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Abstract
At x-ray beamlines of synchrotron light sources, the achievable time-resolution for 3D
tomographic imaging of the interior of an object has been reduced to a fraction of a second,
enabling rapidly changing structures to be examined. The associated data acquisition rates require
sizable computational resources for reconstruction. Therefore, full 3D reconstruction of the object
is usually performed after the scan has completed. Quasi-3D reconstruction—where several
interactive 2D slices are computed instead of a 3D volume—has been shown to be significantly
more efficient, and can enable the real-time reconstruction and visualization of the interior.
However, quasi-3D reconstruction relies on filtered backprojection type algorithms, which are
typically sensitive to measurement noise. To overcome this issue, we propose Noise2Filter, a
learned filter method that can be trained using only the measured data, and does not require any
additional training data. This method combines quasi-3D reconstruction, learned filters, and
self-supervised learning to derive a tomographic reconstruction method that can be trained in
under a minute and evaluated in real-time. We show limited loss of accuracy compared to training
with additional training data, and improved accuracy compared to standard filter-based methods.

1. Introduction

Computed tomography is a non-destructive imaging technique with applications in biology [1], energy
research [2], materials science [3], and many other fields [4]. In a tomographic scan, a rotating object is
positioned between a source emitting penetrating radiation and a detector that captures the projections of
the object. Tomographic reconstruction algorithms compute a 3D image of the interior of the object from its
projections. Besides extensive use in medical and laboratory settings, tomography is routinely used at
synchrotron facilities, where advances in the last decade have enabled time-resolved imaging of the interior
structure of a rapidly changing object [1–3]. So far, reconstruction algorithms are typically operated offline,
enabling visualization of the object only after a scan has completed.

Recent advances in tomographic reconstruction enable real-time interrogation of the reconstructed
volume during the scanning process using a quasi-3D reconstruction protocol [5, 6]. In this framework,
arbitrarily oriented slices are selected for reconstruction and can be interactively rotated and translated, after
which they are reconstructed and visualized virtually instantaneously. This creates the illusion of having
access to the full reconstructed 3D volume, but at a fraction of the computational cost. The quasi-3D
reconstruction protocol has been implemented in the RECAST3D software package. The information gained
from this quasi-3D visualization can be used to directly steer the tomographic experiment, for instance, by
adjusting an external parameter—such as temperature—in response to changes in the interior of the object.
In addition, the object can be re-positioned, or other acquisition parameters can be adjusted to facilitate the
best possible reconstruction [7].
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Figure 1. Real-time reconstructions using FBP and Noise2Filter of a high-noise acquisition using the RECAST3D software
package. The highlighted slice is currently being moved.

Real-time 3D reconstruction is computationally demanding and data sizes are substantial—data
acquisition rates of 7.7GB per second are not uncommon [6]. To attain real-time visualization, the quasi-3D
reconstruction protocol is essentially limited to filtered backprojection type methods, since it exploits the
locality of backprojection to obtain fast reconstructions. Filtered backprojection (FBP) methods are sensitive
to measurement noise, leading to errors in the reconstructed slices [8]. Therefore, application of these
methods in the quasi-3D reconstruction protocol is not well-suited to high-noise acquisitions [2, 9], as
illustrated in figure 1(a).

In this paper, we combine a learning-based filtered reconstruction method with a self-supervised training
strategy to obtain Noise2Filter, a denoising FBP-type reconstruction algorithm that can be applied in a
quasi-3D reconstruction protocol. This algorithm is designed to be both fast to train and fast to evaluate.
Moreover, no additional training data is required other than the measured projection data.

For dynamic scans, our method enables a possible use case where a static scan is performed—with the
exact same acquisition rates as the dynamic scan—permitting the Noise2Filter method to be trained
immediately. After training for tens of seconds, real-time visualization of the dynamic experiment can ensue,
as illustrated in figure 1(b). In addition, we note that Noise2Filter can be used as a stand-alone
reconstruction method.

The first component of our method is the Neural Network filtered backprojection (NN-FBP)
method [10]. This method learns a set of filters, along with additional weights, and then forms the
reconstructed image as a non-linear function of the individual FBP reconstructions, resulting in higher
image quality than standard FBP. However, its application requires the availability of ground truth or
high-quality reconstructed images.

This limitation can be overcome using the second component of our method, Noise2Inverse [11], which
is a recent machine learning method designed to train denoising convolutional neural networks (CNNs) in
inverse problems in imaging. To train a denoising CNN, the method splits the measured projection data to
obtain multiple statistically independent reconstructed slices, which are presented to the network during
training, without requiring additional high-quality data.

Our main contribution is that we show how to combine the NN-FBP method with the Noise2Inverse
training strategy. In addition, we demonstrate that NN-FBP training can be substantially accelerated as
compared to previous methods [10]. We evaluate our method on both simulated and experimental datasets,
comparing to both conventional filter-based methods and supervised NN-FBP. Finally, we demonstrate that
the method can be used in a quasi-3D reconstruction protocol, and exhibit its potential use for dynamic
control of tomographic experiments.

The paper is structured as follows. In the next section, we introduce the tomographic reconstruction
problem and the filtered backprojection algorithm. In addition, we introduce quasi-3D reconstruction,
NN-FBP, and Noise2Inverse. These methods are combined in section 3, where we describe the Noise2Filter
method. In sections 4 and 5, we describe experiments to analyze the reconstruction accuracy of Noise2Filter
on real and simulated CT datasets. Moreover, we study the hyper-parameters of the proposed method. We
discuss these results in section 6.
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2. Preliminaries

2.1. Reconstruction problem
In parallel-beam tomography, an unknown object rotates with respect to a planar detector and a parallel
source beam. Projections are acquired at a finite number Na of rotation angles, yielding 2D images defined
on an N × N pixel grid. The reconstruction problem can be modeled by a system of linear equations

Wx= y, (1)

where the vector x ∈ Rn denotes the unknown object, y ∈ Rm describes the measured projection data, and
W= (wij) is anm× nmatrix where wij denotes the contribution of object voxel j to detector pixel i. For the
sake of simplicity we assume that the volume consists of n=N × N × N voxels, and the projection dataset
containsm= Na×N×N pixels.

2.2. Filtered backprojectionmethods
We consider the filtered backprojection (FBP) method for parallel beam tomography [12]. The FBP
algorithm is a two step algorithm. First, the data y ∈ Rm is convolved over the width of the detector with a
one-dimensional filter h ∈ RNf . Next, the backprojection WT : Rm → Rn is applied to compute a
reconstruction xFBP ∈ Rn. Expressing the FBP algorithm in terms of h, y andW yields

FBP(y,h) =WT(y ∗h) = xFBP. (2)

Observation 1 (FBP is two-step) The FBP algorithm consists of a filtering step and a backprojection step,
and both can be computed separately. That is, the filtering can be performed in advance, and the backprojection
can occur on demand. This technique will be used throughout the paper.

We observe that the FBP algorithm can be described by a linear operator when fixing either y or h. This
will be exploited in the discussion of learned filter methods in section 2.4.

2.3. Quasi-3D reconstruction
A property shared by filtered-backprojection type algorithms is that they are local, in the sense that each
voxel of the reconstructed volume can be computed directly from the filtered data by backprojecting onto
only that voxel [5]. Therefore, if one is interested in a subset of the reconstructed volume, much of the
computational cost of a full 3D reconstruction can be avoided. Specifically, if the reconstructed subset is a
rectangular box or a slice, efficient backprojection algorithms such as those implemented in the ASTRA
toolbox [13] can be used. This reduces the computational cost of the backprojection step by an order of N.
Observation 2 (Locality) The backprojection operator is local. Computing the backprojection for a single

voxel or a subset of voxels is therefore substantially faster than computing the backprojection for all voxels.
This methodology has been implemented in the RECAST3D software package [5], which exposes a

limited number of arbitrarily oriented 2D slices. These slices are interactive and can be manipulated by the
technician of the tomographic experiment. This technique for real-time visualization has been successfully
applied in practice to acquisitions in micro-CT systems [14], synchrotron tomography [6], and electron
tomography [7].

2.4. NN-FBP reconstruction algorithm
The NN-FBP algorithm learns a set of suitable filters and a set of weights, and then forms a non-linear model
that combines the individual FBP reconstructions. The algorithm may be considered as a multi-layer
perceptron [15] that operates pointwise on a collection of suitable reconstructions. A schematic
representation of the NN-FBP algorithm is given figure 2, a mathematical description is given below.

To obtain these reconstructions, we first make some general observations: a filter h can be seen as a vector
in RNf , and the FBP method is linear in the filter when fixing the measured projection data y. Therefore, an
FBP reconstruction can be expressed as a linear combination in the basis of the filter. Let e1, . . . ,eNf be any
basis for the space of filters RNf , such as the standard basis. Define the reconstruction of y filtered by a basis
element ei as

xei :=WT (y ∗ ei) . (3)

Then we can write the FBP reconstruction as a linear combination of these reconstructions

xFBP(y,h) =
Nf∑
i=1

hixei =
Nf∑
i=1

WT (y ∗hiei) =WT (y ∗h) , (4)

3
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Figure 2. An illustration of the NN-FBP method as applied to a noisy 2D Shepp-Logan sinogram. Before training, the data is
reconstructed with filters e1, . . . ,eNe , defined on an exponential grid. These reconstructions xe1 , . . . ,xeNe are used as input for
training a multilayer perceptron, as described in equation (5). The training target is a high-quality reconstruction. For
reconstruction, learned filters h1, . . . ,hNh are extracted from the network (as indicated by the red arrow). Reconstructions are
computed using the learned filters, and a non-linear combination is computed, as described in equation (6).

where hi denotes the coordinate of the ith basis element ei.
Given a set of Nh filters h1, . . . ,hNh , we can define a multi-layer perceptron (MLP) with one hidden layer

as a function of the reconstructions xe1 , . . . ,xeNf

MLPθ(xe1 , . . . ,xeNf ) = σ

(
Nh∑
k=1

akσ

(
Nf∑
i=1

hki xei − bk

)
− b0

)
, (5)

where σ is a non-linear activation function, such as the sigmoid. The multi-layer perceptron has free
parameters θ = (a,b,h1, . . . ,hNh). Plugging equation (4) into equation (5), we obtain the NN-FBP
reconstruction algorithm

NN− FBPθ(y) = σ

(
Nh∑
k=1

akσ
(
FBP(y,hk)− bk

)
− b0

)
, (6)

which is amenable to fast, parallel computation because it is a non-linear combination of FBP
reconstructions.
Observation 3 (pointwise) Note that the multi-layer perceptron operates point-wise on the voxels of the

reconstructed volumes. Therefore, a single voxel can be computed without having to reconstruct other voxels. This
observation connects to the observation of locality on Page 5, and will return several times in this paper.

Supervised training [15] is used to determine the free parameters of the MLP defined in equation (5). The
goal is to approximate a suitable target reconstruction xTarget by minimizing∥∥∥MLPθ(xe1 , . . . ,xeNf )− xTarget∥∥∥22, (7)

i.e. the mean square error with respect to the target reconstruction.
The size of the training problem in equation (7) is related to the number of reconstructed volumes

xe1 , . . . ,xeNf and the size of these reconstructions, which suggests two techniques that may be used to
accelerate training. First, to reduce the number of reconstructions, the filter is expressed on an exponentially
binned grid, which grows logarithmically in the width of the filter. Since the filter width is proportional to
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the number of pixels in each detector row, we have Ne = O(logNf) = O(logN). This technique yields suitable
filter approximations, as observed in [10, 16]. Second, training may be accelerated by sampling a subset of
voxels on which to minimize equation (7), rather than the full volume. Subsampling is possible because
NN-FBP operates pointwise, as noted in Observation 3.

To summarize, we can split the NN-FBP algorithm into three parts, namely: (1) data preparation, where
the input training data xe1 , . . . ,xeNe is computed, (2) network training, where the weights θ

⋆ for the network
are determined using a supervised learning approach, and (3) the reconstruction algorithm, which is
summarized in Algorithm 1.

We use the same network architecture as proposed in [10]. The hyperparameters used in this paper are
discussed in section 4.2.

Algorithm 1 NN-FBP reconstruction algorithm

1: Given projections y and a set of parameters θ∗ :=
(
a,b,h1, . . . ,hNh

)
.

2: Compute the FBP reconstruction using the learned filters:
3: for k= {1, 2, ..,Nh} do
4: xhk = FBP(y,h

k)
5: end for
6: Compute a non-linear combination of these reconstructions:

NN− FBPθ⋆(y) = σ
(∑Nh

k=1 akσ(xhk − bk)− b0
)

2.5. Noise2Inverse training
Noise2inverse is a technique to train a convolutional neural network (CNN) to denoise reconstructed images
in a self-supervised manner [11]. This means that no additional training data is required beyond the
acquired noisy measurements. The key idea is change the training strategy by splitting the projection dataset
into subsets, computing sub-reconstructions with these subsets and train a neural network mapping one
sub-reconstruction to another.

First, the projection data is split into Ns sub-datasets such that projection images from successive angles
are placed in different sub-datasets y1,y2, . . . ,yNs . The network is trained to predict the reconstruction from
one subset using the reconstruction of the other subsets. Training therefore aims to find the parameter θ∗

that minimizes

Ns∑
j=1

∥∥CNNθ(FBP(yj))− FBP(yl ̸=j)
∥∥2
2
, (8)

where FBP(yj) denotes the reconstruction from one subset of the data, and FBP(yl̸=j) denotes the FBP
reconstruction of the remaining subsets. We observe that the FBP reconstruction of a projection dataset is
the mean of the FBP reconstruction of each projection image individually, which enables us to obtain

FBP(yl̸=j) =
1

Ns− 1
∑
l̸=j

FBP(yl). (9)

Now the original training data can be denoised by applying the trained network to each
subreconstruction individually and averaging to obtain

xN2I =
1

Ns

Ns∑
i=1

CNNθ⋆(FBP(yi)). (10)

In the previous discussion, we have assumed that the target images are reconstructed from more subsets
than the input images. As in [11], we call this the 1:X strategy. A reverse X:1 training strategy is also possible.
Here, the target is a single subreconstruction and the input is reconstructed from the remaining sub-datasets.

Note that convolutional neural networks take into account the surrounding structure of a voxel, typically
a 2D slice, and thus do not operate pointwise. Therefore, these networks are are an example where
Observation 3 does not apply.

3. Noise2Filter method

Our proposed method combines the three ideas introduced in the previous section. The NN-FBP method is
trained on a single projection dataset using the Noise2Inverse training strategy. This enables fast

5
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Figure 3. An illustration of the training of the Noise2Filter method. Data is acquired using a 3D parallel beam geometry. For each
detector row, the sinogram is split in three sub-datasets such that acquisitions from successive projection angles belong to
different sub-datasets. Each sub-dataset is used as input for NN-FBP training; the remaining sub-datasets are used in the target
FBP reconstruction. This illustration depicts the 1:X strategy. In the X:1 strategy, the input is computed from the majority of the
data, and the target from the minority, rather than vice versa.

reconstruction of arbitrarily oriented slices using the NN-FBP reconstruction algorithm in a quasi-3D
reconstruction protocol.
Training The training procedure for the Noise2Filter method is similar to the NN-FBP procedure

described in [10], with two notable exceptions. First, instead of minimizing the supervised training objective
in equation (7), Noise2Filter minimizes a self-supervised training objective similar to equation (8). Second,
training voxels are sampled from a subset of the reconstructed volume, rather than the full volume.

As in Noise2Inverse, the projection data y is split into Ns subdatasets with FBP reconstructions
xFBP,j, j= 1, . . . ,Ns. For each subdataset yj, we denote with xj,ei a reconstruction filtered with basis element ei.

Training aims to minimize the difference between the MLP output of a subset of projection data and the
FBP reconstruction of the remaining data. For the 1:X training strategy, the MLP operates on a single subset
of the data and the target is reconstructed from the remaining subsets. For the X:1 training strategy, on the
other hand, the target is reconstructed from a single subdataset, and the MLP operates on the remaining
subsets. The self-supervised training objective thus becomes:

Ns∑
j=1

∥∥MLPθ(xj,e1 , . . . ,xj,eNe )− xFBP,l ̸=j

∥∥2
2
, (X : 1strategy) (11)

Ns∑
j=1

∥∥MLPθ(xl̸=j,e1 , . . . ,xl ̸=j,eNe )− xFBP,j
∥∥2
2
, (1 : Xstrategy) (12)

with

xFBP,l̸=j =
1

Ns− 1
∑
l̸=j

xFBP,l, xl̸=j,ei =
1

Ns− 1
∑
l ̸=j

xl,ei . (13)

A schematic summary of the 1:X training strategy is given in figure 3.
The second difference is related to the voxels that are considered for the training. Like NN-FBP, we

minimize the training objective on a random sample of NT voxels. We have NT ≪ N3, and increasing the
sample size in response to increasing object size has been observed to yield diminishing returns. Unlike
NN-FBP, training voxels are sampled only from the reconstructions of the axial, frontal, and longitudinal
ortho-slices, rather than the full volume. This choice substantially reduces the computational effort of the
data preparation step, as shown below.
Data preparationWe discuss the 1:X strategy; similar statements hold true for the X:1 strategy.
The data preparation step is the most computationally expensive part of the method. In this step, an

input reconstruction xl≠j,ei is computed for each subdataset yj and each basis element ei. In addition, a target
reconstruction xFBP,j is computed for each subdataset, resulting in a total of Ns(Ne + 1) reconstructions.
These reconstructions are computed on the ortho-slices instead of the full volume. Due to locality—see
Observation 2—the computational cost of the data preparation is therefore reduced by an order of N.

6
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Note that the computational cost of the FBP algorithm scales linearly in the number of projection angles,
therefore the computational cost of this step is equal to 3(Ne+1) FBP reconstructions of a 2D slice. Splitting
the projection data thus has no adverse effect on the performance.
Reconstruction The reconstruction algorithm is almost identical to the NN-FBP reconstruction

algorithm described in Algorithm 1. Whereas the aim of NN-FBP is to reconstruct the full volume, we aim
only to reconstruct slices on demand. Therefore, reconstruction can be substantially accelerated.

We make use of Observation 1 that the FBP algorithm can be split in a filtering and backprojection step.
First, the acquired projection data is filtered with the learned filters and cached. Then, a single slice can be
reconstructed using Algorithm 1, which can occur in real-time due to the locality of the backprojection
(Observation 2) and the pointwise nature of the multi-layer perceptron (Observation 3). Therefore, the
reconstruction can be integrated in the quasi-3D reconstruction protocol, computing reconstructions of
arbitrarily oriented slices in real time.

We note that the reconstruction step deviates slightly from the Noise2Inverse reconstruction described in
equation (10). Rather than averaging separate reconstructions of each subset of the projection data,
Noise2Filter computes a reconstruction using the learned filters directly from all data. In the context of
self-supervised learning, this technique has been observed to yield improved results [17].
Noise2Filter summary
The Noise2Filter method consists of three steps. A summary of these steps, and specifically the

computations performed, is given below:

1. Data preparation Compute the input and target training pairs from the measured projection data y.
Specifically, split the measured projection data in Ns equal sub-datasets and compute the following for
the ortho-slices:

FBP(yi,h)for i= 1, . . . ,Ns (14)

FBP(yi,ej)for i= 1, . . . ,Ns, j= 1, . . . ,Ne. (15)

The computational effort of this step is equal to 3(Ne+1) FBP reconstructions of a 2D slice.
2. Training Obtain a random sample of NT voxels on the ortho-slices for inclusion in the training set.
Compute the optimal parameters θ⋆ that minimizes the training objective with respect to the sampled
voxels. Note that the training time depends on the size of the training set, whichmay be fixed independent
of the object size.

3. ReconstructionUsing the computed parameters θ⋆, compute an NN-FBP reconstruction for the desired
2D slices. Recall from equation (6) that the computational cost of an NN-FBP reconstruction is equival-
ent to Nh FBP reconstructions.

The network architecture used for the Noise2Filter method is the same as the architecture used for the
NN-FBP method and the considered hyperparameters are discussed in section 4.2.

4. Experimental setup

In this section we discuss the setup of the experiments. Specifically, we describe the data used in the
experiments, the implementation of NN-FBP and Noise2Filter, and the measures used to quantify these
comparisons.

4.1. Simulated data
A phantom was generated by removing 100,000 randomly-placed non-overlapping balls from a foam
cylinder. The foam_ct_phantom package [9] was used to generate analytic projection images with 2×
supersampling, were each pixel’s value is averaged over four equally-spaced rays through the pixel. The result
contains 1024 equally-spaced projection images with 512× 768 pixels.

In each experiment, the simulated projection images were corrupted with Poisson noise of various levels
of intensity, by altering the incident photon count I0 per pixel. Specifically, we compute the mean measured
photon Imean count for an incident photon count I0 from the analytic projection images yanalytic:

Imean = I0e
−yanalytic . (16)

7



Mach. Learn.: Sci. Technol. 2 (2021) 015012 M J Lagerwerf et al

Given the mean measured photon count, we draw from a Poisson distribution the measured photon count I
with respect to I0 and compute the corresponding noisy projection data y:

I∼ Pois(Imean) y=− log
(

I

I0

)
. (17)

The average absorption of the sample was 10%. Reconstructions without Poisson noise and with Poisson
noise (I0= 1000) are shown in figure 5.

4.2. NN-FBP and Noise2Filter
Noise2Filter and NN-FBP benefit from a shared implementation. Therefore, most almost all implementation
details are the same. As in the original NN-FBP implementation [10], the number of learned filters is set to
Nh = 4, the non-linear activation function is the sigmoid, the exponential binning parameter is set to 2, but
the filters are piece-wise linear—rather than piece-wise constant—as proposed in [16]. Moreover, changes
have been made to the shared implementation in order to accelerate data preparation, training, and
reconstruction.

In the data preparation step, reconstructions are computed of the ortho-slices rather than the full
volume. These reconstructions are performed using the RECAST3D software package [5].

Some changes have been made to the training procedure. As in the original implementation, the training
objective is minimized using the Levenberg-Marquadt algorithm (LMA), which requires that the data
samples are split into a training set and a validation set. Compared to the original implementation, however,
the number of training samples is reduced from 106 to 5 · 104, and training is stopped after the validation set
error has not improved for 10 epochs (originally 100 epochs were used). The effect of this reduction is
discussed in section 5.2. In addition, the original CPU implementation of the training process is accelerated
by performing computations on the graphics processing unit (GPU) using PyTorch [18].

Final reconstructions are computed using the RECAST3D software package [5].
NN-FBP The free parameters for the NN-FBP method are trained and tested on separate tomographic

datasets. The training dataset consists of paired noisy and noiseless reconstructions. Supervised training
minimizes the training objective in equation (7).
Noise2Filter The Noise2Filter parameters are optimized using self-supervised training on the noisy test

dataset, rather than on a separate training dataset. No noiseless reconstructions are necessary for training.
Depending on the training strategy (X:1 or 1:X), training minimizes either equation (11) or (12).

4.3. Quantitative measures
Reconstruction accuracy is quantified using the Peak Signal-to-Noise Ratio (PSNR) and the Structural
Similarity (SSIM) index [19] metrics. Both metrics were computed with respect to the noiseless
reconstructed images and using a data range that was determined by the minimum and maximum intensity
of the noiseless reconstructed images. If not otherwise mentioned, the reported metrics are the average of the
metric as computed on the three ortho-slices.

5. Experiments and results

We performed several experiments to evaluate the Noise2Filter method. We provide a short summary below.
Reconstruction accuracyWe compare Noise2Filter to supervised NN-FBP training and several standard

FBP improvement strategies in terms of reconstruction accuracy.
Hyperparameter analysis Implementation choices in the design of the Noise2Filter method are analyzed,

including the number of training samples, training strategy (X:1 or 1:X), and number of splits.
Timing An analysis of data preparation, training, and reconstruction speed is given.
Experimental data The method is applied to experimental data, including a showcase that illustrates the

potential for use in dynamic control.

5.1. Reconstruction accuracy comparison
In this section, we assess the reconstruction accuracy of the Noise2Filter method. We compare to other
filter-based reconstruction techniques in terms of reconstruction accuracy. Specifically, we compare to a
baseline FBP reconstruction (with a Ram-Lak filter) and FBP with standard noise reduction
techniques—Gaussian filtering (FBPG) and frequency scaling (FBPsc). These two methods are discussed in
more detail in appendix A. In addition, we compare to the NN-FBP, which is trained on a separate training
dataset with ground truth images.

The comparison is performed on the simulated foam dataset with varying levels of Poisson noise. The
incident photon count I0 was varied between 1000 and 32, 000 in powers of two.
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Figure 4. Reconstruction accuracy comparison of Noise2Filter (N2F-1X), NN-FBP, and FBP with Gaussian filtering, frequency
scaling, and default filter. For varying noise levels, the average (line) and standard deviation (shaded region) over 20 trials of the
PSNR and SSIM are reported.

For each of the methods, parameter selection was performed as follows. For Noise2Filter, training was
performed on the noisy test set. For NN-FBP, training was performed on a separate training dataset. For both
methods, training was repeated 20 times to obtain statistics for the PSNR and SSIM\@. For Gaussian
filtering and frequency scaling, the parameters maximizing the SSIM on the test set were determined using a
linear grid search.

The Noise2Filter method with the 1:X training strategy and 3 splits is used. We find that this yields
consistent results at various noise levels.

The quantitative measures for the ortho-slices are shown in figure 4. For all noise levels, the Noise2Filter
metrics are higher than FBP with frequency scaling or Gaussian filtering. The NN-FBP method attains the
best metrics, although the difference with Noise2Filter decreases as the noise level decreases. The difference
in reconstruction accuracy is illustrated in figure 5, where the ground truth phantom, reconstructions, and
residuals for all considered methods are shown for the incident photon count I0= 1000. Notice that NN-FBP
and Noise2Filter remove the noise in the voids, unlike the FBP methods.

5.2. Hyper parameter analysis
We consider three hyper parameters for the N2F method: the number of samples considered for training, the
training strategy X:1 or 1:X and the number of splits Ns for the measured projection data.

First, we analyzed the reconstruction accuracy as a function of NT, the number of training samples used
in the training process. Here, the number of validation samples is fixed to 10% of the number of training
samples. Noise was applied to the projection dataset equivalent to I0= 1000. The results for this experiment
are shown in figure 6. We observe that increasing the number of voxels yields virtually no increase in PSNR
or SSIM beyond NT = 5 · 104 voxels.

Second, we compare the training strategies and the number of splits on the simulated foam dataset for
two noise levels, I0= 1000 and I0= 8000. For various values of the number of splits, 20 networks were
trained and used to reconstruct the projection data. The average and standard deviation of the PSNR and
SSIM are shown in figure 7. For both noise levels we observe that the 1:X strategy with 3 splits obtains the
best SSIM and close to the best PSNR.

5.3. Timing comparison
We give timings for the data preparation, training, and reconstruction step of the Noise2Filter method. The
computations were performed on a server with 375 GB of RAM and made use of a single Nvidia GeForce
RTX 2080 Ti GPU (Nvidia, Santa Clara, CA, USA).

We computed the mean and standard deviation of the training time and number of epochs over 50 trials,
resulting in a training time of 5.45± 4.21 s and a number of epochs of 58.21± 34.73.

In table 1 we report the reconstruction times of one 2D slice using the RECAST3D framework for
standard FBP and the Noise2Filter method. We see that Noise2Filter is roughly 4 times slower than standard
FBP, which is expected considering that we use Nh = 4 learned filters.
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Figure 5. Reconstructions and residuals of the FBP algorithm, FBP with frequency scaling (FBPsc, sc= 0.4), FBP with Gaussian
filtering (FBPG, σ= 1.5), Noise2Filter (N2F), and NN-FBP on a simulated foam phantom with photon count I0= 1000. Results
are shown on an axial, frontal, and 45◦ slanted slice. The insets are zoomed by a factor of four.

Table 1. Benchmark results for the data preparation (DP) and reconstruction steps. FBP and Noise2Filter (N2F) reconstructions are
performed on a single slice from filtered projection data. Due to memory constraints, some reconstructions were not performed, as
indicated by a —.

Data size Duration (seconds)

# voxels # pixels # angles Ne DP FBP N2F

1283 128× 192 256 10 0.34 0.003 0.009
2563 256× 384 512 11 1.34 0.006 0.024
5123 512× 768 1024 12 6.08 0.030 0.114
10243 1024× 1536 2048 13 44.00 — —

5.4. TomoBank dynamic dataset
We consider two experiments with an experimental dynamic tomographic dataset, consisting of 60 scans at
consecutive time steps. First, we train Noise2Filter on the data from the first time step and use the trained
reconstruction method to compute reconstructions for later time steps. This experiment aims to reveal the
ability of Noise2Filter to generalize over dynamics in time. Second, we consider determining the correct
center of rotation using Noise2Filter.

The experimental data is taken from the public TomoBank repository [4] and was acquired at the
TOMCAT beamline at the Swiss Light Source (Paul Scherrer Institut, Switzerland). In this experiment,
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Figure 6. Training time and reconstruction accuracy for varying amounts of training voxels NT. The mean (line) and standard
deviation (shaded region) over 50 trials are reported. For both NN-FBP and Noise2Filter, increasing NT yields diminishing
returns in terms of PSNR and SSIM beyond NT = 5 · 104, as indicated by the dashed line.

Figure 7. A comparison of Noise2Filter reconstruction accuracy for varying number of splits Ns and training strategies X:1 and
1:X. Mean (line) and standard deviation (shaded region) over 20 trials of the PSNR and SSIM are plotted for noise levels
I0= 1000, and I0= 8000.

sub-second x-ray tomographic microscopy was used to investigate liquid water dynamics in a fuel cell during
operation. The experiment took less than 6 seconds, during which 60 scans were acquired. A scan consists of
301 projections taken by a detector with 1100× 1440 detector pixels. Without loss of generality we have set
the pixel size to 1, which means the linear attenuation coefficient – i.e. the intensity of the
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Figure 8. Reconstruction of the fuel cell at various time steps using FBP and Noise2Filter (N2F). The Noise2Filter method was
trained on the first time step and also used to reconstruct later time steps. The insets are zoomed by a factor two.

Figure 9. Reconstructions of a fuel cell at various centers of rotation using FBP and Noise2Filter (N2F). In the inset, a center of
rotation artifact is highlighted, which disappears at a shift of 19 pixels. The distance between the detector pixels, or pixel pitch, for
this dataset is 2.75 µm. The insets are zoomed by a factor four.

reconstructions—is expressed in attenuation per pixel. Note that there is no reference reconstruction
available for these experiments. Therefore, the analysis of these experiments is purely qualitative.

First, we train a Noise2Filter network at the first time step T= 0 and use this network to evaluate all
further time steps. Figure 8 shows the results for this strategy for T= 0, 19, 39, 59 and the FBP
reconstructions at these time steps. There is no visible deterioration of the reconstruction accuracy over time,
indicating that the trained network generalizes over the whole experiment.

Second, we consider determining the correct center of rotation. In the presence of noise, determining the
correct center of rotation for a dataset can be difficult and is often performed after acquiring the measured
projection data. Using the tools developed in [7], the center of rotation can be adapted interactively in
real-time. In figure 9 we show Noise2Filter and FBP reconstructions with shifted centers of rotation at the
first time step. We note that no retraining was performed for Noise2Filter: the network parameters were
determined once using a shift of 0 pixels. In the FBP reconstructions, the center of rotation artifacts (half
moons) are difficult to discern. In the Noise2Filter reconstruction, however, these artifacts are both clearly
visible, and visibly disappear at a shift of 19 pixels, which coincides with the reported center of rotation in [4].

6. Conclusion and outlook

We have introduced Noise2Filter, a machine learning method for denoising filter-based reconstruction that
does not require any additional training data beyond the acquired measurements. We show that this
self-supervised method improves reconstruction accuracy compared to standard filter-based methods, and
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has limited loss of accuracy compared to its supervised counterpart (NN-FBP). The method exhibits
sub-minute training times and reconstruction times in the order of hundred milliseconds, which
demonstrates the potential for use in quasi-3D reconstruction for real-time visualization of tomographic
experiments. In addition, we demonstrate that visual calibration of the center of rotation is possible, which
illustrates the potential of our method for use in the dynamic control of tomographic experiments where
noise is a challenge.

This method enables operators of dynamic experiments to directly adjust for external parameters—such
as temperature—in response to changes in the measured object, even with high acquisition noise. Moreover,
it can be used in high-throughput real-time quality control applications, where a fast scanning protocol leads
to data with high acquisition noise.
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Appendix A. Standard FBP improvement strategies

In addition to standard FBP and NN-FBP, the Noise2Filter method is compared to two commonly used
strategies to improve the reconstruction accuracy of the FBP algorithm for noisy data [22].

A.1. Gaussian filtering

In this strategy the standard filter h in the FBP algorithm is convolved with a Gaussian filter Gσ ∈ RNf to
smooth the noise in the reconstructions, with σ the standard deviation of the Gaussian. The elements j of the
filter Gσ are defined as follows:

(Gσ)j =
1

σ
√
2π
e−

( j−Nf/2)
2

2σ2 , (A1)

resulting in the smoothed reconstruction FBPG(y,h,σ) =WT(y ∗ (h ∗Gσ)).

A.2. Frequency scaling

This strategy removes the higher frequencies from the FBP reconstruction. This is done by setting the
frequencies above a threshold f sc in Fourier domain of the filter h equal to zero and using this filter in the
standard FBP algorithm, obtaining FBPsc(y,hsc) =WT(y ∗hsc).

For these strategies we optimized the choice of variable by computing reconstructions with a range of
variables and taking the reconstruction with the highest SSIM.
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