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Abstract
Carrier phase measurements are much more precise than pseudorange measurements and can be
used to achieve very accurate positioning solutions. However, carrier phase measurements require
resolution of integer ambiguities before precise positioning can be achieved. The GPS receiver can
keep track of the integer number of cycles as long as the receiver maintains lock to the satellite sig-
nal. However, in reality, the GPS signal could be interrupted momentary by some disturbing factors
leading to a discontinuity of an integer number of cycles in the measured carrier phase. This inter-
ruption in the counting of cycles in the carrier phase measurements is known as a cycle slip. When
a cycle slip occurs, the Doppler counter would restart causing a jump in the instantaneous accu-
mulated phase by an integer number of cycles. Thus, the integer counter is reinitialized meaning
that ambiguities are unknown again. In this event, either the ambiguities need to be resolved again
or cycle slips need to be corrected to resume the precise positioning/navigation process. These
cycle slips can, to some extent, be detected and fixed to avoid delay and computation complexity
attributed to integer ambiguity resolution. Researchers have been addressing the problem of cycle
slip detection and correction for the last two decades. This paper provides a detailed survey for
available techniques to tackle the problem showing their pros and cons.
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1 Introduction
In Global Positioning System (GPS) navigation, carrier phase measurement can be used to achieve
very precise positioning solutions. Although these measurements are much more precise than pseu-
dorange measurements, they are ambiguous by an integer number of cycles. When these ambigui-
ties are resolved, a sub-centimeter level positioning can be achieved. However, the GPS signal could
temporarily be lost because of various disturbing factors such as trees, buildings, bridges and urban
canyons. In kinematic applications, vehicle dynamics adds to this problem as well. This signal loss
causes a discontinuity of an integer number of cycles in the measured carrier phase, known as cycle
slip. Consequently, the integer counter is reinitialized, meaning that the integer ambiguities become
unknown again. In this event, ambiguities need to be resolved once more to resume the precise
positioning and navigation process. This is a computation-intensive and time-consuming task. Typ-
ically, it takes at least few minutes to resolve the ambiguities [1]. The ambiguity resolution is even
more challenging in real time navigation due to the receiver dynamics and time sensitive nature of
the kinematic solution. Therefore, it would save effort and time if these cycle slips could be detected
and the phase measurements are corrected instead of waiting for ambiguity resolution.

Figure 1 shows a graphical representation of cycle slips. Generally, there are three types of
sources causing cycle slips ([2],[3]). The first type is due to signal obstruction by surrounding obsta-
cles such as trees, buildings, bridges, etc. This is the most common type and this is why we see more
slips in kinematic environment data than static one. Secondly, slips resulting from the low signal-to-
noise ratio of the measured signal which is usually because of multipath, low satellite elevation, or bad
atmosphere conditions. The third source of cycle slips, though less common, is incorrect processing
of the signal because of failure in the receiver software.

Once cycle slips are detected, there are two ways to handle them. One way is to repair them
and the other is to resolve the integer ambiguities which have become unknown as a result of cycle
slips. Advantage of former technique is that it could be done instantaneously but it requires exact
estimation of the size of the slip. The latter solution is more secure [2] but it takes longer and is
computationally intensive [4]. Therefore, to avoid delay and computation complexity, especially for real
time applications, there have been many techniques proposed to the problem of cycle slip detection
and correction. This paper provides a detailed survey for a variety of such available techniques
showing their pros and cons.

2 GPS Observables Models
Before delving into further details, we will present the models used in this paper for code, phase, and
Doppler measurements. The code measurement ([5],[6]) is modeled by the following equation:

ρ(t) = r(t) + c [δtr (t)− δts (t)] + I(t) + T (t) + ερ (1)

where

ρ is the measured phase between the receiver and satellite (meters),
r is the true range between the receiver position at reception time and satellite position at

transmission time (meters),
c is speed of light (m/s),
δtr is the receiver clock bias (seconds),
δts is the satellite clock bias (seconds),
I is the ionospheric delay (meters),
T is the tropospheric delay (meters),
ερ is the receiver measurement noise, multipath, and modeling errors (meters).
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Cycle 
slip

Figure 1: A cycle slip affecting phase measurements but not the pseudoranges.

The phase measurement is modeled ([5],[6]) using the following equation:

φ(t) = r(t) + c [δtr (t)− δts (t)]− I(t) + T (t) + λN + εφ (2)

Where:

φ is the measured phase between the receiver and satellite (meters),
λ is the wavelength of the carrier signal
N is the integer ambiguity term

The Doppler ([2],[5]) is represented by the following relationship:

fd = − ṙ
λ

(3)

Where

fd is the observed Doppler shift,
ṙ is the line-of sight range rate.

In many cases, when a dual-frequency receiver is available, measurements from both frequen-
cies L1 and L2 are used to obtain combinations of measurements with wavelengths different from
λL1 and λL2 [6]. Most common measurement combination is known as Wide lane (WL) which is of
the following form:

φL12(t) = φL1(t)− φL1(t) = r(t)(
1

λL1
− 1

λL2
) (4)

This virtual measurement has a wavelength λL12 = c/(fL1 − fL2) = 0.86cm
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3 Basic Cycle Slip Detection and Correction Techniques
Cycle slip detection and correction usually happens in two steps, detection and fixing ([2],[4]). In the
first step, the location (time) of the slip is ascertained using some testing quantity. During the second
step, the size of the slip is determined which is needed along with its location to fix the cycle slip. For
GPS only systems, various measurements and combinations of measurements are used to detect
cycle slips and calculate their size ([2],[7]). Most used entities are phase-code (L1 or L2), phase-
phase (Dual frequency L1 and L2), Doppler (L1 or L2), and time-differenced phases (L1 or L2). In
the systems where GPS and inertial navigation system (INS) are integrated, INS is used to predict
the required parameter to help in cycle slip detection and correction. This parameter is usually the
true receiver-to-satellite range in double-difference (DD) mode ([1],[8]). Herein, we will go through
main cycle slip detection and correction categories one by one; each time chronologically showing
the related work to the corresponding category which usually involves some modifications.

3.1 Phase-code Comparison
The very basic technique to detect cycle slips is to compare the measured phase with the measured
code. Involving the time argument and subtracting equations (1) and (2) we get:

ρ (t)− φ (t) = −λN + 2I (t) (5)

The ionospheric delay could be either modeled or neglected as the change in ionospheric delay
between adjacent epochs would be very small. Also, the time difference between ambiguities is zero
in case of no cycle slip; thus, the left side code-phase combination of equation (5) could be used
as a testing quantity to detect cycle slips. However, the drawback of this simple quantity is that the
noise level of the code measurements is much higher than that of phase measurements. Hence, this
method can be used to detect only big cycle slips ([2],[7]).

Some modifications are introduced to this technique in [9]. The test quantity to check for cycle
slips is calculated twice, once based on code-phase measurements and second with estimations for
code and phase values. Then a comparison is made between the two obtained quantities to decide
whether a cycle slip is present or not. Results showed that cycle slips of one cycle were detected and
fixed in some scenarios. However, the introduced approach was applied only for static (stationary)
data instead of kinematic where cycle slips are more frequent and significant [1]. Besides, tests were
done in post-processing mode whereas cycle slip detection and correction is more of a problem in
real-time navigation. Furthermore, some work is needed to select optimal polynomial order to best fit
the data sets for the required variable estimation.

A code-phase combination based algorithm which uses a wavelets technique combined with
Lipchitz Exponents is introduced in [10]. Wavelets Transform is used here based on the fact that
it is excellent in finding and detecting singularities in data because of its capability of decomposing
a signal into fundamental base functions that can be correctly localized in both time and frequency
domains. This is because the propagation of noise is different from the propagation of singularities
between the wavelets levels of decomposition, representing discontinuities in the case of a cycle
slip. Results showed a recovery success rate of 83% of the cycle slips. Authors recommend more
investigation for the performance of the proposed technique over low cost receivers.

3.2 Phase-phase or Ionospheric Residuals
For a dual frequency receiver, measurements from both frequencies can be merged to detect and
correct for cycle slips. Ionospheric term in equation (2) can be explicitly expressed, for both L1 and
L2 as follows:

φL1 (t) = r (t) + c [δtr (t)− δts (t)] +
I (t)

f2
L1

+ T (t) + λL1NL1 + εφ (6)
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φL2 (t) = r (t) + c [δtr (t)− δts (t)] +
I (t)

f2
L2

+ T (t) + λL2NL2 + εφ (7)

Note that the tropospheric term is frequency independent therefore it is left intact. By forming the
difference between the two equations we obtain:

φL1 (t)− φL2 (t) = λL1NL1 − λL2NL2 −
I (t)

f2
L1

(
1− f2

L1

f2
L2

)
(8)

This form is known as ionospheric residual. All the right hand terms are time independent except
of the ionospheric term which is scaled by a factor (1 − f2L1

f2
L2

). Accordingly, substituting with the right
values for fL1 and fL2 one can find that the ionospheric influence is reduced by 65% [2]. If there is
no cycle slip, the computed value of this difference (the ionospheric residual) is very small between
two adjacent epochs. A sudden jump in successive computed values may indicate cycle slip(s) in one
or both phases. Thus, the ionospheric residual can be used as a testing quantity for detecting cycle
slips; however, there are some related shortcomings to this approach. First, this residual itself does
not provide any information about the phase where cycle slip occurred. More research is required
to explore this challenge [7]. Secondly, in some cases, special simultaneous cycle slips on and can
result in a very small change in λL1∆NL1 − λL2∆NL2 which could lead to missing the detection of
the cycle slip. Examples of such combinations are given in [2]. In addition, a dual frequency receiver
is required to implement this technique; which is the present state of-the-art for cycle slip detection
using GPS only data [8].

Authors of [11] introduced a test quantity for dual frequency double-differenced data by observing
the change of the innovation process in extended Kalman filtering instead of the usual way of directly
observing carrier phase data. They showed that if a cycle slip occurs, then the mean and covariance
of the standard innovation process changes. The algorithm was tested with real receiver data but
cycle slips were artificially simulated. Results show efficient detection of cycle slips on only one
scenario. Furthermore, one major limitation of this method is the short baseline length (about 200-
300 m) which does not reflect real-life scenario.

Geometry-free combination, introduced above, along with the so called Melbourne-Wbbena com-
bination is used in [12]. The latter is similar to the Widelane combination. Using the first combination,
phase measurements are compared to predicted phase values based on low degree polynomial fit-
ting. If the difference is larger than some threshold, there will be cycle slips in the current epoch.
For the second combination, the running mean of some testing quantity is investigated. Measured
data points are compared with a threshold to the filtered mean. Occurrence of a cycle slip is in-
dicated when the threshold is exceeded. Ionospheric term in used combinations is not minimized
enough which affects the detection capacity. Results show correct detection of the simulated cycle
slips in real kinematic data but no accuracy was quantified. Authors also mentioned that more testing
is required in order to further validate the performance of the approach in relation to the levels of
ionospheric delay, multipath and noise.

Another cycle slip detection and repair algorithm based on dual-frequency data is introduced
in [13]. The algorithm jointly uses the ionospheric total electron contents rate (TECR) and Mel-
bourneWbbena wide lane (MWWL) linear combination to determine cycle slips on both L1 and L2
independently. The idea behind this technique is that when there are cycle slips, the MWWL ambi-
guity will change and the ionospheric TECR will be extensively amplified. The TECR is calculated
based on the phase measurements and compared to a prediction estimate based on previous epochs
data (30 epochs). If a threshold is exceeded, a cycle slip is assumed to have occurred. The ratio-
nal of this algorithm comes from the fact that during a short period of time (i.e. 1 s) the TECR will
not exceed the predefined threshold . The strength of this algorithm is coming from combining the
MWWL ambiguity and TECR information. Results showed that the algorithm detected and correctly
repaired almost any cycle slips except for a few which were detected but incorrectly repaired under
very active ionospheric conditions. Limitations include the need for many data epochs for the TECR
term estimation in addition to the error associated with this estimation process.
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All above research assumes a very small ionospheric change (residual) between adjacent epochs.
However, this is not true in case of ionospheric scintillation. Research in [14] addresses the case of
cycle slips under ionospheric scintillation circumstances where there is a bigger chance of occurrence
of many continuous cycle slips that last for longer periods. The more intense and longer lasting the
cycle slips the more complicated is the detection and correction process. Research suggested the
use of non-geometry-free and ionosphere-free testing quantities combined of measurements from
satellite-pairs to avoid code observation noise. Correctness of the proposed algorithm was shown in
obtained R-ratio of 8.6. However, one drawback of the method was the need for three more equations
than the cycle slip variables at the forth-order differencing which made the process unreliable in case
of sequential cycle slips. For instance, cycle slips were only partly corrected due to continuous and
long-lasting cycle slips (about 150 seconds).

3.3 Doppler Integration Method
Doppler is the instantaneous shift in the measured frequency that makes it a robust measurement
suitable as an alternative to detect and correct cycle-slips ([7],[15],[16]). Equation (3) relates the
observed Doppler fd to the rate of change in range ṙ.It can be re-written in the form of phase change
as:

fd =
φ̇

λ
⇒ φ̇ = λfd (9)

Integrating the instantaneous Doppler yields the phase:

φ̂ (t) = λ
t

∫
t0

fddt (10)

Where φ̂ (t) is the estimated phase at time t. The discrete form is given in [14] as:

φ̂k+1 = φk +
φ̇k+1 + φ̇k

2
∆t (11)

Now the measured and the estimated phases are compared as follows:

∆Nk+1 = φ̂k+1 − φk+1 (12)

If the difference ∆N exceeds a threshold, that means there is a cycle slip of size ∆N . Otherwise, the
current data epoch is free of cycle slips. This technique takes the advantage of the fact that Doppler
measurements are immune to cycle slips. However, in reality, the deviation in the receiver’s oscillator
clock may result in Doppler measurement error [15]. Also, Doppler measurements are highly affected
by high receiver dynamics ([4],[8],[17]).

In [16], two different algorithms were used to detect cycle slips. One is based on the Doppler
phase estimation. Both algorithms showed equally good performance but based on the premise
that cycle slips are usually larger than 10 cycles. Another claim made in the research is that faulty
measurements have only local effects on kinematic results but not critical for the overall accuracy.
However, justification of this claim needs further investigation. Doppler based algorithm is also im-
plemented in [18]. The proposed method used rates of carrier-phase measurements and estimated
Doppler measurements. Numerical backward difference approximation was used to calculate this
rate. Cycle slips were detected by monitoring if there was a sudden increase in the estimated value
or not. Results showed a decent cycle slip detection rate, albeit on simulated data. The algorithm
used backward differentiation using three samples to estimate the rate of carrier-phase which was a
twofold problem. First, the algorithm needed the data for three consecutive epochs. Second, if cycle
slip occurs, it will be reflected in three consecutive results because of involving affected epoch three
times in the calculations. Thus, two epochs reset time was required for each satellite after cycle slip
detection.
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The problem of the deviation in the receivers oscillator clock was addressed in [15]. Depending
on the fact that the receivers clock oscillator is a non-ideal clock source and plays a part in the Doppler
measurement error; the paper introduced a simplified oscillator model and then based on the oscilla-
tor model, a modified method was proposed, which avoided the influence of the local oscillator bias.
The running mean of a Doppler based test quantity was checked against some predefined threshold.
Some shortcomings exist in this method. First, the research ignores variation of atmospheric delay,
satellite orbit bias, multipath, receiver system noise and assumes the use of high frequency receivers
which are relatively expensive. Secondly, there was no demonstration of comparative analysis to
reflect the effect of Doppler measurements bias resulting from the receivers clock inaccuracy.

3.4 Time-differenced Phases
High order time differencing is another approach for cycle slip detection and correction. The rationale
of this method can be seen from an example given in [2]. Assuming that we have a signal repre-
sented by a time series y(ti), i = 1, 2, ...7 which has a jump of ε at time t4 as in Table 1. In this
table, y1, y2, y3, y4 represent the first-order, second-order, third-order, and fourth-order differences,
respectively whereas Ω denotes a constant. From Table 1, we can see the amplification of a jump in
higher order differences; for instance, a jump of ε at t4 is amplified by 3 at fourth-order differencing,
y4. This improves the chance of detecting the jump ([2],[3]). To take advantage of this idea in phase
measurements, we recall equation (2) explicitly adding the time argument:

φ (t) = r (t) + c [δtr (t)− δts (t)]− I (t) + T (t) + λN + εφ (13)

Time differencing between two adjacent epochs can be expressed as:

∆tφ (t) = ∆tr (t) + c∆t [δtr (t)− δts (t)]−∆tI (t) + ∆tT (t) + λ∆tN + εφ (14)

All the terms on the right hand side have low variation except of the ambiguity term; thus, any cycle slip
will cause a jump in the time difference of the measured phase. Replacing in the previous example
with cycle slip in the phase measurements, the method of high order time differencing becomes
evident [2]. Practically, the algorithm is implemented by fitting the differencing data with polynomials.
The polynomials are then used for interpolating the data around the testing epoch. The size of
cycle slip, if any, is the difference between the computed and differenced data curves. An obvious
limitation of this method is the requirement of many data epochs which makes it applicable only in
post-processing applications [7].

Research in [3] adopts the time differencing approach. The paper introduces a combinational
algorithm based on the high order time difference to detect and correct cycle slip exceeding two
cycles and then uses the Lagrange interpolation to correct the small cycle slips. In short, the algorithm
computes the 3-time differences on phase data to amplify cycle slips then fits the differenced data
with 6-order Lagrange interpolation. The combinational algorithm could correct small cycle slip within
the error of one cycle slip.

In [19], research is based on the assumption that most error sources are strongly correlated
over a short period of time; therefore, their effects are greatly reduced when forming time-difference
operation on the data. On the other hand, it takes into account the variation in satellite clock errors
and tropospheric delay. With this in mind, it was affirmed that cycle slips preserved their integer
nature and ambiguity resolution techniques could be applied to estimate the size of the detected
slips. Thus, the algorithm could be summarized in two steps. First, the widelane (WL) ambiguities
are fixed with the help of the Least-squares Ambiguity Decorrelation Adjustment (LAMBDA) method.
Then, the size of the cycle slips on L1 is determined using the time-differenced geometry-free (GF)
ambiguities with the previously fixed widelane ambiguities. Results showed a cycle slips correction
rate of approximately 99% at a sampling interval of one second. However, it was also indicated that
the method was particularly sensitive to un-modeled changes in ionospheric delay variations and
quick variations of the multipath characteristics.
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Table 1: The Principle of High Order Time Differencing (Modified from [2]).

ti y(t) y1 y2 y3 y4

t1 Ω
0

t2 Ω 0
0 ε

t3 Ω ε -3ε
ε -2ε

t4 Ω+ε -ε 3ε
0 ε

t5 Ω+ε 0 -ε
0 0

t6 Ω+ε 0
0

t7 Ω+ε

In [20], the research used time-differenced carrier phase measurements from a standalone re-
ceiver where the integer ambiguities canceled, atmospheric and other temporally correlated errors
were reduced, but any cycle slips would remain. Receiver Autonomous Integrity Monitoring (RAIM)
methodology was then used to process the differenced data. RAIM, which poses a requirement of
an over-determined system of equations, originates from civil aviation where measurement errors
are rare but large which differs from the situation of cycle slips where errors are more frequent but
small. However, RAIM is used in the aforementioned research based on the assumption that a bi-
ased observation in the measurement set does not fit well with the others. The results showed that
the method was able to detect and identify single cycle slips but failed in the case of multiple slips
scenario. The benefit of this method is that no reference receiver is needed; however, there still exists
a major shortcoming that uncorrelated errors are amplified by a factor of

√
2.

3.5 Combined Solutions
Due to the limitations of the different cycle slip detection and correction techniques, some researchers
are trying to combine more than one technique to get advantages of both. A valid example is provided
in [21]; more than one method were merged to build up a strong cycle slip detection and correction
algorithm. Using dual-frequency measurements, ranges were estimated first based on Doppler mea-
surements; then, phase-code measurements along with range estimations were time-differenced.
The two frequencies were treated individually in the beginning to detect cycle slips then combined in
the form of geometry-free phase to reduce the number of obtained cycle-slip candidates. One limita-
tion is that Time-differenced pseudoranges are suggested to be used instead of Doppler for receivers
which do not provide Doppler measurements. Also, ionospheric delay, tropospheric delay, multipath
error, and receiver noise are assumed to be small. Moreover, the introduced algorithm could inherit
the same common limitations of least-squares estimation as it was an integral part of the algorithm at
some stage to estimate the quasi-random errors.

In [22], authors introduced an artificial intelligence based technique that uses Bayesian Networks
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(BN) as a classifier. The research chooses BN for being powerful, yet relatively simple compared to
other mathematical modeling approaches. Besides, the solution combines the first, second, and the
third backward differences of the carrier phase measurements along with the difference between the
Doppler value and the first difference as inputs. The classifier was implemented in such a way that did
not need heavy computations and utilized fewer observations; therefore, it could be applied in either
real time or post-processing mode. Results indicated that the algorithm was efficient in detecting and
identifying the size of cycle slips but all the data was collected in static mode. Other drawbacks that
need to be mentioned here (related to Neural Networks in general) are, the training time required for
the Neural Network and the possibility of over-training the network.

3.6 Cycle Slip Detection and Correction Techniques with Inertial Aid-
ing

GPS and INS possess complementary characteristics and hence, they are often integrated to provide
a better navigation solution than a stand-alone GPS or INS. In the case of a cycle slip specifically, as
the phase measurements need to be examined before being used, INS would be useful in detecting
and correcting the slip by providing accurate estimations to be compared with the measured ones.
There has been some research in this regard involving INS in some different integration schemes. A
filtering technique is usually employed to perform the GPS/INS integration and owing to its estimation
optimality and recursive properties Kalman filter is most often used [23]. Figure 2 provides a general
view of the mechanism of cycle slip detection and correction with inertial aiding. A general comparison
between the basic cycle slip detection and correction techniques can be seen in Table 2.

In [4], a two-step algorithm was introduced. The first step was to detect cycle slips using Doppler
measurements and Doppler estimations from phase measurements. The role of the integrated INS
system comes in the second step where it provides an estimation of the receiver-satellite geometric
range to calculate the size of the cycle slip, in case there is any. Authors explained that the algorithm
was not applicable as the velocity vector of the receiver and hence its Doppler component is not
sufficiently accurate.

The principle of the algorithm introduced in [8] is to compare dual-frequency DD phase mea-
surements with estimated ones derived from the output of an INS system. The research presents
a detailed analysis of the detection criterion and the determination of the cycle slip size on the DD
measurements. However, the mechanism of determination of the resultant slips on each individual
frequency (L1 and L2) was not shown, although claimed in the research. The research suggested
continuous adjustment of the thresholds to make the algorithm work better. The results showed a
perfect performance but with simulated cycle slip introduced into ideal-scenario. For instance, the
test site was selected to provide good satellite visibility and no signal blocking. Also, reference-rover
base line was less than 700 m for driving trials which is too limiting.

In [24], the algorithm uses information provided by the INS, and applies a statistical technique
known as the cumulative-sum (CUSUM) to detect and determine the size of cycle slips. CUSUM is
sensitive to small changes in the mean and/or standard deviation of measurements. Using this tech-
nique, the algorithm tracked the mean of the difference between the DD carrier phase measurements
and the DD geometric ranges estimated by an INS system. Authors assumed that main error source
was multipath and could be modeled or mitigated by some methods. Although, the algorithm showed
very promising results, cycle slips were introduced in a clean data set. Also, tactical-trade C-MIGITS
INS (5 deg/h, 500g) was used with reference-rover baseline of the order of only 50 meters.

GPS/MEMS-INS integration through Extended Kalman filter was implemented in [1]. Carrier
phase measurements were checked out for cycle slips by tracking changes in the filters innovation
vector against a threshold. The drawback of this technique is the use of phase-code measurements
in determining the size of cycle slips. The results showed moderate fixation rate ranging from 93%
in case of few cycle slips to 48.4% in case of extreme cycle slips. We improved the method where
we introduced the use of Reduced Inertial Sensor System (RISS) [25]. The inertial system contained
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Figure 2: Mechanism of cycle slip detection and correction using INS aiding, a
general view.

Table 2: A Brief Comparison Between the Basic Cycle Detection and Correction
Techniques.

Parameter Method
Phase-code Phase-phase Doppler Inte-

gration
Time-differencing Inertial

aided
Accuracy Affected by

code noise.
Accuracy is
wavelength
dependent.

Affected
by high
dynamics.

Accuracy is
proportional to
order of time
series used.

Precise.

Complexity Simple. Complex. Simple. Complex. Moderate.
Computations in-
tensity

Straight
forward.

Medium. low. High Intensity. Medium.

Extra
hardware/cost

No. Dual-
frequency
receiver.

No. dual-frequency re-
ceiver in some cases.

cost of
INS
system.

Real time
applicability

Yes. Yes. Yes. No. Possible.

only one gyroscope, two accelerometers, and vehicle wheel rotation sensor. The goal of using less
number of sensors was to first eliminate unnecessary inertial sensor errors and the second is to
reduce the cost of the Inertial Measurement Unit (IMU). The performance of the introduced algorithm
was examined under different scenarios with different-intensity and variable-sized cycle slips. Results
showed a very high detection ratio with higher accuracy in the case of large cycle slips achieving
100% detection ratio and accuracy of 99.76%. However, the accuracy was less in the case of small
cycle slips with a higher mis-detection ratio. A moderate detection ratio (40%) and modest accuracy
(36.86) were obtained when the slips are of sizes close to the test threshold. Also, an adaptive
threshold selection criterion was applied which improved the performance of the algorithm. The
burden is still the extra hardware cost of the required IMU.

In [26], a cycle slip detection and correction method for Precise Point Positioning (PPP) GPS and
MEMS grade INS integration was implemented. The introduced algorithm used the WL and Extra
WL (EWL) measurement combinations to obtain longer wavelengths than L1 and L2 to improve the
efficiency of the cycle slip detection and identification process. The proposed algorithm eliminates
the need of a reference receiver; however, still involves satellite single differencing. Also, it requires a
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dual frequency receiver. Another barrier is the real-time availability of PPP information updates.

4 Conclusions
High-precision positioning and navigation solutions can be obtained using GPS signal carrier phase
measurements. However, carrier phase measurements require resolution of integer ambiguities. The
GPS receiver can keep track of the integer number of cycles as long as the receiver maintains lock
to the satellite signal. However, in reality, the GPS signal could be interrupted momentary by some
disturbing factors leading cycle slips in the measured carrier phase. In the case of cycle slips, ei-
ther the ambiguities need to be resolved again or cycle slips need to be corrected to resume the
precise positioning/navigation process. Cycle slips are preferably detected and fixed to avoid delay
and computation complexity attributed to integer ambiguity resolution. Up to date, several techniques
have been introduced to the problem. Code-phase measurements combinations provide a simple
implementation but noisy; hence, used to detect only big cycle slips. Phase-phase measurements,
on the other hand, are precise but they require a dual frequency receiver. Moreover, the residual term
in this combination does not provide any information about in which phase the cycle slip happened
or it might completely miss the detection of the slip in some special simultaneous cycle slips combi-
nations on L1 and L2. This makes it a valid option for only static positioning applications. Doppler
integration techniques are immune to cycle slips but suffer from measurement error because of the
deviation in the receivers oscillator clock. They are also highly affected by high receiver dynamics.
GPS/INS based solutions are being more applied to the problem as they provide precise solution and
are usually already incorporated in the system.
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