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ABSTRACT

In this paper we have established some Ostrowski type inequalities involving Riemann —
Liouville fractional integrals for functions whose derivatives are h-convex.
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1. INTRODUCTION

If f:1 € [0,°) — R be a differentiable mapping on I°, the interior of the interval /, such

that f'€ Ly([a, b]), where a,b €1 with a <b. If |f'(x)| <M, then the following
inequality:

<

M [(x—a)?+(b-x)?
b_a-[ . (1.1)

1 b
£ —5— [ radu

holds. This results is known in the literature as the Ostrowski inequality. For recent results
and generalizations concerning Ostrowski’s inequality see [1-6] and the references therein.
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The following definition is well known in the literature:

afunction f:1 - R, @ # I € R, is said to be convex on [ if the inequality

fax+ (A -Dy) <tf()+ (1A -f) (1.2)
holds for all x,y € [ and t € [0, 1].

In 1978, Breckner [7] introduced an s-convex function as a generalization of a convex

function. Such a function is defined in the following way: A function f: [0, «) — R, is said to
be s-convex in the second sense if

fx+ A -0y) <t°f(x0) + A=) f(¥) (1.3)
holds for all x,y € [0, ), t € [0,1] and for fixed s € [0, 1].
In 2007, VaroSanec [8] introduced a large class of non-negative functions, the so-called h-

convex functions. This class contains several well-known classes of functions such as
non-negative convex functions. This class is defined in the following way: a non-negative

function f:1 = R, @ # I € R, is an interval, is called h-convex if

fiex+ (A -y) <h(Of) +hA-Df () (1.4

holds for all x,y € [ and t € [0, 1], where h:] = R is a non-negative function, h Z 0
and J is an interval, (0,1) < J.

In the following, we will give some necessary definitions and mathematical preliminaries of
fractional calculus theory which are used futher in this paper. For more details, one can
consult [9-11].

Let f € Ly([a, b]). The Riemann-Liouville integrals J7+f and Ji~f of order a > 0 with
a = 0 are defined by

1 X
Jorf(x) = mj(x — )% 1 f(t)dt , x>a

and

. b
J-f(x) = m[(t —x)% 1 f(t)dt ) x<b

respectively. Here, I'(a) is the Gamma function and ]3+f(x) =J2-f(x) = f(x).
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The aim of this paper is to establish Ostrowski type inequalities involving Riemann-Liouville
fractional integrals for functions whose derivatives are h-convex.

During the reviewing process it turned out that similar results had been obtained by Liu in
[12] but under the additional assumption that h is super-additive or super-multiplicative
function. This means that the class of the considered functions were limited. For example if h
is a super-additive function then we remove from our consideration the s-convex function.

2. OSTROWSKI TYPE INEQUALITIES FOR FRACTIONAL INTEGRALS

We need the following lemma which results from [13] Lemma 2 proof.

Lemma 1. Let f:[a,b] » R be a differentiable mapping on (a,b) with a < b. If f €
L1([a, b]), then for all x € (a, b) the following equality for fractional integrals holds:

)
20—+
f t% f'(tx + (1 — t)b)dt. (2.1)
0

F@) = M@+ D) g S @+ 5
—x)

1
=x;aft“f'(tx+(1—t)a)dt—
0

Using the Lemma 1, we can obtain the following fractional integral inequalities.

Theorem1. Let f:1 € [0, ©) > R be a differentiable mapping on I ° such that
f € Li([a,b]), where a,b € I, with a < b. If |f]is h-convex on [a,b] and |f'(x)| <
M(M > 0), x € [a, b], then the following inequality holds:

1 1
£ =T+ 1) o= (@) 5 ) 0|

1
< @ f t% [h(t) + h(1 — )]dt, (2.2)

for each x € [a, b].

Proof. By Lemma 1 and since |f'| is h-convex, then we have

£ = M4 D) [yt /@ + g 0|

— : , b— 1 !
<= 2 aft“ |f (ex + (1—t)a)|dt+Txfta|f (tx + (1 = O)b)|dt
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<22 e @ @l + h( - O @]t

b_ , ’
N Txf £ [h(®)|f )] + h(1 = O)|f (b)|]dt

0

- x—af , q b—x “ q
_MTft [h(t) + h(1 —1)] t+MTft [h(t) + h(1 —t)]dt

M(b_ )fta [h(t) + h(1 — £)]dt

what completes the proof.

Corollary 1. In Theorem 1, if |f'| is convex, then we get the following inequality

1
F@) = M+ D) [ S @ + g
M(b—a)

< m (2.3)

0|

Corollary 2. In Theorem 1,if we take h(t) = t°, which means that |f'| is s-convex, then
inequality (2.2) becomes the following inequality

FOO) = Tla+ D) |5 S @) + 5 % 0|
G- 20—
M(b —a) NMa+Dr(s+1)
Ia+s+1+ MNMa+s+2) (24)

b
Corollary 3. In Theorem 1, if we takex = % and a = 1, then we get

b 1
f (a er b) b i aff(“)du < @f t[h(t) + h(1 — )]d¢. (2.5)

The corresponding version for powers of the absolute value of the first derivative is
incorporated in the following result:
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Theorem 2. Let f:] € [0, ©) — R be a differentiable mapping on I °such that f €
Li([a, b]), where a, b € I, with a < b. If |f'|q is h-convex on [a, b], p,q > 1, %+§ =

land |f'(x)| < M(M > 0), x € [a, b], then the following inequality holds:

fG) =T(a+1)

for each x € [a, b].

2(x —a)”

sl f@ s

0|

< M(b — a)
2(ap + 1)1’ 0

Proof. From Lemma 1 and using the Hélder’s integrals inequality, we have

[0 - T+ 1 [y

—a . b — g .
S%ft“ |f(tx+(1—t)a)|dt+Txft“|f(tx+(1—t)b)|dt

0

b—x

0

Z(ap + 1)1’

Z(ap + 1)10

1

1

1
20— )a]xf()‘l' 20—

< |
QR

X —a 7
< > jt“?’dt jlf'(tx + (1 —t)aldt
0

< |

1
+= ft“pdt flf’(tx+(1—t)b|th
0

f [h@)|F @ + h(1 - O|f @]t

f[h(t)|f’(x)|" +h(1 = t)|f'(b)|"]dt

2 f )

Q=

Q|

1
q

2fh(t)dt (2.6)
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Q=

1
M —a) 5 (1
e f () dt
2(ap+ 1P\ o
This completes the proof.

Corollary 4. In Theorem 2, if |f'|q is convex then we get the following inequality

[£00 = P+ 1) [ (@) 4 50|

2(x —a)® 2(b -
< M (2_7)

-
2(ap + 1)»

Corollary 5. In Theorem 2, if |f'|q is s-convex, then inequality (2.6) becomes the following
inequality

F) = M@+ D) [ £ (@) + s 0

M(b—a) [ 2 \a

< T < n 1) . (2.8)
20ap + )p >

Corollary 6. In Theorem 2, if we takex = %b and a = 1, thenwe get
b1 [ M(b - ‘
a+
f( - )—b_aff(u)du ey fh(t) dt | . (2.9)
a 2(p + 1)p 0

Theorem3. Let f:1 € [0, ©) > R be a differentiable mapping on I ° such that
f' € Ly([a,b]), where a,b € I, witha < b. If |f'|q is h-convex on [a, b],q = 1, and
|f'(x)| < M(M > 0), x € [a, b], then the following inequality holds:

FO) - T+ ) [ @+ 3 : S|
M(b — 1\ ¢ “
< (2 a)'(a+1) jt“ [h(E) + h(1 — D)]dt (2.10)

0
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for each x € [a, b].

Proof. From Lemma 1 and using the Hélder’s integrals inequality, we have

£ = M+ D) [yt S @ + g 0|

2(x —a)”

1 1
s—x;af e |f e+ (1 - t)a)ldt+b;xjt“|f'(tx +(1-0b)|dt

1
q

( t*|f'(tx + (1 — t)alth>

1
q

<X 5 a( (j t[h@[f " + (1 - D @|]d )
0

1
q

1\ g , ,
1) (f t*[h@®)|f @|" + h(1 - O)|f (b)lq]dt>

M (xz_ @) (a i 1)1_é ( fl t2[h(t) + h(1 — t)]dt)a

0

M (bz_ *) (a i 1)1_% ( f to[h(t) + h(1 — t)]dt)q

0
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1

f t*[h(t) + h(1 —t)]dt |,

0

Q=

11

- )

what completes the proof.

nq
Corollary 7. In Theorem 3, if |f| is convex, then we get the following inequality

F) = M@+ D) [ (@) + g 0
<M(b—a)< 1
N 2 a+1

2(x —a)”

).(2.11)

Corollary 8. In Theorem 3, if |f'|q is s-convex, then inequality (2.11) becomes the
following inequality

1 1

FOO) =M+ 1) [ i (@) + g e F )|

Mb-a); 1 \'"3[ 1 [a+Drs+D
= 2 (a+1) la+s+ 1 MNa+s+2) (212)

Corollary 9. In Theorem 3, if we take x = %b and a = 1, then we get
b 1 ’ M(b 7 %
(anr )—b_ajf(u)du s% jta[h(t)+h(1—t)]dt (213)
a 2" a 0

3. CONCLUSION

In this paper we proved the Ostrowski type inequalities for functions whose derivatives are h-
convex and we pointed out the results for some special classes of functions.
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