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Abstract 

An L-stable block method based on hybrid second derivative algorithm (BHSDA) is provided by a 
continuous second derivative method that is defined for all values of the independent variable and 
applied to parabolic partial differential equations (PDEs). The use of the BHSDA to solve PDEs is 
facilitated by the method of lines which involves making an approximation to the space deriva-
tives, and hence reducing the problem to that of solving a time-dependent system of first order in-
itial value ordinary differential equations. The stability properties of the method is examined and 
some numerical results presented. 
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1. Introduction 
We adopt the method of lines approach which is commonly used for solving time-dependent partial differential 
equations (PDE), whereby the spatial derivatives are replaced by finite difference approximations (see Lambert 
[1], Ramos and Vigo-Aguiar [2], Brugnano and Trigiante [3], Cash [4], Enright [5], Hairer et al. [6], Henrici [7], 
Butcher [8], Fatunla [9], Jator [10], and Onumanyi et al. [11], [12]). Consider the PDE of the form 

( ) [ ] [ ]
2

2 , ,   0,1 0u u x t t T
t x

∂ ∂
= ∈ × < ≤

∂ ∂
                              (1) 
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subject to the initial/boundary conditions 

( ) ( ) [ ] ( ) ( ),0 ,   0,1 , 0, 1, 0, 0.u x G x x u t u t t= ∈ = = ≥                    (2) 

We seek a solution in the strip [ ] [ ]0,1 0 < t T× ≤  by first fixing the grid in the spatial variable x , then 
approximating this spatial derivative using the central difference method, and finally solving the resulting 
system of first order time dependent ODEs. Specifically, we discretize the space variable with mesh spacings  

1x M∆ = , 
, 0,1, ,mx m x m M= ∆ =  . 

We then define ( ) ( ), m mu t u x t≈ , ( ) ( ) ( ) T
1 , , mt u t u t=   u , and replace the partial derivatives 

( )2

2

, u x t
x

∂

∂
  

occurring in (1) by the central difference approximation to obtain 
( ) ( ) ( ) ( ) ( )2

1 1

, 
, 2 , ,m

m m m

u x t
u x t u x t u x t x

t + −

∂
 = − + ∆ ∂

; 0,1, , 1m M= − , which reduces the PDE to the semi- 

discrete problem 

( )
( )1 12

d 1 2
d

m
m m m

u
u u u

t x
+ −= − +

∆
 

which can be written in the form 

( ) ( ) 0, , 0 ,f t′ = =u u u u                                  (3) 

where ( ),t =f u Au , and A is an M M×  matrix arising from the central difference approximations to the 
derivatives of x . The problem (2) is now a system of first order ODEs which is solved by the BHSDA. 

The paper is organized as follows. In Section 2, we derive a continuous approximation which is used to obtain 
the BHSDA. The BHSDA is also analyzed in Section 2. The computational aspects of the method is given in 
Section 3. Numerical examples are given in Section 4 to show the accuracy of the method. Finally, the 
conclusion of the paper is discussed in Section 5. 

2. Development of the Method 

We begin by considering a scalar form of (3)  

( ) ( ) [ ]0 0 0, , ,   , Nu f t u u t u t t t′ = = ∈                             (4) 

where we assume that the function f is Lipshitz continuous and the problem (4) possesses a unique solution. 
Furthermore, let nu  be an approximation of the theoretical solution ( )u t  at nt . Our objective is to 
simultaneously seek numerical approximations at the points n nt t hν ν+ = +  and 1n nt t h+ = +  respectively, 
where h  is the step size, n  the grid index, and ( )0,1 .ν ∈  This approximation nu  is provided by a 
continuous approximation ( )U t  as a by-product. Thus, we assume that ( )U t  is of the form 

( )
4

4

0
j

j
U t t

=

= ∑                                       (5) 

where j  are unknown coefficients. 
In order to uniquely determine the unknown coefficients j , we impose that the interpolating function (4) 

coincides with the analytical solution at the end point nt  and also satisfies the differential Equation (3) at the 
points , 0,1, 2n jt jν+ =  to obtain the following system of equations:  

( ) ( ) ( )1 1, , , 0,1, 2.n n n j n j n nU t y U t f U t g jν ν+ + + +′ ′′= = = =                    (6) 

We note that (6) leads to a system of five equations which is solved by Cramer's Rule to obtain j . The 
continuous method is constructed by substituting the values of j  into Equation (5) which is simplified and 
expressed in the form  

( ) ( ) ( ) ( )( ) ( )2
0 1 1 1 1n n n n nU t y h t f t f t f h t gν νβ β β γ+ + += + + + +                 (7) 
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where ( )0 tβ , ( )1 tβ , ( )tνβ , ( )1 tγ , are continuous coefficients, and 
( )( ) 1

1

1

d ,
d

n

n

t

n

u

f t u t
g

t

+

+

+ = . The continuous  

method (7) is then evaluated at { }1,n nt t tν+ += , for 1 2ν =  to yield 

( ) ( )

( )

2

1 2 1 2 1 1

1 1 2 1

17 44 13 3
96 96

4 .
6

n n n n n n

n n n n n

h hy y f f f g

hy y f f f

+ + + +

+ + +


= + + − +


 = + + +

                   (8) 

Remark 2.1 In order to conveniently analyze and implement the method (8), we will express it in block form 
as given in (9). 

( ) ( ) ( ) ( ) ( )0 1 0 1 02
1 1A Y A Y h B F B F h C Gµ µ µ µ µ− −

 = + + +                        (9) 

where 
T

1 1
2

, nn
Y u uµ +

+

 
=   
 

, 
T

1 1
2

, nn
Y u uµ−

−

 
=   
 

, 
T

1 1
2

, nn
F f fµ +

+

 
=   
 

, 
T

1 1
2

, nn
F f fµ−

−

 
=   
 

, ( )T
10, nG gµ += ,  

1,µ =  , 0,1,n =  , and the matrices ( )0A , ( )1A , ( )0B , ( )1B , ( )0C  are 2 by 2 matrices whose entries are 
given by the coefficients of (8). 

2.1. Local Truncation Error 

Define the local truncation error of (4) as 

( ) ( ) ( ) ( ) ( )1 0 1 02
11Ł ;z t h Z A Z h B F B F h C Gµ µ µµ µ −−

 = − − + −                      (10) 

where 

( )
T

1 1
2

, nn
Z u t u tµ +

+

  
=       

, ( )
T

1 1
2

, nn
Z u t u tµ−

−

  
=       

, ( )( )
T

1 1 1 1
2 2

, , ,n nn n
F f t u t f t u tµ + +

+ +

   
 =         

, 

( )( )
T

1 1 1
2 2

, , ,n nn n
F f t u t f t u tµ−

− −

   
 =         

, and ( ) ( ) ( )( )T

1 2Ł ; Ł ; , Ł ;z t h z t h z t h=            is a linear difference  

operator. Assuming that ( )z t  is sufficiently differentiable, we can expand the terms in (10) as a Taylor series 

about the point nt  to obtain the expression for the local truncation error. ( ) ( )5Ł ;z t h O h=   , hence the  

method is of order four. 

2.2. Stability 

Proposition 2.2 The BHSDA (9) applied to the test equations u uλ′ =  and 2u uλ′′ =  yields. 

( ) 1 , ,Y M q Y q hµ µ λ−= =                                 (11) 

with the amplification matrix  

( ) ( ) ( ) ( )( ) ( ) ( )( )10 0 0 1 12 .M q A qB q C A qB
−

= − − +                       (12) 

Remark 2.3 The dominant eigenvalue of )(qM  specified by 
2

max 2 3

48 18 2
48 30 8

q qq
q q q

+ +
=

− + −
 is a rational  

function called the stability function which determines the stability of the method. 
Proof. We begin by applying (2) to the test equations u uλ′ =  and 2u uλ′′ =  which are expressed as 
( ),f t u uλ=  and ( ) 2,g t u uλ=  respectively; letting q hλ= , we obtain a system of linear equations which is 

used to solve for Yµ  with (12) as a consequence.  
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Definition 2.4 The block method (9) is said to be 1) A -stable if for all   q −∈ , ( )M q  has a dominant 
eigenvalue maxq  such that max 1q ≤ ; moreover, since maxq  is a rational function, the real part of the zeros of 

maxq  must be negative, while the real part of the poles of maxq  must be positive; 2) L -stable if it is A -stable 
and max 0q →  as q → −∞ .  

Corollary 2.5 The method (9) is A -stable and L -stable.  

Proof: The dominant eigenvalue maxq  for the method (9) is given by 
2

max 2 3

48 18 2
48 30 8

q qq
q q q

+ +
=

− + −
 and the  

proof follows from definition 2.4. 
Remark 2.6 The stability region for the method (9) is given in Figure 1 showing the zeros and poles of the 

dominant eigenvalue maxq . 

3. Computational Aspects 

The resulting system of ODEs (3) is then solved on the partition  
{ }0 1 0π : , N N nt t t t t nh< < < = +  

b ah t
N
−

= ∆ =  is a constant step-size of the partition of πN , 1, 2, ,n N=  , N  is a positive integer and n   

the grid index. 
Step 1: Use the block method (9) to solve (3) on rectangles [ ] [ ]0 1, 0,1t t × , [ ] [ ] [ ] [ ]1 2 1, 0,1 , , , 0,1N Nt t t t−× × . 

Step 2: Let 
T

, 1 , 1,
2

,m m nm n
Y u uµ +

+

 
=   
 

, noting that ( ) ( ), , m n m n m nu t u u x t≈ ≈ , then for 1, ,m M=  , 0n = ,  

and 1µ = , the approximations 
T

,1 1 ,1,
2

,m mm
Y u u

 
=   
 

 are simultaneously obtained on [ ] [ ]0 1, 0,1t t × . 

Step 3: Step 2 is repeated for 1, ,m M=  , 1, 2, , 1n N= − , and 2,3, , Nµ =  , to generate the approxi-  
mations ,2 ,3 ,, , ,m m m NY Y Y  on [ ] [ ] [ ] [ ]1 2 1, 0,1 , , , 0,1N Nt t t t−× × . 

We note that for linear problems, we solve (3) directly with our Mathematica code enhanced by the feature 
[ ]NSolve . 

4. Numerical Examples 

Computations were carried out in Mathematica 9.0 and the errors were calculated as ( ), ,m n m nu u x t− , where 
( ) ,m n m nu t u≈ . We note that the method is particularly useful, but not limited to solving parabolic partial 

differential equations where the solution decays very rapidly and where the PDEs are stiff parabolic equations 
(see Cash [4]). 

Example 4.1 As our first test example, we solve the given PDE (see Cash [4]) 

( ) ( ) ( )
2

2 , 0, 1, = 0, ,0 sin π .u u u t u t u x x
t x

κ∂ ∂
= = =

∂ ∂
 

The exact solution ( ) 2π, e sin πtu x t xκ−= . 
In Table 1, it is noticed that the method with the BHSDA is the most accurate. 
Example 4.2 As our second test example, we solve the given stiff parabolic equation (see Cash [4]) 

( ) ( ) ( )
2

2 , 0, 1, = 0, ,0 sin π sin π , 1.u u u t u t u x x x
t x

κ ω ω∂ ∂
= = = +

∂ ∂
  

The exact solution ( ) 2 2 2π π, e sin π e sin πt tu x t x xκ ω κ ω− −= + . 
Cash [4] notes that as ω  increases, equations of the type given in example 4.2 exhibit characteristics similar 

to model stiff equations. Hence, the methods such as the Crank-Nicolson method which are not 0L -stable are 
expected to perform poorly. The BHSDA is L -stable and perform excellently when applied to this problem. 
Therefore the BHSDA is competitive with the 0L -stable methods of Cash [4]. In Table 2, we display the results 
for 1κ =  and a range of values for ω . 
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Figure 1. The region of absolute stability of the BHSDA of order 4 is to the left of the 
dividing line and is symmetric about the real axis; the square and plus symbols to the left and 
right of the imaginary axis represent the zeros and poles of qmax respectively.                

 
Table 1. A comparison of errors of methods for Example 4.1 at t = 1.                                              

x∆  t∆  κ  Crank-Nicolson Cash (2.6a, b) Cash (2.13a, b, c) BHSDA 

0.1  0.1  1 53.0 10−×  51.5 10−×  64.5 10−×  61.3 10−×  

0.05  0.05  1 69.0 10−×  64.0 10−×  72.7 10−×  71.7 10−×  

0.1  0.1  5 42.0 10−×  83.0 10−×  102.0 10−×  192.5 10−×  

0.05  0.05  5 141.0 10−×  224.0 10−×  223.7 10−×  247.0 10−×  

 
Table 2. A comparison of errors of methods for Example 4.1 at t = 1 and ω = 1, Δx = 0.1, Δt = 0.1.                      

ω  BHSDA Crank-Nicolson Cash (2.6a, b) Cash (2.13a, b, c) 

1 62.64 10−×  56.20 10−×  53.7 10−×  51.5 10−×  

2 61.32 10−×  53.83 10−×  51.8 10−×  67.4 10−×  

3 61.32 10−×  39.30 10−×  51.9 10−×  67.4 10−×  

5 61.32 10−×  11.80 10−×  51.8 10−×  67.4 10−×  

10 61.32 10−×  16.10 10−×  51.8 10−×  67.4 10−×  

5. Conclusion 

We have proposed a BHSDA for solving parabolic PDEs via the method of lines. The method is shown to be L - 
stable and competitive with existing methods in the literature. 

References 
[1] Lambert, J.D. (1991) Numerical Methods for Ordinary Differential Systems. John Wiley, New York.  
[2] Vigo-Aguiar, J. and Ramos, H. (2007) A family of A-Stable Collocation Methods of Higher Order for Initial-Value 

Problems. IMA Journal of Numerical Analysis, 27, 798-817. http://dx.doi.org/10.1093/imanum/drl040 

http://dx.doi.org/10.1093/imanum/drl040


F. F. Ngwane, S. N. Jator  
 

 
92 

[3] Brugnano, L. and Trigiante, D. (1998) Solving Differential Problems by Multistep Initial and Boundary Value Methods. 
Gordon and Breach Science Publishers, Amsterdam. 

[4] Cash, J.R. (1984) Two New Finite Difference Schemes for Parabolic Equations. SIAM Journal of Numerical Analysis, 
21, 433-446. http://dx.doi.org/10.1137/0721032 

[5] Enright, W.H. (2000) Continuous Numerical Methods for ODEs with Defect Control. Journal of Computational and 
Applied Mathematics, 125, 159-170. http://dx.doi.org/10.1016/S0377-0427(00)00466-0 

[6] Hairer, E. and Wanner, G. (1996) Solving Ordinary Differential Equations II. Springer, New York.  
http://dx.doi.org/10.1007/978-3-642-05221-7 

[7] Henrici, P. (1962) Discrete Variable Methods in ODEs. John Wiley, New York.  
[8] Butcher, J.C. (1987) The Numerical Analysis of Ordinary Differential Equations, Runge-Kutta and General Linear 

Methods. Wiley, New York.  
[9] Fatunla, S.O. (1991) Block Methods for Second Order IVPs. International Journal of Computational Mathematics, 41, 

55-63. http://dx.doi.org/10.1080/00207169108804026 
[10] Jator, S.N. (2010) On the Hybrid Method with Three-Off Step Points for Initial Value Problems. International Journal 

of Mathematical Education in Science and Technology, 41, 110-118 http://dx.doi.org/10.1080/00207390903189203 
[11] Onumanyi, P., Sirisena, U.W. and Jator, S.N. (1999) Continuous Finite Difference Approximations for Solving Diffe-

rential Equations. International Journal of Computational Mathematics, 72, 15-27.  
http://dx.doi.org/10.1080/00207169908804831 

[12] Onumanyi, P., Awoyemi, D.O., Jator, S.N. and Sirisena, U.W. (1994) New Linear Mutlistep Methods with Continuous 
Coefficients for First Order Initial Value Problems. Journal of the Nigerian Mathematics Society, 37-51. 

http://dx.doi.org/10.1137/0721032
http://dx.doi.org/10.1016/S0377-0427(00)00466-0
http://dx.doi.org/10.1007/978-3-642-05221-7
http://dx.doi.org/10.1080/00207169108804026
http://dx.doi.org/10.1080/00207390903189203
http://dx.doi.org/10.1080/00207169908804831

	L-Stable Block Hybrid Second Derivative Algorithm for Parabolic Partial Differential Equations
	Abstract
	Keywords
	1. Introduction
	2. Development of the Method
	2.1. Local Truncation Error
	2.2. Stability

	3. Computational Aspects
	4. Numerical Examples
	5. Conclusion
	References

