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Abstract
Non-negative matrix factorization (NMF) is a popular method for finding a low rank
approximation of a matrix, thereby revealing the latent components behind it. In genomics, NMF
is widely used to interpret mutation data and derive the underlying mutational processes and their
activities. A key challenge in the use of NMF is determining the number of components, or rank of
the factorization. Here we propose a novel method, CV2K, to choose this number automatically
from data that is based on a detailed cross validation procedure combined with a parsimony
consideration. We apply our method for mutational signature analysis and demonstrate its utility
on both simulated and real data sets. In comparison to previous approaches, some of which involve
human assessment, CV2K leads to improved predictions across a wide range of data sets.

1. Introduction

Non-negative matrix factorization (NMF) provides a low rank approximation of a matrix. When
non-negativity constraints are applicable, NMF often provides a more meaningful structure than other
low-rank approximation methods [1].

One important question concerning the use of NMF is how to determine the number of components, or
rank, of the factorization (K). For example, Brunet et al [2] propose the cophenetic correlation coefficient as
a measure of stability for each K, and choose the first value for which the cophenetic coefficient begins to fall.
Hutchins et al [3] select the value of K in which the reconstruction error curve shows an inflection point.
Another approach is a Bayesian variant of NMF [4], which chooses K that balances between model’s
likelihood and complexity. It uses an automatic relevance determination technique to remove irrelevant
components that do not help to explain the input data. Other approaches are based on enumerating K and
testing the performance of the different solutions in a cross validation setting (cf [5]). Owen and Perry’s
Bi-Cross-Validation [6] generalizes Gabriel’s two-dimensional holdout cross validation scheme [7], leaving
out a sub-matrix on each fold and using the rest of the matrix to reconstruct it. A different cross-validation
scheme by Wold [8] that is also adopted in [9, 10] leaves out random entries from the initial matrix.

In the field of mutational signature learning, the two common methods are SigProfiler (SP) [11] and
SignatureAnalyzer (SA) [12]. SigProfiler uses a method that is similar to Brunet et al It clusters signatures to
K clusters and uses the tightness of the clusters as a measure of stability. The number of signatures is chosen
after human assessment of the stability and accuracy of the solutions for a range of K values.
SignatureAnalyzer uses the above Bayesian NMF to infer the number of signatures K, but may output
different values across different runs and also depends on a regularization hyper-parameter.

Here we propose an automated method, CV2K, to choose K that is applicable for the most general
definition of NMF. CV2K is based on a detailed comparison of the performance of different solutions in
reconstructing hidden values of the original matrix in a cross validation setting, combined with a parsimony
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Table 2.1. Examples for widely used NMF variants.

Description ϕ(x) ϕ ′′(x) dϕ(x,y)

Frobenius norm x2

2 1 (x−y)2

2
Kullback–Leibler divergence (KL) xlogx 1

x x log x
y − x+ y

Itakura-Saito divergence (IS) –logx 1
x2

x
y − log x

y

consideration. We demonstrate its utility using both simulated and real data sets, showing that it
outperforms previous approaches over a wide range of cases.

2. Methods

2.1. Non-negative matrix factorization
NMF receives as input a matrix V ∈ RN×M

≥0 and a number of factors K, and outputsW ∈ RN×K
≥0 ,H ∈ RK×M

≥0

such that

V≈WH

In its most general formulation, NMF solves the following minimization problem:

argmin
W∈RN×K

≥0 ,H∈RK×M
≥0

D(V|WH) :=
∑
i,j

d(Vij,(WH)ij) (1)

for some cost function d : R2 → R≥0. A useful class of distance functions can be obtained by using Bregman
divergence, i.e for a univariate convex smooth function ϕ

dϕ(x,y) = ϕ(x)−ϕ(y)−ϕ′(y)(x− y)

is a cost function. Some useful ϕ functions are given in table 2.1.
In practice, sometimes a weight matrix O ∈ RN×M

≥0 is given to us, e.g. reflecting entries with available data
or the confidence in each cell, leading to the following extension:

argmin
W∈RN×K

≥0 ,H∈RK×M
≥0

Dϕ,O(V|WH) :=
∑
i,j

oijdϕ(Vij,(WH)ij) (2)

In order to optimize NMF, which is known to be NP hard [13], we start from a random guess forW,H
and apply some iterative update rules. For the initialization we use the random scheme used in scikit-learn;
for the updates we use a scalar block coordinate descent (sBCD) [14], which we found to be the simplest and
most efficient algorithm for a general cost function dϕ. We adapt both the initialization (lines 3–5) and sBCD
(lines 6, 9–16) to work with a weight matrix as in (2). To check for convergence, we use a minimal relative
improvement threshold ε and a maximum iteration number T (lines 7–8, 17) parameters. This is
summarized in algorithm 1, which was adapted from [14]. In practice, to avoid bad local minimum, we
initialize the model many times, train each for a few hundred iterations and continue training the best
performing model.

2.2. Data imputation
In order to score different values of K, we hide some of the original matrix entries and test how well we can
recover them. To this end, we set the weight matrix O to be binary, acting as a mask on the matrix values. To
score the imputation ofW,H we first normalizeW,H,V, then average the L1 norm over all missing values.
The entire scheme is summarized in algorithm 2. In lines 2–4 we move the weights from the rows of H to the
columns ofW without changing the productWH. To reduce the variance caused by high/low values to
impute, we normalize the rows of V andW to sum to one (lines 5–6, 7–8).

2.3. Choosing the number of components
Our CV2K scheme is described in algorithm 3 and consists of two parts:

(a) (lines 3–8) Evaluate all applicable values for K using imputation with a fraction p of missing values by
repeatedly running Algorithm 2 on random O matrices (line 5). Note we require O to have at least one
non-zero entry in every row and column. We let K∗ be the value of K attaining the best median error
over all runs. An example application of this criterion is shown in figure 1.
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Algorithm 1 NMF(V,O,K)

1: Input: V,O ∈ RN×M
≥0 ,K≤M

2: Parameters: ϕ convex and univariate function, ε > 0,T=max iterations
3:W∼N (0,1)N×K,H∼N (0,1)K×M

4: d=

√∑
i,j

oijvij

K
∑
i,j

oij

5:W= d|W|,H= d|H|
6: E=V −WH
7: t= 0,Scurr = Dϕ,O(V|V ′),Sprev =∞
8:While t< T,

Sprev−Scurr
Scurr

> ε do
9: B= ϕ ′′(WH) ◦O
10: for k= 1, . . . ,K do
11: V(k) = E+W:,kHk,: = (enm +wnkhkm)nm
12: for n= 1, . . . ,N do

13: wnk =max{0,
∑M

m=1 bnmv
(k)
nm hkm∑

M
m=1 bnmhkmhkm

}
14: form= 1, . . . ,M do

15: hkm =max{0,
∑N

n=1 bnmv
(k)
nm wnk∑

N
n=1 bnmwnkwnk

}
16: E= V(k) −W:,kHk,: = (v(k)nm −wnkhkm)nm
17: t= t+ 1,Scurr = Dϕ,O(V|V ′),Sprev = Scurr
18: returnW,H

Algorithm 2 Imputation Error (V,O,W,H)

1: Input: V ∈ RN×M
≥0 ,O ∈ {0,1}N×M,W ∈ RN×K

≥0 ,H ∈ RK×M
≥0

2: DH = diag(
∑M

m=1 h1 m, . . . ,
∑M

m=1 hKm)
3: H= D−1

H H
4:W =WDH

5: DV = diag(
∑M

m=1 v1 m, . . . ,
∑M

m=1 vNm)
6: Ṽ= D−1

V V
7: DW = diag(

∑K
k=1w1k, . . . ,

∑K
k=1wNk)

8: W̃= D−1
W W

9: Ṽ ′ = W̃H
10: return 1∑

n,m(1−onm)

∑
n,m(1− onm)|ṽnm − ṽ ′

nm|

Algorithm 3 CV2K (V,Kmin,Kmax)

1: Input: V ∈ RN×M
≥0 ,1≤ Kmin < Kmax ≤min{N,M}

2: Parameters: p= fraction to hide, T= number of runs for each K
3: for k= Kmin, . . . ,Kmax do
4: for t= 1, . . . ,T do
5: O∼ Bernoulli(p)N×M

6: W,H=NMF(V,O, k)
7: S[k, t]= ImputationError(V,O,W,H)
8: K̃= argmin

k
(median(S[k, :]))

9: do
10: K∗ = K̃
11: K̃=min{K< K∗|Wilcoxons-rank-sum(S[K, :],S[K∗, :])> 0.05}
12: While K̃< K∗

13: return K∗

(b) (lines 9–12) UseWilcoxon rank-sum test to compare the obtained valueK∗ to smaller values, and reduce
the value if they are not significantly different. This parsimony consideration is used to resolve cases in
which the imputation error reaches a plateau, as exemplified in figure 2. Table 2 summarizes the effect
of this part on the performance of our method.
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Figure 1. An example run of CV2K(0.1) on a simulated data set ((SP) vi). The minimum is obtained for K = 3 (as well as the final
K, marked in gray). The true number of components is also 3.

Figure 2. An example run of CV2K(0.01) on a simulated data set ((SP) iii). Dots represent runs, with their median denoted using
a dashed line. The minimum is obtained for K = 12, and the final chosen K is marked in gray (11). The true number of
components for this simulation is also 11.

As we show below, the results of CV2K are quite robust to p across a wide range, yet we hypothesize that
fractions between 1/N and 1/M will work best. This requires further investigation in more size-varying data
sets. In order to efficiently identify K∗, we use a binary search algorithm, starting from an arbitrary guess of
20. Once we find K∗, we scan a small window (±3) around it to test for a better value. If there is a close K
with a better median, we adopt it and repeat, otherwise we use Wilcoxon rank sum test to check the
possibility of decreasing K and repeat.

2.4. CV2K-x: Eliminating the fraction hyperparameter
To eliminate the fraction hyperparameter, we propose a variant (CV2K-x) which is described in Algorithm 4
(showing only the difference from Algorithm 3). The idea is to combine cross validation on the rows of V to
learn the H matrix (signatures) and cross validation on the columns to learn theW matrix (exposures; for
the latter we use SciPy’s non-negative least squares [15]). Finally, reconstruction errors are summed up from
each column and row folds to produce a score for a given rank. When applying this method with number of

4
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Algorithm 4 CV2K-x (V,Kmin,Kmax)—replaces Algorithm 3: lines 2–7

2: Parameter: F= number of sample folds
3: Randomly split V samples to F groups
4: for k= Kmin, . . . ,Kmax do
5: for f= 1, . . . ,F do
6: Vtrain = V[¬f]
7: V test =V[f ]
8: _,H= NMF(Vtrain,1,k)
9: DH = diag(

∑M
m=1 h1 m, . . . ,

∑M
m=1 hKm)

10: H= D−1
H H

11: form= 1, . . . ,M do
12: Htrain = H[¬m]
13: Htrain = DH−1

train
Htrain

14: Vcurr = Vtest[¬m]
15: Wtrain = nnls(Vcurr,Htrain)
16: Htest =H[m]
17: S[k, f]+ = ImputationError(Vtest,0,Wtrain,Htest)

folds ranging from 5 to 30, we noticed that the results were the same or deviated by at most 1 across this
range. Henceforth, we used 10-fold cross validation (F = 10).

2.5. Comparison to related methods
Two previous methods, Bi-CV [6] and scattered holdout [9], have explored the use of cross validation for
learning the number of components in NMF. To demonstrate the utility of our new method, we also tested it
against these two previous methods. We found that the Bi-CV method is not stable, producing results with
no single local minimum. For example, on a sample simulated data set ((SA) ii]) in which the true number of
components is 39, the Bi-CV method gives multiple local minima that are far from the true value (for K =
15, 64, 76, 52, 29, in this order). To test the scattered holdout approach we used Alex Williams’
implementation (http://alexhwilliams.info/itsneuronalblog/2018/02/26/crossval/). We adjusted the
implementation (abbreviated scatCV below) to use median values (rather than mean) to score each rank,
thus decreasing the problem of outliers.

Lin et al [10] also suggests using imputation to choose K. Their approach, implemented in the NNLM
package, is based on masking 30% of the input matrix entries in cross validation and picking K to minimize
the reconstruction error. See https://rdrr.io/cran/NNLM/f/inst/doc/Fast-And-Versatile-NMF.pdf for
additional details.

2.6. Data description
2.6.1. Simulated data
The simulated data was generated and described in detail in [16] to evaluate SigProfiler and
SignatureAnalyzer. Here, for each of the 12 data sets we evaluate our method on two sets of ‘realistic’
synthetic data: SP-realistic, based on SP’s reference signatures and attributions, and SA-realistic, based on SA’s
reference signatures and attributions. For each of the (i) to (x) tests, the synthetic data sets were generated
based on observed statistics for each signature in each cancer type. Different data sets can differ by the
number of signatures, number of active signatures per samples (sparsity), number of mutations per sample
(whole exome/genome sequencing), whether they reflect single cancer type or multiple types, and similarity
between signatures. All these factors affect the difficulty of determining the number of components.

2.6.2. Real data
We analyzed breast cancer (BRCA), chronic lymphocytic leukemia (CLLE), and malignant lymphoma
(MALY) mutation datasets from whole-genome sequences (WGS) from the International Cancer Genome
Consortium (ICGC). We downloaded mutations from the ICGC data portal (https://docs.icgc.org/). For
BRCA, we used release 22 to match Nik-Zainal et al [17], while for the other datasets we used the most recent
release (release 27). These data sets had 560, 100 and 100 samples, respectively, and more than 1000
mutations for most samples.

In addition, we downloaded mutations from whole-exome-sequencing (WXS) data of 411 ovarian cancer
(OV) patients from The Cancer Genome Atlas [18]. There are about 100 mutations per sample in this
collection. We extracted pancreas (PANC) and prostate (PROST) mutations fromWGS PCAWG data set
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Table 2. The effect of Wilcoxon rank sum test on the performance of CV2K(1e-3) on simulated data. The third column presents the
value of K∗ chosen by CV2K before and after the parsimony step (one value implies that the parsimony criterion did not affect the result.

Dataset Truth CV2K(1e-3)

(SP) i 11 14->11
(SA) i 20 20->19
(SP) ii 21 21->19
(SA) ii 39 40->38
(SP) iii 11 13->11
(SA) iii 19 20
(SP) iv 3 4->3
(SA) iv 3 3
(SP) v 11 11
(SA) v 26 29->24
(SP) vi 3 3
(SA) vi 3 5->3
(SP) vii.a 2 4->2
(SA) vii.a 2 2
(SP) vii.b 4 4
(SA) vii.b 4 7->4
(SP) vii.c 4 6->4
(SA) vii.c 4 5->4
(SP) viii 30 33->27
(SA) viii 30 34->32
(SP) ix 21 14->11
(SA) ix 39 20->14
(SP) x 21 22->19
(SA) x 39 41->38
Percent dev. 22.09->7.10
Avg. distance 2.36->2

Figure 3. An example run of CV2K(0.01) on a real data set (MALY). The minimum is on K = 11, and the final K is marked in
gray (10). The COSMIC number of signatures is 6.

linked from COSMIC. These data sets have 326 and 286 samples, respectively, with more then 1000
mutations for most samples.

2.7. Evaluation
For evaluation, we use three figures of merit: (i) Average percent deviation is the average over
|Truth−Predicted|

Truth ∗ 100, emphasizing errors in data sets with a small number of signatures. (ii) Average distance
is the average over |Truth−Predicted|, emphasizing large deviations from the true value especially in data

6
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Table 3. Performance evaluation on simulated data. Best values in each row are highlighted in bold. Comparison between
SignatureAnalyzer (SA), SigProfiler (SP), Akaike information criterion (AIC), Alex Williams’ implementation (scatCV), NNLM package
and our CV2 method.

Dataset Truth SA SP AIC scatCV NNLM CV2K(1e-3) CV2K(0.01) CV2K-x

(SP) i 11 11 11 11 11 8 11 11 11
(SA) i 20 17 19 17 20 12 19 19 20
(SP) ii 21 19 19 19 18 1 19 20 17
(SA) ii 39 32 30 32 15 6 38 32 35
(SP) iii 11 10 10 9 11 1 11 11 14
(SA) iii 19 16 17 16 21 17 20 20 22
(SP) iv 3 3 2 3 3 26 3 3 3
(SA) iv 3 3 3 3 3 31 3 3 3
(SP) v 11 11 11 11 10 1 11 11 11
(SA) v 26 23 20 24 7 1 24 19 19
(SP) vi 3 4 3 3 3 1 3 3 3
(SA) vi 3 3 2 3 3 1 3 3 3
(SP) vii.a 2 2 2∗ 2 2 6 2 2 2
(SA) vii.a 2 2 2∗ 2 2 5 2 2 2
(SP) vii.b 4 4 4∗ 4 4 1 4 4 4
(SA) vii.b 4 4 4∗ 4 4 3 4 4 4
(SP) vii.c 4 4∗ 4 4 5 1 4 4 4
(SA) vii.c 4 4∗ 4 4 4 4 4 4 4
(SP) viii 30 26 21 25 20 1 27 22 26
(SA) viii 30 25 21 24 22 5 32 34 27
(SP) ix 21 12 8 11 18 1 11 11 13
(SA) ix 39 11 5 11 11 1 14 16 13
(SP) x 21 19 16 19 19 1 19 20 18
(SA) x 39 32 28 32 13 2 38 36 35
Percent dev. 11.8 17 11.15 17.33 144.03 7.10 9.12 10.50
Avg. distance 3 4.2 3.08 5.08 14.04 2 2.64 2.76
Overall wins 11 10 13 13 1 19 17 13

sets with a high number of signatures. (iii) Overall wins is the number of datasets where the predicted rank is
closest to the true one. In addition, we use a signed version of the deviation, which is the average over
Predicted−Truth

Truth ∗ 100, to examine whether we over- or under-estimate the true rank.

3. Results

In the following we describe the application of CV2K to simulated and real mutations data sets. For brevity,
we use CV2K(p) to denote the application of CV2K with a fraction p of hidden values in its cross validation
procedure, where CV2K-x corresponds to the variant without the fraction hyperparameter. For CV2K, we
used the Kullback–Leibler divergence (KL) variant of NMF, to produce the results mentioned below.

3.1. Simulated data
Our first set of results is focused on simulated data from [16] of different characteristics, accounting for
different numbers of signatures and different similarity relationships between the signatures. We examine
our performance on simulated data over a range of fractions p of hidden entries, as summarized in table 4,
observing that the results are relatively robust across a wide range of values for this parameter and that—as a
general rule—our method tends to under-estimate K, with smaller fraction values leading to closer
estimations compared to larger values. We further observe that the use of the Wilcoxon rank sum step
improves the performance of the algorithm, as summarized in table 2.

We compare our performance against two widely used tools for mutational signatures extraction,
SigProfiler (SP) and SignatureAnalyzer (SA). We report the results of the authors of these tools on the
simulated data, also published in [16]. As SigProfiler and SignatureAnalyzer miss results on few data sets
(4 and 2, respectively), to aid the comparison we fill all missing values with the optimal value (marked with
an asterisk in table 3). We further compare to a general model selection approach, the Akaike information
criterion (AIC), as well as to the scatCV and NNLMmethods reviewed above. The results are summarized in
table 3 and depicted in figure 4 (left panel). They show the superiority of our approach (regardless of the
choice of the hidden fraction p to use) over the existing ones.
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Table 4. Performance of CV2K on simulated data, for different fractions p of hidden values in the cross validation procedure. Best values
in each row are highlighted in bold.

p 1e−3 5e−3 0.01 0.05 0.1 x

Percent dev. 7.10 6.67 9.12 9.42 11.07 10.50
Avg. distance 2 1.92 2.64 2.68 3.2 2.76
Signed dev. −6.11 −5.39 −7.57 −8.22 −9.87 −6.91

Table 5. Performance evaluation on real data. Comparison between SignatureAnalyzer (SA), Akaike information criterion (AIC), Alex
Williams’ implementation (scatCV), NNLM package and our CV2K method.

Dataset COSMIC SA AIC scatCV NNLM CV2K(1e−3) CV2K(0.01) CV2K−x

BRCA 12 16 23 3 2 9 11 9
OV 3 3 4 2 9 3 3 1
CLLE 5 7–8 11 1 1 2 4 4
MALY 6 15 22 8 4 7 10 9
PANC 6+ 90 26 4 1 7 11 8
PROST 3 77 18 3 3 3 4 3
Percent dev. 681.67 224.17 42.50 80 19.72 35.28 32.50
Avg. distance 28.83 11.50 3 4.50 1.33 2 1.83
Overall wins 1 0 1 1 4 3 2

Figure 4. Summary of performance evaluation on simulated and real data. Comparison between SignatureAnalyzer (SA),
SigProfiler (SP), Akaike information criterion (AIC), Alex Williams’ implementation (scatCV) and our CV2K method.

3.2. Real data
Next, we evaluated the different methods on six real mutation data sets described above. As the true number
of components or signatures in these applications is not known, we used the number of signatures suggested
in COSMIC [19] as a surrogate. For SA we report in these tests the most frequent choice across 10 runs. SP
was not used in these tests due to its high running time (using the original matlab code, we could not execute
the new python code on our servers) and lack of automation. The results are summarized in table 5 and
depicted in figure 4 (right panel), showing that our method yields numbers of signatures that are in higher
agreement with the current knowledge on the corresponding data sets as represented by COSMIC.

4. Conclusion

In summary, we proposed a fully automated method, CV2K, to select the number of components in NMF. In
the context of mutational signatures, we showed that CV2K outperforms state-of-the-art methods on
simulated and real data.

8
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The success of our method, in particular in comparison to previous methods that are based on similar
cross validation principles, can be attributed to several factors: (i) a comprehensive framework for NMF
optimization based on block coordinated descent coupled with multiple initializations to avoid local
minima; (ii) the use of a parsimony consideration to resolve cases in which the imputation error reaches a
plateau, making CV2K less prone to overestimation of K; and (iii) an exploration of a range of values for the
fraction of hidden entries and a novel approach to eliminate this hyper-parameter.

Although the number of components is the only obvious hyper-parameter in NMF, there is in fact
another regularization parameter that is often used. This regularization parameter can also affect the number
of signatures. For future work we suggest expanding the model search to include this parameter as well.

Acknowledgments

This study was supported in part by a fellowship from the Edmond J. Safra Center for Bioinformatics at
Tel-Aviv University. RS was supported by the Koret-UC Berkeley-Tel Aviv University Initiative in
Computational Biology and Bioinformatics.

Data availability statement

The data that support the findings of this study are openly available at the following URL/DOI:
https://github.com/GalGilad/CV2K.

ORCID iD

Gal Gilad https://orcid.org/0000-0003-1913-8918

References

[1] Lee D D and Seung H S 1999 Learning the parts of objects by non-negative matrix factorization Nature 401 10
[2] Brunet J P, Tamayo P, Golub T R and Mesirov J P 2004 Metagenes and molecular pattern discovery using matrix factorization Proc.

Natl. Acad. Sci. USA 101 4164–9
[3] Hutchins L N, Murphy S M, Singh P and Graber J H 2008 Position-dependent motif characterization using non-negative matrix

factorization Bioinformatics 24 2684–90
[4] Tan V Y F and Févotte C 2013 Automatic relevance determination in nonnegative matrix factorization with the /spl

beta/-divergence IEEE Trans. Pattern Anal. Mach. Intell. 35 1592–605
[5] Bro R, Kjeldahl K, Smilde A K and Kiers H A L 2008 Cross-validation of component models: A critical look at current methods

Anal. Bioanal. Chem. 390 1241–51
[6] Owen A B and Perry P O 06 2009 Bi-cross-validation of the SVD and the nonnegative matrix factorization Ann. Appl. Stat. 3 564–94
[7] Gabriel K R 2002 Le biplot—outil d’exploration de données multidimensionnelles J. Soc. Française Stat. 143 5–55
[8] Wold S 1978 Cross-validatory estimation of the number of components in factor and principal components models Technometrics

20 397–405
[9] Kanagal B and Sindhwani V 2010 Rank Selection in Low-rank Matrix Approximations: A Study of Cross-Validation for NMFs Proc.

Conf. Adv. Neural Inf. Process 1 01
[10] Lin X and Boutros P 2020 Optimization and expansion of non-negative matrix factorization BMC Bioinform. 21 12
[11] Alexandrov L B, Nik-Zainal S, Wedge D C, Campbell P J and Stratton M R 2013 Deciphering signatures of mutational processes

operative in human cancer Cell Rep 3 246–59
[12] Haradhvala N J et al 05 2018 Distinct mutational signatures characterize concurrent loss of polymerase proofreading and mismatch

repair Nat. Commun. 9 D777–83
[13] Vavasis S A 2010 On the complexity of nonnegative matrix factorization SIAM J. Optim. 20 1364–77
[14] Li L, Lebanon G and Park H 2012 Fast Bregman divergence NMF using Taylor expansion and coordinate descent Proc. of the 18th

ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining KDD’12 (New York, NY, USA: Association for Computing
Machinery) pp 307–15

[15] Lawson C L and Hanson R J 1995 Solving Least Squares Problems (Philadelphia, PA: Society for Industrial and Applied
Mathematics) (https://doi.org/10.1137/1.9781611971217)

[16] Alexandrov L et al 02 2020 The repertoire of mutational signatures in human cancer Nature 578 94–101
[17] Nik-Zainal S et al et al 2016 Landscape of somatic mutations in 560 breast cancer whole-genome sequences Nature 534 47
[18] Tomczak K, Czerwinska P and Wiznerowicz M 2015 The cancer genome atlas (TCGA): An immeasurable source of knowledge

Contemp. Oncol. (Pozn) 19 A68–77
[19] Forbes S A et al 11 2016 COSMIC: somatic cancer genetics at high-resolution Nucleic Acids Res. 45 D777–83

9

https://github.com/GalGilad/CV2K
https://orcid.org/0000-0003-1913-8918
https://orcid.org/0000-0003-1913-8918
https://doi.org/10.1038/44565
https://doi.org/10.1038/44565
https://doi.org/10.1073/pnas.0308531101
https://doi.org/10.1073/pnas.0308531101
https://doi.org/10.1093/bioinformatics/btn526
https://doi.org/10.1093/bioinformatics/btn526
https://doi.org/10.1109/TPAMI.2012.240
https://doi.org/10.1109/TPAMI.2012.240
https://doi.org/10.1007/s00216-007-1790-1
https://doi.org/10.1007/s00216-007-1790-1
https://doi.org/10.1214/08-AOAS227
https://doi.org/10.1214/08-AOAS227
https://doi.org/10.1080/00401706.1978.10489693
https://doi.org/10.1080/00401706.1978.10489693
https://doi.org/10.1.1.185.1337
https://doi.org/10.1.1.185.1337
https://doi.org/10.1186/s12859-019-3312-5
https://doi.org/10.1186/s12859-019-3312-5
https://doi.org/10.1016/j.celrep.2012.12.008
https://doi.org/10.1016/j.celrep.2012.12.008
https://doi.org/10.1038/s41467-018-04002-4
https://doi.org/10.1038/s41467-018-04002-4
https://doi.org/10.1137/070709967
https://doi.org/10.1137/070709967
https://doi.org/10.1145/2339530.2339582
https://doi.org/10.1137/1.9781611971217
https://doi.org/10.1038/s41586-020-1943-3
https://doi.org/10.1038/s41586-020-1943-3
https://doi.org/10.1038/nature17676
https://doi.org/10.1038/nature17676
https://doi.org/10.5114/wo.2014.47136
https://doi.org/10.5114/wo.2014.47136
https://doi.org/10.1093/nar/gkw1121
https://doi.org/10.1093/nar/gkw1121

	An automated approach for determining the number of components in non-negative matrix factorization with application to mutational signature learning
	1. Introduction
	2. Methods
	2.1. Non-negative matrix factorization
	2.2. Data imputation
	2.3. Choosing the number of components
	2.4. CV2K-x: Eliminating the fraction hyperparameter
	2.5. Comparison to related methods
	2.6. Data description
	2.6.1. Simulated data
	2.6.2. Real data

	2.7. Evaluation

	3. Results
	3.1. Simulated data
	3.2. Real data

	4. Conclusion
	Acknowledgments
	References


