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Abstract
Aims/ The aims of this paper are to prove existence and uniqueness of following integral boundary
conditions mixed problem for parabolic equation :

∂u

∂t
− a(t)

xn+1

∂

∂x

(
xn+3 ∂u

∂x

)
+ bu = ϑ(x, t),

u(x, 0) = λ(x), 0 ≤ x ≤ `,

∫ `

0

xn−1u(x, t) dx = En(t), 0 ≤ t ≤ T ,

∫ `

0

xnu(x, t) dx = Gn(t), 0 ≤ t ≤ T.

The proofs are based on a priori estimates established in Sobolev function spaces and Fourier’s
method.

Keywords: Fourier’s method; A priori Estimate; Nonlocal conditions; Mixed Problem; Parabolic Equation;
Sobolev Espace.
2000 Mathematics Subject Classification: 35K20; 35B30; 35D05; 46E40; 46E99.

1 Introduction
This paper deals with existence and uniqueness of a following class of parabolic equation with time
and space-variable characteristics :

∂u

∂t
− a(t)

xn+1

∂

∂x

(
xn+3 ∂u

∂x

)
+ bu = ϑ(x, t), (1.1)
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satisfying the initial condition
u(x, 0) = λ(x), 0 ≤ x ≤ `, (1.2)

and the integral conditions∫ `

0

xn−1u(x, t) dx = En(t), 0 ≤ t ≤ T, (1.3)

∫ `

0

xnu(x, t) dx = Gn(t), 0 ≤ t ≤ T, (1.4)

where λ, En, Gn, a and ϑ are known functions, and b, `, T are positive constants.

Condition 1.1. For all (x, t) ∈ Ω, we assume that

a0 ≤ a(t) ≤ a1,

a2 ≤
da(t)

dt
≤ a3,

a4 ≤ a(t)− xda(t)

dt
≤ a5,

where a0, a1, a2, a3, a4, a5 are positive constants.

The data satisfies the following compatibility conditions : for consistency, we have∫ `

0

xnλ(x) dx = En(0), and
∫ `

0

xn+1λ(x) dx = Gn(0).

The importance of problems with integral conditions has been pointed out by Samarskii[1]. Mathe-

matical modelling by evolution problems with a nonlocal constraint of the form
1

1− `

∫ 1

`

u(x, t) dx = ζ(t)

is encountered in heat transmission theory, thermoelasticity, chemical engineering, underground
water flow, and plasma physic.

Many methods were used to investigate the existence and uniqueness of the solution of mixed
problems which combine classical and integral conditions. [2] used the potentiel method, combining a
Dirichlet and an intégral condition for a parabolic equation. [3] used the maximum principle, combining
a Neumann and an integral condition for heat equation. [4] and [5] used the Fourier method for same
purpose.
Recently, mixed problems with integral conditions for generalization of equation (1.1) have been
treated using the energy-integral method. See and [6], [7],[8], [9], [10], [11],[12], [13],[14],[15].
Differently to these works, in the present paper we combine a priori estimate and Fourier’s method to
prove existence and uniqueness solution of the problem (1.1)- (1.4).
The results obtained in this paper generalize the results of [5], and constitute a new contribution to
this emerging field of research . It is interesting to note that the application of Fourier method to this
nonlocal problem is made possible thanks, essentially, to the use of a Sobolev function space.

To this, we reduce the inhomogeneous boundary conditions (1.3) and (1.4) to homogeneous
conditions, by introducing a new unknown function v by v(x, t) = u(x, t)− w(x, t), where

w(x, t) =
−(n+ 3)x+ (n+ 1)`

`n+3
En(t) +

(n+ 3)x− (n+ 1)`

`n+3
Gn(t). (1.5)
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Then, problem (1.1), (1.2), (1.3) and (1.4) is transformed into the following homogeneous boundary
value problem

∂v

∂t
− a(t)

xn+1

∂

∂x

(
xn+3 ∂v

∂x

)
+ bv = ξ(x, t), (x, t) ∈ Ω, (1.6)

v(x, 0) = Λ(x), 0 ≤ x ≤ `, (1.7)

∫ `

0

xnv(x, t) dx = 0, 0 ≤ t ≤ T, (1.8)

∫ `

0

xn+1v(x, t) dx = 0, 0 ≤ t ≤ T, (1.9)

where

ξ(x, t) =ϑ(x, t)− (n+ 3)2xa(t)

`n+3
En(t) +

(n+ 3)x− (n+ 1)`

`n+3
(bEn(t) + E′n(t))

+
(n+ 3)2xa(t)

`n+3
Gn(t)− (n+ 3)x− (n+ 1)`

`n+3
(bGn(t) +G′n(t)),

Λ(x) =λ(x) +
(n+ 3)x− (n+ 3)`

`n+3
En(0) +

(n+ 3)x− (n+ 1)`

`n+3
Gn(0).

Here, we assume that the function Λ satisfy conditions of (1.8) and (1.9), that is∫ `

0

xnΛ(x) dx =

∫ `

0

xn+1Λ(x) dx = 0. (1.10)

Instead of searching for the function u, we search for the function v. So the solution of problem (1.1),
(1.2), (1.3) and (1.4) will be given by u(x, t) = v(x, t) + w(x, t).

The general difficult which arises to us is the presence of integral conditions which complicates
the application of standard methods. It may, however, be worth while if this type of problem can
be transformed into another equivalent problem which involves no integral conditions. For this, we
convert problem (1.6), (1.7), (1.8) and (1.9) to the following classical problem.

Theorem 1.2. The problem (1.6), (1.7), (1.8) and (1.9) is equivalent to the following classical problem
:

∂v

∂t
− a(t)

xn+1

∂

∂x

(
xn+3 ∂v

∂x

)
+ bv = ξ(x, t), (x, t) ∈ Ω, (1.11)

v(x, 0) = Λ(x), 0 ≤ x ≤ `, (1.12)

v(`, t) =
1

`a(t)

∫ `

0

(x− `)xnξ(x, t) dx, 0 ≤ t ≤ T, (1.13)

∂v

∂x
(`, t) = − 1

`n+3a(t)

∫ `

0

xn+1ξ(x, t) dx, 0 ≤ t ≤ T. (1.14)
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Proof
Multiplying (1.6) with xn, and integrating the obtained result with respect x over (0, `), we obtain

∂

∂t

∫ `

0

xnv dx− a(t)

∫ `

0

1

x

∂

∂x

(
xn+3 ∂v

∂x

)
dx+ b

∫ `

0

xnv dx =

∫ `

0

xnξ(x, t) dx. (1.15)

Integrating by parts the integrals on the left-hand side of (1.15), and taking into account condition
(1.8), we get

`n+2 ∂v

∂x
(`, t) + `n+1v(`, t) = − 1

a(t)

∫ `

0

xnξ(x, t) dx. (1.16)

Multiplying (1.6) with xn+1 and integrating the result obtained over (0, `), he have

−a(t)

∫ `

0

∂

∂x

(
xn+3 ∂v

∂x

)
dx =

∫ `

0

xn+1ξ(x, t) dx. (1.17)

Integrating by parts the integrals on the left-hand side of (1.17).

∂v

∂x
(`, t) = − 1

`n+3a(t)

∫ `

0

xn+1ξ(x, t) dx (1.18)

Combining the equalities (1.17) and (1.18), we have

v(`, t) =
1

`a(t)

∫ `

0

(x− `)xnξ(x, t) dx. (1.19)

It remains to prove that
∫ `

0

xnv(x, t) dx = 0 and
∫ `

0

xn+1v(x, t) dx = 0.

By using (1.6) and taking into account (1.16) and (1.18) we get

d

dt

∫ `

0

xnv(x, t) dx+ b

∫ `

0

xnv(x, t) dx = 0, 0 ≤ t ≤ T

d

dt

∫ `

0

xn+1v(x, t) dx+ b

∫ `

0

xn+1v(x, t) dx = 0, 0 ≤ t ≤ T

By virtue of the compatibility of the conditions, it follows that∫ `

0

xnv(x, t) dx =

∫ `

0

xn+1v(x, t) dx = 0.

This complete the proof of Theorem (1.2). �.

By introducing the new unknown function

z(x, t) = v(x, t)− θn(x, t)

∫ `

0

xn+1ξ(x, t) dx− ηn(x, t)

∫ `

0

xnξ(x, t) dx,

where

θn(x, t) =
`n+4a(t)x2 + (1− 2`n+5)a(t)x+ `(`n+5a(t)− 1)

`n+3a(t)
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and

ηn(x, t) =
`2a(t)x2 − 2`3a(t)x+ `4a(t) + 1

`a(t)
,

the problem (1.11), (1.12), (1.13) and (1.14) is transformed into the following homogeneous local
boundary conditions problem,

∂z

∂t
− a(t)

xn+1

∂

∂x

(
xn+3 ∂z

∂x

)
+ bz = f(x, t), (x, t) ∈ Ω, (1.20)

z(x, 0) = ϕ(x), 0 ≤ x ≤ `, (1.21)

z(`, t) = 0, 0 ≤ t ≤ T, (1.22)

∂z

∂x
(`, t) = 0, 0 ≤ t ≤ T, (1.23)

where

f(x, t) =ξ(x, t)− `n+4a′(t)x2 + (1− 2`n+5a′(t) + `(`n+5a′(t)− 1)

`n+3a′(t)

∫ `

0

xn+1 ∂ξ

∂t
(x, t) dx

− `2a′(t)x2 − 2`3a′(t)x+ `4a′(t) + 1

`a′(t)

∫ `

0

xn
∂ξ

∂t
(x, t) dx

− `n+4a(t)x2 + (1− 2`n+5)a(t)x+ `(`n+5a(t)− 1)

`n+3a(t)
b(t)

∫ `

0

xn+1ξ(x, t) dx

− `
2a(t)x2 − 2`3a(t)x+ `4a(t) + 1

`a(t)
b(t)

∫ `

0

xnξ(x, t) dx

+ 2`xa(t)[(n+ 4)x− n− 3]

∫ `

0

xnξ(x, t) dx

+
2(n+ 4)`n+4a(t)x2 + (3 + n)(1− 2`n+5)a(t)x

`n+3

∫ `

0

xn+1ξ(x, t) dx,

ϕ(x) =Λ(x)− `n+4a(0)x2 + (1− 2`n+5a(0) + `(`n+5a(0)− 1)

`n+3a(0)

∫ `

0

xn+1ξ(x, 0) dx

− `2a(0)x2 − 2`3a(0)x+ `4a(0) + 1

`a(0)

∫ `

0

xnξ(x, 0) dx.

The rest of this paper is organized as follows : in section 2, we establish a priori estimate. Finally, in
section 3, we prove existence of generalized solution.

2 An priori estimate
The problem (1.20), (1.21), (1.22) and (1.23) can be considered as solving the following operator
equation :

Az = (ϕ, f) = F ,
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where A is an operator defined on E into F. F is the banach space of functions z ∈ L2(Ω), satisfying
conditions (1.22) and (1.23) with the norm

‖z‖2E =

∫
Ωτ

(
xnz2 + xn+1

∣∣∣∣ ∂z∂x
∣∣∣∣2 + xn+1

∣∣∣∣∂z∂t
∣∣∣∣2
)
dxdt+ sup

0≤t≤T

∫ `

0

(
xn+1z2 + xn+3

∣∣∣∣ ∂z∂x
∣∣∣∣2
)
dx

and F is the Hilbert space L2(Ω)× L2(0, `) which consists of elements F = (f, ϕ) with the norm

‖F‖2F =

∫ `

0

ϕ2(x) dx+

∫ `

0

(
dϕ

dx

)2

dx+

∫
Ωτ

f2(x, t) dxdt.

Let D(A) be the set of all function z, for which z, xn+1z, xn+3 ∂z

∂x
∈ L2(0, `) and z, xn+1 ∂z

∂x
,

xn+1 ∂z

∂t
, xn+3 ∂z

∂x
,
∂

∂x

(
xn+3 ∂z

∂x

)
∈ L2(Ω).

Theorem 2.1. For any function z ∈ D(A), we have

‖z‖E ≤ C‖Az‖, (2.1)

where C =

√
max((1 + b)`n+1, a1`

n+3)

min(2b+ (n+ 1)a1 − 1, a4`, 1 + b, a0`2)
.

Proof

Multiplying the equation (1.20) with xnz(x, t) + xn+1 ∂z

∂t
(x, t) and integrating the results obtained

over Ωτ = (0, `)× (0, T ). Observe that∫
Ωτ

xnz
∂z

∂t
dxdt+

∫
Ω

xn+1

(
∂z

∂t

)2

dxdt−
∫

Ωτ

a(t)z

x

∂

∂x

(
xn+3 ∂z

∂x

)
dxdt

−
∫

Ωτ

a(t)
∂

∂x

(
xn+3 ∂z

∂x

)
∂z

∂t
dxdt+

∫
Ωτ

bxnz2 dxdt+

∫
Ωτ

bxn+1z
∂z

∂t
dxdt

=

∫
Ωτ

xnzf(x, t) dxdt+

∫
Ωτ

xn+1f(x, t)
∂z

∂t
dxdt. (2.2)

Integrating by parts the terms of left-hand side of (2.2), we get∫
Ωτ

xnz
∂z

∂t
dxdt =

1

2

∫ `

0

xn+1z2(x, τ) dx− 1

2

∫ `

0

xn+1ϕ2(x) dx, (2.3)

−
∫

Ωτ

a(t)z

x

∂

∂x

(
xn+3 ∂z

∂x

)
dxdt =

n+ 1

2

∫
Ωτ

a(t)xnz2 dxdt

+
1

2

∫
Ωτ

a(t)xn+2

(
∂z

∂x

)2

dxdt, (2.4)

∫
Ωτ

bxn+1z
∂z

∂t
dxdt =

1

2

∫ `

0

bxn+1z2(x, τ) dx− 1

2

∫ `

0

bxn+1ϕ2(x) dx, (2.5)

−
∫

Ωτ

a(t)
∂

∂x

(
xn+3 ∂z

∂x

)
∂z

∂t
dxdt =

1

2

∫ `

0

a(t)xn+3

(
∂z

∂x

)2

dx

− 1

2

∫ `

0

a(t)xn+3

(
dϕ

dx

)2

dx− 1

2

∫
Ωτ

a′(t)xn+3

(
∂z

∂x

)2

dxdt. (2.6)
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By substituting(2.3), (2.4), (2.5) and (2.6) into (2.2), we obtain

1

2

∫
Ωτ

(2b+ (n+ 1)a(t))xnz2 dxdt+
1

2

∫
Ωτ

(
a(t)− xda(t)

dt

)
xn+2

(
∂z

∂x

)2

dxdt

+

∫
Ωτ

xn+1

(
∂z

∂t

)2

dxdt+
1 + b

2

∫ `

0

xn+1z2(x, τ) dxdt+
1

2

∫ `

0

a(t)xn+3

(
∂z

∂x

)2

dx

=
1 + b

2

∫ `

0

xn+1ϕ2(x) dx+
1

2

∫ `

0

a(t)xn+3

(
dϕ

dx

)2

dx+

∫
Ωτ

xnzf(x, t) dxdt

+

∫
Ωτ

xn+1f(x, t)
∂z

∂t
dxdt. (2.7)

Estimating the two last integrals of the right-hand side of (2.7), by applying elementary inequalities,
we get ∫

Ωτ

xnzf(x, t) dxdt ≤ 1

2

∫
Ωτ

xnz2 dxdt+
1

2

∫
Ωτ

xnf2(x, t) dxdt, (2.8)

∫
Ωτ

xn+1 ∂z

∂t
f(x, t) dxdt ≤ 1

2

∫
Ωτ

xn+1

(
∂z

∂t

)2

dxdt+
1

2

∫
Ωτ

xn+1f2(x, t) dxdt. (2.9)

Therefore, by formulas (2.7), (2.8) and (2.9), we obtain

1

2

∫
Ωτ

(2b+ (n+ 1)a(t)− 1)xnz2 dxdt+
1

2

∫
Ωτ

(
a(t)− xda(t)

dt

)
xn+2

(
∂z

∂x

)2

dxdt

+
1

2

∫
Ωτ

xn+1

(
∂z

∂t

)2

dxdt+
1 + b

2

∫ `

0

xn+1z2(x, τ) dxdt+
1

2

∫ `

0

a(t)xn+3

(
∂z

∂x

)2

dx

≤ 1 + b

2

∫ `

0

xn+1ϕ2(x) dx+
1

2

∫ `

0

a(t)xn+3

(
dϕ

dx

)2

dx+
1

2

∫
Ωτ

(1 + x)xnf2(x, t) dxdt. (2.10)

Taking account the assumptions 1.1, from (2.10), it follows that∫
Ωτ

xnz2 dxdt+

∫
Ωτ

xn+2

(
∂z

∂x

)2

dxdt+

∫
Ωτ

xn+1

(
∂z

∂t

)2

dxdt+

∫ `

0

xn+1z2(x, τ) dxdt

+

∫ `

0

xn+3

(
∂z

∂x

)2

dx ≤M

{∫ `

0

ϕ2(x) dx+

∫ `

0

(
dϕ

dx

)2

dx+

∫
Ωτ

f2(x, t) dxdt

}
, (2.11)

where M =
max((1 + b)`n+1, a1`

n+3)

min(2b+ (n+ 1)a1 − 1, a4`, 1 + b, a0`2)
.

The right-hand side of (2.11) is independent of τ, replacing the left-hand side by the upper with
respect to τ. Thus inequality (2.1) holds, where

C =

√
(max((1 + b)`n+1, a1`

n+3)

min(2b+ (n+ 1)a1 − 1, a4`, 1 + b, a0`2)
.

This completes the proof of Theorem (1.2). �

3 Solvability of the problem
Now we shall start to prove the existence of the boundary value problem (1.20), (1.21), (1.22) and
(1.23). We use the Fourier’s method.
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Consider the function zm(x, t) = ym(x)wm(t),where ym(t) is a eigenfunction of the following boundary
value problem 

− a(t)

xn+1

d

dx

(
xn+3 dym(x)

dx

)
+ bym(x) = βmym(x),

ym(`) = 0,

dym(`)

dx
= 0,

where βm is the eigenvalue corresponding to the eigenfunction ym(x), and wn(t) satisfying the initial
problem 

dwm(t)

dt
− αmwm(t) = fm(t),

wm(0) = ϕm.

Here

ϕ(x) =

+∞∑
m=1

ϕmym(x),

ϕ′(x) =

+∞∑
m=0

ρmym(x),

f(x, t) =

+∞∑
m=1

fm(t)ym(x).

Using the Parseval-Steklov equality, we have

‖(f, ϕ)‖F =

+∞∑
m=1

(∫ T

0

f2
m(t) dt+ ϕ2

m + ρ2
m

)
.

The direct computation, the solution of the initial problem is giving by

wm(t) = ϕme
αmt +

∫ t

0

fm(t)eαm(t−τ) dt.

By virtue principle of superposition, the solution of the boundary value problem (1.11), (1.12), (1.13)
and (1.14) is giving by the series

z(x, t) =

+∞∑
m=1

ym(x)wm(t). (3.1)

Theorem 3.1. Let assumption 1.1 be fulfilled. Then for any f ∈ L2(Ω) and ϕ ∈ L2(0, `) which
dϕ

dx
∈ L2(0, `), problem(1.20), (1.21), (1.22) and (1.23) admits a unique solution and its represented

by series (3.1) which converge in E.

Proof
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Consider the partial sum Sm(x, t) =

m∑
i=1

yi(x)wi(t) of the series (3.1).

By applaying the Theorem 1.2, then it follows that∥∥∥∥∥
n∑
i=1

yi(x)wi(t)

∥∥∥∥∥ ≤ C
+∞∑
m=1

(∫ T

0

f2
m(t) dt+ ϕ2

m + ρ2
m

)
. (3.2)

The series
+∞∑
m=1

∫ T

0

f2
m(t) dt =

∫
Ω

f2(x, t) dxdt,

+∞∑
m=1

ϕ2
m and

+∞∑
m=1

ρ2
m converge.

Therefore, from (3.2) it follows that the series (3.1) converge in E.
This completes the proof of the Theorem 3.1. �
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