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ABSTRACT
Neural tensor network (NTN) has been recently introduced to
complete Resource Description Framework (RDF) knowledge
bases, which has been the state-of-the-art in the field so far. An
RDF knowledge base includes some facts from the real world
shown as RDF “triples.” In the previous methods, an objective
function has been used for training this type of network, and the
network parameters should have been set in a way to minimize
the function. For this purpose, a classic nonlinear optimization
method has been used. Since many replications are needed in
this method to get the minimum amount of the function, in this
paper, we suggest to combinemeta-heuristic optimization meth-
ods to minimize the replications and increase the speed of train-
ing consequently. So, this problem will be improved using some
meta-heuristic algorithms in this new approach to specify which
algorithm will get the best results on NTN and its results will be
compared with the results of the former methods finally.

Introduction

Neural tensor network (NTN) is a generalization of standard neural network,
which has been introduced by Socher, for the specific purpose of knowledge bases
completion (Socher et al. 2013). An RDF knowledge base includes some real-
world facts shown as RDF triples in which each triple is called a fact. Each fact
contains two entities and a relation between them. The first entity is called subject,
the second as object, and the relation between them as predicate. For example, the
fact “Einstein was born in Germany” could be shown as the triple <Einstein, born
in, Germany>, in which Einstein is the first and Germany the second entity, and
“born in” is the relation between these two entities. YAGO ontologies (Suchanek,
Kasneci, and Weikum 2007), DBpedia (Bizer et al. 2009), Freebase (Bizer et al.
2009), and WorldNet (Miller 1995) are some examples of RDF knowledge bases
that are also called knowledge graphs (Kim 2017) which could be used as very
helpful resources to undertake issues like “Information Retrieval,” “Natural
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Language Processing,” “Query Expansion,” “Question Answering,” “Text
Categorization” (Imani, Keyvanpour, and Azmi 2013), etc.

The completion of these knowledge bases is one of the most important issues
nowadays and many activities are involved in this field (Weikum, Hoffart, and
Suchanek 2016; Zhao et al. 2017). Using NTN for this issue, without utilizing
external resources, has been recognized as the state-of-the-art in the area (Abedini
et al., 2017; Abedini, Menhaj, and Keyvanpour 2017). Socher compared the
outcomes of implementing this model on a set of standard data to other related
models (Bordes et al. 2012, 2011; Jenatton et al. 2012; Sutskever, Salakhutdinov,
and Tenenbaum 2009; Turian, Ratinov, and Bengio 2010) which resulted in the
advantage and supremacy of the model (Socher et al. 2013). The mechanism of
thismethod is first to train the network using available facts in the knowledge base,
then to set the network parameters, and finally to check accuracy of the para-
meters through providing new triples to the trained network (Abedini et al., 2017).
A cost function has been used to train this network, and the parameters should be
set in a way that this cost function is minimized. There are many approaches such
as optimization-based classifier (Tavoli and Keyvanpour 2017; Zhao et al. 2017,
Pand Keyvanpour et al. 2012) but for this purpose, an “Unconstrained Nonlinear
Optimization Method” had been used in NTN model, which needed many
replications. So, we suggest in this paper to combine this old method with “meta-
heuristic optimization algorithms” in order to minimize the replications and
increase the implementation speed; for this purpose, we have used three meta-
heuristic methods of simulated annealing (SA), genetics algorithm (GA), and
particle swarm optimization (PSO) in this paper. So, the contributions of this
paper are as follows:

● Minimizing the replications of training NTN;
● Increasing the NTN training speed;
● Training NTN using three new algorithms;
● Combining classic andmeta-heuristic optimization methods to train NTN.

At the beginning of the paper, we introduce NTN, and the suggested approach to
implement meta-heuristic algorithms on the network is presented in the next
section. Then, the results of implementing the algorithms are evaluated, and finally
we will conclude on the issue and suggest some further researches for future.

NTN

NTN was introduced by Socher for knowledge base completion using available
facts in the knowledge base that is state-of-the-art. In this section, this network
model is presented that reasons over knowledge bases by learning vector repre-
sentations over them. Each relation triple is described by a neural network and
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pairs of knowledge base entities which are given as input to that relation’s model.
If the entities are in that relationship, then the model returns a high score
otherwise a low one. Due to this, any fact can be scored with some certainty
mentioned implicitly or explicitly in the database (Socher et al. 2013).

The aim of this network is to learnmodels which have the ability to realize the
additional facts that hold purely due to the existing relations in the same
knowledgebase. The goal of the model is to state whether two entities (e1; e2)
are in certain relationship R. For instance, whether the relationship <e1, R, e2≥
<Einstein, born-in, Germany> is true and with what score of certainty. It is
supposed that e1, e2 ∈ Rd be the vector representations (or features) of the two
entities. For now, it can be assumed that each value of this vector is randomly
initialized to a small uniformly random number.

The NTN replaces a standard linear neural network layer with a bilinear
layer that directly relates the two entity vectors across multiple dimensions.
By this model, a score of how probable it is that two entities are in certain
relationship can be computed. Let e1, e2 ∈ Rd be the vector representation of
two entities then, the NTN-based function that predicts the relationship of
two entities can be described as shown in the following equation.

g<e1, R, e2≥UT f (e1T W 1:k½ �
R e2 + VR [e1 e2] + bR) (1)

where f = tanh is a standard nonlinearity applied element-wise.W 1:k½ �
R ∈ Rd×d×k

is a tensor that is the generalization of vector and matrix to more than 2 indices

(Liu 2017; Liu, Li, and Vong 2017), and the bilinear tensor product e1T W 1:k½ �
R e2

results in a vector h ∈ Rk, where each entry is computed by one slice i = 1…k of the

tensor: hi = e1T W 1:k½ �
R e2. The other parameters for relation R are the standard

form of a neural network: VR∈Rk×2d, UR ∈ Rd and bR ∈ Rd.
Equation (2) shows a visualization of this model for two slices. The main

advantage is that it can relate the two inputs multiplicatively instead of only
implicitly through the nonlinearity as with standard neural networks where the
entity vectors are simply concatenated (Abedini, Menhaj, and Keyvanpour 2017).

All models are trained with contrastive max-margin objective functions. The
main idea is that each triplet in the training set T(i) = <e1(i), R(i), e2(i)> should receive
a higher score than a triplet in which one of the entities is replaced with a random
entity. There are NR many relations, indexed by R(i) for each triplet. Each relation
has its associated neural tensor net parameters. We call the triplet with a random
entity corrupted and denote the corrupted triplet as T(i) = <e1(i), R(i), ec> where we
sampled entity ec randomly from the set of all entities that can appear at that
position in that relation. Let the set of all relationships’ NTN parameters beΩ = u,
W, V, b, E. We minimize Equation (3) objective function (Socher et al. 2013).

where N is the number of training triplets and we score the correct relation
triplet higher than its corrupted one up to a margin of 1. For each correct
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triplet, we sample C random corrupted triplets. Standard L2 regularization of
all the parameters, weighted by the hyper parameter λ, has been used.

Taking derivatives from this objective function is not possible. For this
reason, an optimization method has been used for its minimization. This
method is minFunc (Schmidt 2005). Then the model is trained by taking
derivatives with respect to the five groups of parameters. An abstract view of
NTN training algorithm can be shown in Algorithm 1.

Algorithm 1. An abstraction view of neural tensor network training algorithm

Input of this algorithm is a set of true facts from knowledge base called “F,” a set
of false facts as corrupted facts called “Fc,” an array of different entries of all
network parameters called “theta.”Here for easiness of training, total entries of all
parameters have been placed in single file and have been considered as a unique
array (theta). But after training step, all of the parameters will be separated. The
output is final values of parameters after training and cost of the training.

The function of minFunc is a Matlab function for unconstrained optimization
of differentiable real-valued multivariate functions using line-search methods. It
uses an interface very similar to the Matlab Optimization Toolbox function
fminunc and can be called as a replacement for this function. On many problems,
minFunc requires fewer function evaluations to converge than fminunc. Further, it
can optimize problems with a much larger number of variables (fminunc is
restricted to several thousand variables) and uses a line search that is robust to
several common function pathologies (Schmidt 2005).

The default parameters ofminFunc call a quasi-Newton strategy, where limited-
memory Broyden-Fletcher-Goldfarb-Shanno updates with Shanno–Phua scaling
are used in computing the step direction, and a bracketing line-search for a point
satisfying the strongWolfe conditions is used to compute the step direction. In the
line search, (safeguarded) cubic interpolation is used to generate trial values, and
themethod switches to anArmijo back-tracking line search on iterationswhere the
objective function enters a region where the parameters do not produce a real
valued output (Schmidt 2005).

As respects the algorithm 1 needed many iterations in continue it is suggested
to perform this method with “meta-heuristic optimization algorithms” in order to
minimize the iterations and increase the implementation speed.

Algorithm 1. NTN train

Input: F: Facts with structure <e1,r,e2>, Fc: Corrupted facts with structure <e1,r,e2>, theta: Array of NTN
Parameters
Output: Array of trained parameters, cost
1: for iteration = 1: MaxItration
2: theta = minFunc(F, Fc, theta, J)
3: cost = costFunc(theta)
4: end for
5: Return theta, cost
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Suggested Algorithm

Since “minFunc” function in Algorithm 1 should be replicatedmany times to get
the minimum cost, we suggested in this paper to use meta-heuristic algorithms
to minimize the replications. So, three meta-heuristic methods of SA, GA and
PSO have been combined with the above mentioned algorithm, which we will
discuss about in the next sections. The reason why we have used these three
methods is to evaluate different type of meta-heuristic methods to specify the
best based on the results.

Training NTN Using SA

Algorithm 2 has been suggested for training NTN using SA algorithm (Rutenbar
1989). SA algorithm is inspired by physical solidification of metals, in which the
metal is first exposed to heat for a while and then chills down gradually to get
a strong and solid crystal structure. This algorithm is included in single-answer
methods and does the query more locally.

Algorithm 2. Training NTN using SA algorithm

Input of this algorithm are a set of true facts from knowledge base called “F,”
a set of false facts called “Fc,” an element of different entries of all network
parameters called “theta,” and solidification temperature. Output of this algorithm
is same as Algorithm 1. In lines 1 and 2, values of network parameters are set on
F and Fc and its cost is saved in “cost” through running the function “minFunc”
for one time. The sufficient temperature is also defined in line 3. Other algorithms
are replicated enough times to reduce the temperature to the adequate level. There
is another loop to provide balance circumstances. In each run of this loop, through

Algorithm 2. SA NTN train

Input: F: Facts with structure <e1,r,e2>, Fc: Corrupted Facts with structure <e1,r,e2>, theta: Array of NTN
parameters, cooling schedule
Output: Array of trained parameters, cost
1: theta = minFunc(F, Fc, theta, J)
2: cost = costFunc(theta)
3: T = Tmax

4: Repeat
5: Repeat
6: theta′ = minFunc(F, Fc, theta, J)
7: cost′ = costFunc(theta)
8: ΔE = cost′-cost
9: if ΔE ≤ 0 then
10: theta = theta′
11: cost = cost′
12: else
13: accept cost′ and theta′ with a probability exp(−ΔE/T)
14: end if
15: Until Equilibrium condition
16: T = g(T)
17: Until Stopping criteria satisfied
18: Return theta, cost
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running first the function “minFunc,” the value of network parameters’ element is
updated and its cost is calculated. Then, the amount of energy change is obtained
according to the cost change. If the new cost is lower than the previously calculated
one, it is accepted, and if not, the changed values are set with a higher cost based
on idealistic measure with the probability exp (−ΔE/T).

The difference between this method and the previous one is that all answers are
not accepted. In Algorithm 1, all the answers were accepted, but in this new one,
just those answers with lower costs than the previous answer are accepted, though
the worse answers are also accepted with a small probability in order to escape the
local optimum. In fact, acceptance of the best answers will speed up algorithm
convergence to the optimum point. However, this algorithm checks just one
answer in each phase. So, we will suggest some methods in the following sections
to cover a set of answers in each phase.

Training NTN Using GA

Algorithm 3 has been introduced for training NTNusing GA. GA (Li et al. 2017)
mechanism has been used in this algorithm. GA is the best known and also the
oldest evolutionary algorithm based on Darwin`s theory. According to this
theory, those creatures with more abilities to access to food resources and to
do reproduction will survive and others will die. This algorithm is based on
population and checks several answers in each phase.

Algorithm 3. Training NTN using GA algorithm
Algorithm 3. GA NTN train

Input: F: Facts with structure <e1,r,e2>, Fc: Corrupted Facts with structure <e1,r,e2>, theta: Array of NTN
parameters
Output: Array of trained parameters, cost
1: theta(0) = minFunc(F, Fc, theta, J)
2: For i = 1: #chromosome Do
3: theta(i) = minFunc(F, Fc, theta(i − 1))
4: cost(i) = costFunc(theta(i))
5: End for
6: While (stopping criterion not met)
7: Select best chromosomes bestTheta1 and bestTheta2 as parents
8: theta1 = minFunc(F, Fc, bestTheta1, J)
9: theta2 = minFunc(F, Fc, bestTheta2, J)
10: Do Crossover on theta1 and theta2
11: Do Mutation
12: Select Children
13: For i = 1: #Children Do
14: theta(i) = children(i)
15: theta(i) = costFunc(F, Fc, theta(i))
16: End for
17: Set iteration number++
18: End while
19: For i = 1: #chromosome Do
20: cost(i) = costFunc(theta(i))
21: End for
22: Select best cost, theta
23: Return theta, cost
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Input and output of Algorithm 3 is same as Algorithm 1. In lines 1–5, the
primary population is put in chromosomes theta (i). Next phases are done in the
main loop of the algorithm then. In this loop, two best chromosomes are first
selected as the parents. Then, the process of updating these two chromosomes is
done, and the intersecting procedure is implemented on these changed chromo-
somes in the next phase. The next phase is to select the best children based on the
related policy, and the cost of each child is calculated then.Again, in the next phase,
the best parents are selected out of these children. These phases are repeated
enough times to get the appropriate result.

In this algorithm, a set of answers are checked in each phase along with the
selection of the appropriate results. However, jumping action is also done in line
11 to escape the local optimum. In fact, combining the appropriate answers
speeds up algorithm convergence to the optimum point. In order to show the
power of this algorithm, we use another population-based method in the next
section, called “PSO,” and all the results will be compared in the end.

Training NTN Using PSO

PSO method is used to train NTN in Algorithm 3. PSO (Li et al. 2017)
mechanism has been used in this algorithm. This algorithm is in fact an
organized set of creatures cooperating to find foods, which is inspired by the
behaviors of birds and fishes which work based on collective conscience. Each
parts and particles of the population could be considered as a candidate answer
for the question, having a specific location and speed. The next location of the
particle is defined based on the best observed location by itself (Pbest) and the
best observed location by the whole population (Gbest). It is also assumed that
each particle has a unique moving direction, shown by velocity vector “V.”

Algorithm 4. Training NTN using PSO algorithm
Algorithm 4. PSO NTN train

Input: F: Facts with structure <e1,r,e2>, Fc: Corrupted facts with structure <e1,r,e2>, theta: Array of NTN
parameters
Output: Array of trained parameters, cost
1: theta(0) = minFunc(F, Fc, theta, J)
2: For i = 1: #Particle Do
3: theta(i) = minFunc(F, Fc, theta(i − 1), J)
4: cost(i) = costFunc(theta(i))
5: Pbest(i).theta = theta(i)
6: Pbest(i).cost = cost(i)
7: End for
8: Gbest = Best Pbest
9: For it = 1: MaxIteration Do
10: For i = 1: #Particle Do
11: V(i) = V(i) + ρ1c1(Pbest(i).theta-theta(i)) + ρ2c2(Gbest.theta-theta(i))
12: theta(i) = theta(i) + V(i)
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Input and output of Algorithm 4 are the same as one discussed before. In
lines 1–7, the primary population is set in particles “theta (i),” and the best
location of each particle and the best location of all particles are set in “Pbest”
and “Gbest,” respectively. Speed, location, and the best found answer are
updated in each replication of the main loop, and the best answer is pre-
sented finally. Results of implementing these three algorithms are evaluated
in the next section to show their function and performance.

Experimental Results

In this section, we will evaluate the abovementioned algorithms. For this
purpose, a set of standard data were used, which were evaluated in the
previous works (Socher et al. 2013). Statistical specifications of this data set
are shown in Table 1. “WordNet” has been used in this data set as the RDF-
based knowledge base. This set has 112,581 standard “WordNet” triples as
samples, in which there are 38,696 unique entities in 11 different relations.

To train NTN using Algorithm 1, inputs are obtained from training triples of
data set and given to data network. Then, network parameters are set through
running the training rule of NTN. For setting the parameters, optimization phase
of the purpose function should be repeated enough times to get theminimumcost.
These phases have been repeated 50 times for this network, and the results are
shown in Figure 1.

As shown in the figure, a lot of replications are needed to reach to the
optimum algorithm (28 times). So, we used three meta-heuristic methods in
this paper to minimize replication times and speed up the algorithm. Result
of the implementation of these three methods in first 10 replications, com-
pared with the previous method, is shown in Figure 2. As shown in this
figure, replication times have been minimized using these meta-heuristic

13: theta(i) = minFunc(F, Fc, theta(i), J)
14: cost(i) = costFunc(theta(i))
15: if cost(i)<Pbest(i).cost then
16: Pbest(i).theta = theta(i)
17: Pbest(i).cost = cost(i)
18: End if
19: if Pbest(i).cost<Gbest.cost then
20: Gbest = Pbest(i)
21: End if
22: End for
23: End for
24: Return Gbest.theta, Gbest.cost

Table 1. Properties of dataset (Socher et al. 2013).
Dataset #R #Ent. #Train #Dev #Test

WordNet 11 38,696 112,581 2609 10,544
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methods. It is also shown that GA reaches to the optimum point faster than
others. This issue is more obvious in Figures 3 and 4.

These figures show GA with 8 replication times and minimum cost of 1.42
has the best performance. However, the important issue here is that the time
of one replication of each algorithm is different. So, it is not easy to choose
the best method based on this parameter. To solve the problem, we suggest
calculating the whole time of each implementation. The whole time of each
algorithm is calculated through multiplying replication times by the time of
each replication. This procedure is shown in Table 2.

Since GA and SA are of cumulative methods, several answers are checked in
each phase, and so the time of each replication is different. SA method needs to
check several answers in each phase to reach to balance and so it takes more

0

1

2

3

4

5

6

7

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 9 41 43 45 47 49

C
o
s
t

# Iteration

NTN

Figure 1. Diagram of training cost of NTN with Algorithm 1.
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Figure 2. Comparison diagram of three suggested methods.
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time. As shown in the figure, meta-heuristic methods improved the whole time,
along with minimizing replication times, which lead to higher speed of algo-
rithm, and GA has the best performance. After training phase, accuracy level of
all methods showed the same results, using test data of Table 1.

Conclusion

In this paper, we showed that combination of meta-heuristic and classic
optimization methods could improve the speed of NTN training to learn
correct facts’ pattern of a RDF-based knowledge base. For this purpose, three
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Figure 3. Diagram of number of iteration.
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Figure 4. Diagram of optimum point.

Table 2. Execution times of algorithms.
NTN SA GA PSO

# Iterations 28 9 7 8
Time of each iteration (min) 5 15 11 15
Total time (min) 140 135 77 120
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new algorithms were introduced. Results showed that all these three methods
improve the performance, but GA had the best function. The reason of this
supremacy is that GA is based on population and checks a set of answers in
each phase, instead of a single answer. This procedure will minimize the
replication times. On the other hand, there is no need to run several answers
in each phase, and new answers are obtained through jumping and intersec-
tion operators, which have lower levels of complexity. So, replication time of
each phase in GA is smaller than SA and PSO. In fact, the results of this
paper showed that GA is the best algorithm for the discussed subject.
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