this process, many hypotheses have emerged, among
which the most recognized by researchers is Aβ hypothesis,
which believes that Aβ deposition is the most critical pathological
change of AD (Ferrari and Sorbi, 2021; Hampel et al., 2021).
It has been reported that Aβ deposition in the nervous system
can make nerve cells lack of necessary nutrients and apoptosis,
leading to nervous system dysfunction (Du et al., 2018; Reddy
and Oliver, 2019). The accumulation of Aβ is positively correlated
with oxidative stress, while oxidative stress is closely related to
mitochondrial dysfunction (Kerr et al., 2017), which also indicates
that mitochondrial dysfunction can affect the accumulation process
of Aβ. There is evidence that the accumulation of damaged
mitochondria is one of the pathogenic factors of many human
diseases, including neurodegenerative and cardiovascular diseases,
as well as cancer. Mitophagy can eliminate the accumulation of
damaged mitochondria and reduce the occurrence of oxidative

stress. Among all cell types affected by mitochondrial dysfunction,
neurons are susceptible to mitochondrial damage due to their high
energy requirements (Shefa et al., 2019). Therefore, mitophagy is a
prevention and treatment strategy for neurodegenerative diseases.
So, exploring the relationship between mitophagy and AD may find
new biomarkers for AD diagnosis and new targets for treatment.

In this study, we combined the genes in the GSE63061 dataset
and genes involved in the process of mitophagy, and a total of
72 differentially expressed mitophagy-related genes (DE-MRGs)
were screened according to the screening criteria. Subsequently,
we further obtained five DE-MRGs through PPI and WGCNA.
Then, univariate analysis and random forest classification were
used to identify four genes that were closely related to AD. Then,
LASSO regression analysis and SVM classification algorithm were
used to verify the importance of these four genes in AD. Finally,
multivariate logistic regression analysis was used to construct a
diagnostic prediction model containing four genes. ROC curve
analysis results of test set, training set, and verification set show that
the model has good predictive ability. In addition, we combined age
and expression levels of these four genes to develop a nomogram
model for AD diagnostic. C index, calibration curve, and ROC
curve analysis showed that there was a good agreement between
the nomogram prediction and the actual observation. According
to the investigation, this study is the first to combine mitophagy
and differentially expressed genes of AD to establish a diagnostic
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FIGURE 8

Gene set enrichment analysis (GSEA) of OPTN, PTGS2, TOMM20, and VDAC1 genes using KEGG gene sets.

and predictive model, and to verify and evaluate the accuracy and
stability of this model, which may provide an auxiliary role in the
diagnosis of AD.

Furthermore, we verified the expression levels of four key
genes in different sample types of datasets, AD cell models and
peripheral blood of AD patients, and the results were consistent
with bioinformatics analysis. Compared with the control group,
the expressions of OPTN and VDAC1 were upregulated and
the expressions of PTGS2 and TOMM20 were downregulated in

AD group. Optineurin (OPTN) is a conserved protein that has
been identified as an autophagy receptor and plays a central role
in selective autophagy. It has been reported that OPTN, as a
receptor, is generally recruited into ubiquitin-coated depolarized
mitochondria and has been shown to be a major molecule
necessary for mitophagy (Yamano and Youle, 2020). OPTN
prevents neurodegeneration by negatively regulating necrosis
through degradation of interacting Serine/threonine kinase 1
(RIPK1) receptors (Ames et al., 2021). OPTN has been reported
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FIGURE 9

Expression levels of OPTN, PTGS2, TOMM20, and VDAC1 genes in the GSE5281 dataset (A), GSE63060 dataset (B), Alzheimer’s disease cell
model (C), and peripheral blood samples of Alzheimer’s disease patients (D).

to involve PINK1/Parkin-dependent mitochondrial autophagy.
Activated Parkin recruits OPTN proteins into the mitochondria.
With the increasing number of OPTN proteins, mitochondrial
autophagy is activated (Ke et al., 2022). Some researchers have
found that in AD, Aβ exposure can induce the activation of
PINK1/Parkin/OPTN pathway, upregulate the expression level
of OPTN, and initiate mitochondrial autophagy to reduce the
accumulation of Aβ. However, at the later stage, lysosome
fusion cholesterol can inhibit this process, and OPTN protein
will continue to accumulate in the form of polymerization in
the cytoplasm (Roca-Agujetas et al., 2021). Prostaglandin intra
peroxidase synthetase 2 (PTGS2) is one of the key enzymes
mediating new prostaglandin synthesis and has been shown to play
an important role in tumor development (Hashemi et al., 2019).
In human brain, PTGS2 is mainly expressed in the cerebral cortex,
hippocampus, hypothalamus, and other key parts (Prabhakaran
et al., 2021). Thus, PTGS2 may have important implications for
behavioral and cognitive function. Xie et al. (2022) reported that
PTGS2 can inhibit the proliferation and migration of AD model
cells by down-regulating expression, so as to protect nerve cells
from injury. However, the specific regulation mechanism is not
elaborated in this article. It is reported that PTGS2 also relies
on PINK1/Parkin pathway to mediate mitochondrial autophagy.
The downregulation of PTGS2 can activate PINK1-PRKN signal
to initiate mitochondrial autophagy (Chen Y. et al., 2019), but the
correlation mechanism between PTGS2 and the occurrence and
progression of AD has not yet been reported. Mitochondrial outer

membrane 20 translocation enzyme (TOMM20) is a receptor and a
key subunit of the multi-subunit mitochondrial outer membrane
(TOM) complex. TOMM20 has been reported to be associated
with many malignancies, and increased expression of TOMM20 has
been shown to be associated with mitochondrial aggregation (Park
et al., 2019). And it has been reported as a marker of mitochondrial
autophagy and may be involved in the PINK2/Parkin pathway
(Chen et al., 2020). Downregulation of TOMM20 expression
is generally associated with mitochondrial morphological and
functional impairment, but how autophagy is activated has not
been reported. Xiong et al. (2020) reported that valinomycin
can improve AD by reducing the level of TOMM20 protein
and inducing mitophagy. Voltage-dependent anion channel 1
(VDAC1) is subtype 1 of mitochondrial porin (VDAC). It has
been reported that the shape and structure of mitochondria can be
regulated through the mitochondrial permeability transition pore
to maintain synaptic plasticity (Manczak et al., 2013). The role of
VDAC1 in mitochondrial autophagy has been controversial. It has
been proposed that VDAC1 may be a part of the PINK1/Parkin
pathway in the form of VDAC1/Porin. It has also been proposed
that VDAC1 may be superfluous in mitochondrial autophagy
activated by PINK1/Parkin (Khalil et al., 2015). The association
mechanism of VDAC1 in mitochondrial autophagy remains to
be further studied. Shoshan-Barmatz et al. reported that VDAC1
is highly expressed in the brains of AD patients and amyloid
precursor protein (APP) transgenic mice, and the expression of
this protein may be related to the destruction of neuronal cells.
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It is suggested that targeting mitochondrial dysfunction through
VDAC1 may be a new strategy to inhibit cell death (Shoshan-
Barmatz et al., 2018). In summary, on the one hand, the expression
levels of OPTN, PTGS2, TOMM20, and VDAC1 in this study were
completely consistent with previous studies. On the other hand,
OPTN, PTGS2, TOMM20, and VDAC1 genes related to mitophagy
were closely associated with AD.

In the past, many diseases diagnosis models or risk models have
considered the single factor of differential expression gene, which
is difficult to reflect the variation of the disease. Subsequently,
some researchers gradually combined some functional process
genes to construct corresponding models, which not only narrowed
the screening range of model characteristic genes, but further
improved the screening specificity. In AD studies, there are
selective autophagy related, selective aging related, and selective
iron ferroptosis related, but there are no studies related to
mitochondrial autophagy. In this study, multiple public datasets
were selected for screening, verification and evaluation from
different perspectives and forms, which not only avoided the
defect of insufficient sample size, but also improved the stability,
accuracy, and reliability of the model. In addition, we jointly
analyzed the expression levels of four key genes in peripheral blood
and brain tissue, and found that there was no difference in the
expression trend, indicating that peripheral blood could be used
as diagnostic samples of AD patients. However, this study also has
some shortcomings: (1) the expression levels of key genes were only
verified at the mRNA level, but not at the protein level; (2) with the
development of sequencing technology, mitophagy-related genes
are still being updated constantly, so the model needs to be updated
constantly; (3) the expression levels of key genes were not verified
at the animal models.

Conclusion

In conclusion, four mitophagy-related genes in AD were
screened by serial biogenic method and machine learning method,
and a logistic regression diagnostic model and a personalized
nomogram model based on these genes were constructed. The
two models were evaluated and confirmed in different ways to be
used in the diagnosis of AD. These models provide a new idea
for the prevention and treatment of AD and provide a basis for
subsequent studies.
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