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ABSTRACT

Aims: To investigate the influence of appropriate culture medium by optimizing the
cultural conditions affecting the growth and bioactive metabolite production by
Streptomyces gulbargensis DAS 131 under submerged culture conditions in order to
reduce the cost of fermentation process to improve the formation of antimicrobial
compounds.

Place and Duration of Study: Department of Botany and Microbiology, January 2012 to
May 2012.

Methodology: The impact of environmental parameters such as incubation period, pH,
temperature and salt concentration and effect of various nutrients such as carbon and
nitrogen sources and minerals on the antimicrobial metabolite production by
Streptomyces gulbargensis DAS 131 was evaluated by employing agar well diffusion
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assay. Growth was measured in the form of dry mycelial weight.

Results: The optimum pH and temperature for bioactive metabolite production were 7
and 35°C respectively. Highest antimicrobial metabolite production was found when the
strain was inoculated into the medium amended with glucose at the concentration of 2%,
soya peptone at the rate of 1% and NaCl at the concentration of 5% and incubated for six
days under shaking conditions. The metabolites showed good antimicrobial activity
against Gram positive and Gram negative bacteria, as well as unicellular and multicellular
fungi.

Conclusion: S. gulbargensis DAS 131 isolated from the semi-arid soils of Gulbarga,
Northern Karnataka province, India exhibited broad spectrum antimicrobial activity. It was
found that the antimicrobial metabolite production by the strain was positively influenced
by carbohydrates, nitrogen sources and minerals.

Keywords: Optimization; bioactive metabolites; nutritional factors; antimicrobial activity;
Streptomyces gulbargensis DAS 131.

1. INTRODUCTION

The microbes are the source for many important drugs including antibiotics, antitumor
compounds, Immunosuppressants, antiviral and antiparasitic agents. Over 10,000 of
bioactive compounds have been produced by Actinomycetes which contribute to 45% of all
the bioactive secondary metabolites discovered [1]. Microbes dwelling in extreme habitats
have been focused as an important source for novel compounds in recent years. The
majority of studies with microbes from extreme environments were confined to bacteria and
the actinomycetes from these habitats have been relatively less explored [2]. As highlighted
in many reviews [3], natural products are the origin for most of the antibiotics in the market
today. These products are an important source for both the existing and new drugs. Among
these, actinomycetes are a biotechnologically priceless group of prokaryotes. Actinobacteria
form a distinct line in the 16SrDNA tree and produce metabolites that have medical
contribution from antibiotics to enzyme inhibitors. They are ubiquitously distributed in
terrestrial, fresh water and extreme environments such as marine ecosystems and alkali soils
[4]. They are considered to be the important group of microbes due to their ability to produce
novel chemical compounds that are complex and commercially important [5]. The solution to
combat multidrug resistance of pathogens is to search for novel antimicrobial compounds so
as to find a solution to overcome the global resistance to pathogenic bacteria.

It is widely accepted that alkaliphilic actinomycetes are a valuable source for medicinal and
industrial products [6]. Extensive exploration of actinomycetes having unique therapeutic
properties continues to be an important area of research. Streptomyces species belonging to
actinomycetes have been known as prolific producers of useful bioactive metabolites. These
species are also recognized as industrially important organisms for their ability to synthesize
different kinds of novel secondary metabolites, accounting for 70-80% of all natural
compounds produced by actinomycetes. Streptomyces are well documented as source for
novel drug metabolites [7]. Some of the important compounds obtained from the alkaliphilic
Streptomyces species include Pyrocoll [8], Chinikomycin and Lajollamycin, Mediomycins A
and B, Clethramycin [9], Bleomycin [10] and Caboxamycin [11] with anti-tumor, anti-parasitic
and anti-microbial properties. Several studies were aimed at isolation of Streptomyces and
screening them for new antibiotics. Novel actinomycetes documented and the products
derived from poorly explored habitats stress the need to probe into new habitats [2].
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Media supplemented with carbon, nitrogen sources [12], sodium chloride [13] and mineral
salts [14] and physico-chemical parameters like temperature, pH and incubation period also
play a major role on growth and production of anti-microbial metabolites. The type, addition,
removal and concentration of carbon, nitrogen, and phosphate together with trace elements
are reported to influence the antibiotic biosynthesis by Streptomyces [15]. In order to achieve
the highest level of metabolite production, the optimization of process parameters is very
critical [16,17]. Hence an effort was made to understand the impact of different carbon and
nitrogen sources, temperature, pH and incubation period on growth and bioactive metabolite
production by Streptomyces gulbargensis DAS131.

2. MATERIALS AND METHODS
2.1 Isolation

During the course of screening for industrially important microorganisms, an alkali-tolerant
and thermo-tolerant actinomycete isolate identified as Streptomyces gulbargensis DAS 131
was isolated from semi-arid soils of Gulbarga, Northern Karnataka province, India, by
standard serial dilution technique using starch casein agar medium [18] and further
maintained on Yeast extract malt extract dextrose (ISP-2) agar medium at 4°C [19]. The 16S
rRNA gene sequence of the strain has been deposited in the NCBI genbank with the
accession number DQ317411 [20].

2.2 Selection of Culture Conditions for the Optimum Production of Bioactive
Metabolites

Antimicrobial metabolite production by the strain was optimized by using different parameters
such as incubation period, pH, temperature, NaCl, carbon, nitrogen sources and minerals.

2.3 Effect of Incubation Period

The growth pattern and bioactive metabolite production by the strain was studied at regular
intervals up to 10 days. One week old culture of S. gulbargensis DAS 131was cultivated in
ISP-2 broth (seed medium) comprising of yeast extract (0.4%), malt extract (1%), dextrose
(0.4%), CaC03(0.2%) with pH 7.2 at 37°C for 48h. Seed culture at a rate of 10% was
inoculated into the starch casein broth (production medium) consisting of soluble starch
(1%), sodium caseinate (0.2%), K;HPO, (0.02%), MgSO,4. 7H,O (0.02%) FeSO,. 7H,O
(0.001%) with pH 7.2.The fermentation process was carried out for 10 days under agitation
at 150rpm. At every 24h interval, the flasks were harvested and the biomass was separated
from the culture filirate. Biomass was determined in terms of dry weight and antimicrobial
metabolite production was determined in terms of their antimicrobial spectrum [21]. The
crude bioactive compound produced in the fermentation medium by the isolate was extracted
twice with equal volume of ethyl acetate (1:1) in a separating funnel at periodic intervals. The
solvent layer was collected and evaporated in a rotary evaporator under vacuum. The crude
residue thus obtained was dissolved in DMSO (dimethylsulfoxide) at a concentration of
1000pug/ml and employed for antimicrobial activity against test microorganisms like
Streptococcus mutans (MTCC 497), Staphylococcus aureus (MTCC 3160), Salmonella typhi
(ATCC 14028), Pseudomonas aeruginosa (ATCC 9027) and Candida albicans (ATCC
10231) by agar well diffusion method [22].
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2.4 Effect of pH and Temperature

To determine the influence of initial pH on growth and bioactive metabolite production, the
strain was cultivated in the medium with different initial pH values ranging from 5 to 10 for six
days. The strain was inoculated into production medium and grown at temperatures ranging
from 20 to 50°C at pH 7 for six days to study the impact of temperature. The biomass and
bioactive metabolite production were estimated and optimal pH and temperature achieved in
this step was used for subsequent study.

2.5 Effect of NaCl Concentration

The impact of salinity on growth and bioactive metabolite production by S. gulbargensis DAS
131was recorded by cultivating the strain in the fermentation medium amended with different
concentrations of NaCl (1-10%) at optimum pH and temperature for six days. The salt
concentration in which the strain exhibits optimum levels of bioactive metabolites was fixed
for further studies.

2.6 Effect of Carbon and Nitrogen Sources

To determine the effect of carbon sources on biomass and bioactive metabolite production,
different carbon sources like galactose, lactose, fructose, sucrose, glucose, starch, mannitol,
arabinose, raffinose and rhamnose each at a concentration of 1% were added separately
into the production medium, maintaining all other conditions at optimum levels. The effect of
varying concentrations of the best carbon source (0.5-5%) on bioactive metabolite production
was examined. Similarly, the influence of various nitrogen sources on antimicrobial
metabolite production was evaluated by amending different nitrogen sources like soya
peptone, arginine, asparagine, meat extract, yeast extract, tryptone, soya flour, casein, beef
extract and glycine each at a concentration of 0.5% were individually supplemented into the
production medium containing an optimum amount of the superior carbon source. The
growth and production of bioactive metabolite was determined after six days of incubation at
optimum pH, temperature and salt concentration. Further, the impact of varying
concentrations of optimized nitrogen source (0.1-2%) was studied to standardize the
maximum antimicrobial metabolite production.

2.7 Impact of K;HPO,

To study the impact of K;HPO, on growth and bioactive metabolite production, the strain was
grown in the fermentation medium amended with different concentrations of K,HPO,4 (0.01 to
0.1%), maintaining all other conditions at optimum levels.

2.8 Statistical Analysis

Results on cell growth and the production of bioactive metabolites by S. gulbargensis DAS

131exposed to different cultural conditions are statistically analyzed with two way analysis of
variance (ANOVA).
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2.9 Bioassays

The metabolites produced by the strain under optimized conditions were tested against
bacteria and fungi by agar-well diffusion assay [22]. The test microorganisms used to
evaluate the production of bioactive metabolites were Staphylococcus aureus (MTCC 3160),
Streptococcus mutans (MTCC497), Bacillus subtilis (ATCC6633), Lactobacillus casei
(MTCC1423), Lactobacillus acidophilus (MTCC495), Xanthomonas campestris (MTCC2286),
Bacillus megaterium (NCIM2187), Escherichia coli (ATCC35218), Enterococcus faecalis
(MTCC439), Pseudomonas aeruginosa (ATCC 9027), Salmonella typhi (ATCC14028),
Proteus vulgaris (MTCC7299), Candida albicans (ATCC10231), Aspergillus niger
(ATCC1015), Aspergillus flavus (ATCC9643), Fusarium oxysporum (MTCC3075) and
Penicillium citrinum (MTCC 6489).

3. RESULTS AND DISCUSSION
3.1 Effect of Incubation Period

The growth pattern of S. gulbargensis DAS 131 was studied on starch casein broth.
Exponential phase of the strain extended from lag phase after 24h to 72h. After that it
exhibited stationary phase from 96h to 144h of incubation, then declined (Fig.1).The results
revealed that the antimicrobial metabolite was early produced and reached maximum at the
stationary phase. The cessation of growth in the stationary phase is most commonly caused
by the exhaustion of the essential nutrients of the medium as well as accumulation of
undesirable metabolites. The secondary metabolites obtained from six day old culture
exhibited high antimicrobial activity against the test microorganisms. Thakur et al. [7] stated
that the maximum incubation period required for optimum growth and antibiotic yield by the
isolate Streptomyces sp. 201 was six days which was in complete accordance with the
earlier report [23]. The incubation period for the production of bioactive metabolites seems to
vary among Streptomyces strains. Metabolites elaborated from 5 day old culture of
Streptomyces sp. KGG32 [24] and S.ramulosus-AZ-SH-29 [25] showed good antimicrobial
activity. Metabolites collected from 10-day old culture of S. crystallinus AZ-A151producing
Hygromycin-B exhibited good anti-microbialactivity [26].

3.2 Effect of Initial pH and Incubation Temperature

The environmental requirements and cultural conditions for growth and bioactive metabolite
production by S. gulbargensis DAS 131 were studied. The antimicrobial metabolite
production was found to be influenced by pH of the medium. The maximum biomass and
bioactive metabolite production by the strain was obtained at pH 7 suggesting its inclusion in
the neutrophilic actinomycetes group (Fig. 2). Medium maintained at pH 7.0 was reported to
support enhanced anti-microbial metabolite production by Streptomyces rochei G 164 [27],
Streptomyces marinensis [28], Streptomyces albidoflavus [21], Streptomyces torulosus KH-4
[29], Streptomyces spp.VITSVK9 [30] and Streptomycesc heonanensis VUK-A [31].

The effect of temperature on growth and bioactive metabolite production of the strain was
recorded (Fig. 3). There was an increase in the growth as well as bioactive metabolite
production with the increase of incubation temperature from 20°C to 35°C. However further
increase in temperature (above 35°C) resulted in the decline of growth and bioactive
metabolite production. In terms of its optimum temperature for growth, the organism
appeared to be mesophilic in nature. Atta et al. [26] reported that Streptomyces crystallinus,
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AZ-A151 produced high levels of Hygromycin-B production at 35°C. Ushakiranmayi et al.
[32].stated that the optimum temperature capable of promoting antimicrobial metabolite
produced by Pseudonocardia sp.VUK-10 isolated from Nizampatnam mangrove ecosystem
was 35°C.
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Fig. 1. Growth pattern and anti-microbial activity of S. gulbargensis DAS 131
*Data on cell growth and bioactive metabolite yield were statistically analyzed by Two-way ANOVA and
found to be significant at 1%
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Fig. 2. Effect of pH on growth and bioactive metabolite yield of S. gulbargensis
DAS 131
*Data on cell growth and bioactive metabolite yield were statistically analyzed by Two-way ANOVA and
found to be significant at 1%
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Fig.3. Effect of temperature on growth and bioactive metabolite yield of
S. gulbargensis DAS 131
*Data on cell growth and bioactive metabolite yield were statistically analyzed by Two-way ANOVA and
found to be significant at 1%

3.3 Effect of NaCl

Optimum salt requirement for bioactive metabolite production was examined in the
production medium supplemented with different salt concentrations ranging from 1-10%.
NaClat the concentration of 5% was found to be optimum for maximum growth as well as
antimicrobial compound production by S. gulbargensis DAS 131(Fig. 4). Further increase in
salt concentration reduced the antimicrobial agent biosynthesis. The requirement of NaCl for
the production of bioactive metabolites seems to be different among actinomycete strains.
Optimum NaCl concentration for maximum growth as well as antimicrobial metabolite
production was reported to be 2% for Streptomyces tanashiensis A2D [2], 1% for
Streptomyces felleus YJ1 [33]and 5% for Streptomyces VITSVK9 [30].

3.4 Effect of Carbon and Nitrogen Sources

The effect of carbon sources on biomass and bioactive metabolite production by S.
gulbargensis DAS 131 was evaluated (Fig.5). The production of biomass was high with
lactose followed by sucrose and starch, while significant bioactive metabolite production was
obtained by the strain in glucose amended media followed by galactose and fructose. EI-
Enshasy et al. [34] reported that glucose and sucrose in pure or in polymer forms were the
best C-sources for erythromycin production. Antibiotic production from alkaliphilic
S.tanashiensis strain A2D was high in medium containing glucose as carbon source [2].
Similarly glucose was found to be the best carbon source for antibiotic production by
Streptomyces torulosus KH-4 [29], S. griseocarneus [35] and S. kanamyceticus M27 [36].
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Fig. 4. Effect of NaCl on growth and bioactive metabolite yield of S. gulbargensis
DAS 131
*Data on cell growth and bioactive metabolite yield were statistically analyzed by Two-way ANOVA and
found to be significant at 1%
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Fig. 5. Effect of different carbon sources on growth and bioactive metabolite yield of

S. gulbargensis DAS 131
*Data on cell growth and bioactive metabolite yield were statistically analyzed by Two-way ANOVA and
found to be significant at 1%

As glucose emerged as the most preferred carbon source for bioactive metabolite production
by the strain, varying concentrations of glucose (0.5-5%) was tested to determine its optimal
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concentration. It is noted that glucose at 3% and 2% concentrations showed optimal yields of
biomass and bioactive metabolites respectively (Fig. 6). Medium containing 2% glucose
supported maximum levels of Natamycin production by Streptomyces natalensis and
Thermomonospora sp. [37,38] while Atta et al. [25] reported that medium containing 2.5%
glucose supported antibiotic production by Streptomyces ramulosus AZ-SH-29.
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Fig. 6. Effect of different concentrations of glucose on growth and production of
bioactive metabolite by S. gulbargensis DAS 131
*Data on cell growth and bioactive metabolite yield were statistically analyzed by Two-way ANOVA and
found to be significant at 1%

Nitrogen sources are important for the production of bioactive metabolites by
microorganisms. Changes in the nature and concentration of nitrogen source seem to affect
antibiotic biosynthesis in different organisms. Different nitrogen sources were found to have
significant effect on growth and secondary metabolite production by S. gulbargensis DAS
131. Among the nitrogen sources tested amendment of soya peptone in the culture medium
enhanced the biomass and bioactive metabolite production by the strain (Fig. 7). Viana et al.
[39] recorded that soya bean flour increased the clavulanic acid production by Streptomyces
DAUFPE 3060. In contrast Thakur et al. [7] found that basal medium amended with
asparagine as nitrogen source was proved to be the best for 2-methylheptyl isonicotinate
production by Streptomyces sp.201.

Influence of different concentrations of soya peptone on the production of bioactive
metabolites is represented in (Fig.8). It is noted that soya peptone at a concentration of 1.5%
and 1% exhibited optimal production of biomass and bioactive metabolites respectively.
Himabindu and Jetty [40] reported that soya bean meal at a concentration of 1% and 0.5%
enhanced growth and gentamicin production by Micromonospora echinospora. Whereas Qin
Song et al. [33] stated that soya bean meal at a concentration of 2% increased the bioactive
metabolite production by Streptomyces felleus YJ1.
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Fig. 7. Effect of different nitrogen sources on growth and bioactive metabolite
production by S. gulbargensis DAS 131

*Data on cell growth and bioactive metabolite yield were statistically analyzed by Two-way ANOVA and

found to be significant at 1%
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bioactive metabolite by S. gulbargensis DAS 131

*Data on cell growth and bioactive metabolite yield were statistically analyzed by Two-way ANOVA and

found to be significant at 1%
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3.5 Effect of K2HPO4

Effect of K;HPO40n biomass and bioactive metabolite production by the strain was studied
(Fig. 9). A slight enhancement in growth and antimicrobial activity was obtained in medium
supplemented with 0.05% of K,HPO,. Ripa et al. [41] reported that among different minerals
tested, K;HPO, showed positive influence on antibiotic production by Streptomyces RUPA-
08PR. Narayana and Vijayalakshmi [21] also recorded that K,HPO, slightly enhanced the
production of biomass and bioactive metabolites of Streptomyces albidoflavus. Production of
gentamicin by M. purpurea and antibiotic tylosin by a Streptomyces sp. was inhibited by high
phosphate concentrations [42,43].
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Fig. 9. Impact of K,HPO, on growth and bioactive metabolite production of
S. gulbargensis DAS 131
*Data on cell growth and bioactive metabolite yield were statistically analyzed by Two-way ANOVA and
found to be significant at 1%

3.6 Bioassays

The antimicrobial metabolite produced by the strain under optimized conditions was tested
against various test bacteria and fungi (Table 1) (Fig.10). Among the bacteria tested,
Xanthomonas campestris (MTCC2286) and Bacillus megaterium (NCIM2187) were highly
sensitive to the metabolites produced by S. gulbargensis DAS 131followed by Streptococcus
mutans (MTCC497) and Enterococcus faecalis (MTCC439).Among the fungi tested, Candida
albicans (ATCC10231) was highly sensitive to the metabolites produced by the strain
followed by Aspergillus niger (ATCC1015) and Aspergillus flavus (ATCC9643). A significant
antimicrobial activity was reported on the opportunistic and pathogenic bacteria and fungi
tested.
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Table1. Antimicrobial activity of S. gulbargensis DAS 131 against opportunistic and
pathogenic bacteria and fungi under optimized conditions

Antimicrobial Activity of Bioactive Metabolite Produced by S. gulbargensis DAS
131 under Optimized Conditions

Bacteria

Test Microorganisms Zone of Inhibition(mm)
Staphylococcus aureus(MTCC3160) 31
Streptococcus mutans(MTCC497) 33
Bacillus subtilis(ATCC6633) 30
Lactobacillus casei(MTCC1423) 32
Lactobacillus acidophilus(MTCC495) 31
Xanthomonas campestris(MTCC2286) 34
Bacillus megaterium(NCIM2187) 33
Escherichia coli (ATCC35218) 31
Enterococcus faecalis(tMTCC439) 33
Pseudomonas aeruginosa(ATCC9027) 30
Salmonella typhi(ATCC14028) 27
Proteus vulgaristMTCC7299) 28
Fungi

Candida albicans(ATCC10231) 32
Aspergillus niger(ATCC1015) 27
Asperqgillus flavus(ATCC9643) 26
Fusarium oxysporum(MTCC3075) 19
Penicillium citrinum(MTCC6489) 20

Fig. 10. Antimicrobial activity of S. gulbargensis DAS 131 against
A. Pseudomonas aeruginosa (ATCC 9027) B. Escherichia coli (ATCC35218) C.
Salmonella typhi (ATCC14028) D. Bacillus subtilis (ATCC6633) E. Candida albicans
(ATCC10231)
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4. CONCLUSION

In the present study S. gulbargensis DAS 131 exhibited high antimicrobial activity when
cultured on production medium amended with glucose (2%), soya peptone (1%), NaCl (5%)
and K;HPO, (0.05%) at pH 7 for six days of incubation at 35°C. Among the bacteria tested,
Xanthomonas campestris and Bacillus megaterium were highly sensitive to the metabolites
produced by the strain while Candida albicans exhibited high sensitivity followed by
Aspergillus nigeramong fungi. This is the first report on the optimization of bioactive
metabolites produced by S. gulbargensis DAS 131.
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