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ABSTRACT
Inspired by classical feature descriptors in motion matching, this 
paper proposes a multimodal failure matching point collection 
method, which is defined as FMP. FMP is, in fact, a collection of 
unstable features with a low matching degree in the conven
tional matching task. Based on FMP, a novel model for the 
saliency detection of motion object is developed. Models are 
evaluated on the DAVIS and SegTrackv2 datasets and compared 
with recently advanced object detection algorithms. The com
parison results demonstrate the availability and effectiveness of 
FMP in the detection of motion object saliency.
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Introduction

In unconstrained videos containing complex scenes and movements, the human 
visual system pays accurate attention to motion object without training. For 
computers to achieve this visual capability, years of extensive research experi
ments have been utilized to explore and analyze visual significance. Research in 
related fields includes a static significance detection model built by multi-feature 
fusion learning (Jian et al., 2021), and a biology-based human eye gaze heuristic 
model for significance analysis by assessing eye gaze data (Parkhurst, Law, and 
Niebur 2002; Ramanathan et al. 2010). In the past few decades, many different 
schemes and meaningful models have been proposed and widely applied in 
various fields, including object saliency (Lin et al. 2019; Luo et al. 2011; Shi et al. 
2012), image segmentation (Cheng et al. 2014), video compression (Guo and 
Zhang 2010), target tracking, behavior detection, video quality evaluation, object 
detection in low-contrast environments (Jian et al. 2019), etc.

Focusing on motion object saliency detection in video, Wei et al. (2012) 
exploited two common priors about backgrounds in natural images, namely 
boundary and connectivity priors. Using appropriate prior exploitation is helpful 
for ill-posed saliency detection. Yang et al. (2013) ranked the similarity of the 
image elements (pixels or regions) with foreground cues or background cues via 
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graph-based manifold ranking. Their Saliency detection is carried out in a two- 
stage scheme to detect background regions and foreground salient objects effi
ciently. Zhu et al. (2014) proposed a robust background measure, called boundary 
connectivity. It characterized the spatial layout of the image regions relative to 
image boundaries. they also proposed a principled optimization framework to 
integrate multiple low-level cues, including their background measure, to obtain 
clean and uniform saliency maps. Top-down models (Liu et al. 2007; Yang and 
Yang 2012) analyzed task-driven visual attention, which often entails supervised 
learning with class labels from a large set of training examples. Muwei et al. (2021) 
proposed an efficient video saliency-detection model, based on integrating object- 
proposal with attention networks. It combines static visual object features with 
spatial information to refine the final result through a neural network to effec
tively detect video significance. Jian et al. (2022) proposed a framework that uses 
local geometric structure information to estimate the center of mass of significant 
objects, further calculate the foreground and background robust seeds, and 
establish a reliable significance detection model.

Although we proposed many motion object saliency detection in video as 
described above. We observed that the existing models were not sufficient to 
effectively highlight the intact salient objects with suppressed background 
regions or were not successfully detecting the whole motion object with the 
interference of obvious background objects. An interesting point is that 
motion object significance detection is an innate ability of biological vision 
systems starting from the biological vision mechanism, unlike supervised 
learning tasks relying on backpropagation algorithms, and unsupervised 
motion object significance detection models are more consistent with this 
view. This is also a major motivator for this work.

As shown in Figure 1, in this paper, by analyzing the multimodal failure 
matching point (FMP) generated in the classical feature descriptor matching 
algorithm, a model of motion object saliency detection based on FMP is 
proposed. The model can accurately detect motion object saliency of uncon
strained videos containing complex scenes and movements as well as suppress 
background regions.

Motion object 
saliency 
detection

Figure 1. Motion object saliency detection.
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First, we analyzed the matching results of the classical feature descrip
tors in the video and institute the Failure Matching Point (FMP) deter
mination rules. Usually, these feature descriptors vary significantly 
between frames, with resulting from local distortions of the relative 
motion between the motion object and the background (Qian, Luo, and 
Xue 2021). Second, the multimodal feature descriptors were screened 
through a joint decision framework to obtain the FMP focused on the 
motion object. Finally, the amount of FMP was further enriched using 
convex bump-based concave detection and a Gaussian beam was used to 
represent the relative intensity of the motion object saliency. We evaluated 
and compared six advanced algorithms on DAVIS (Pont-Tuset et al. 
(2017)) and SegTrackv2 (Li et al. 2013) datasets. The main contributions 
of this paper can be summarized as follows:

● We found the basic law of the relative motion intensity and local feature 
distortion between the motion object and the background from the image 
feature and matching task, simulating the natural sensitivity of biological 
vision to the targets with high motion intensity in the scene without 
learning.

● We designed a joint decision framework to screen the multimodal feature 
descriptors, whose different modes are complementary to the differential 
features, enhancing the sensitivity of FMP to the significance detection of 
motor targets.

● We newly design an unsupervised motion saliency detection model, 
and demonstrate its effectiveness, while approximating the current 
more advanced supervised-like motion saliency detection model in 
accuracy.

The rest of this paper is arranged as follows. In Section 2, we first 
analyzed the relationship between motion object saliency and matching 
degree, and then described the collection method of FMP proposed in this 
paper. The proposed motion object saliency detection model is discussed 
in detail in Section 3. In Section 4, we provided the experimental results. 
Finally, the conclusions and future work are drawn in Section 5.

Definition of FMP

In this section, we first analyzed the relationship between motion object 
saliency and matching degree, and then introduced the definition and collec
tion method of FMP.

APPLIED ARTIFICIAL INTELLIGENCE e2110695-3009



Matching Degree and Motion Object Saliency

Figure 2 shows the matching results of the ORB (Oriented FAST and Rotated 
BRIEF) feature descriptors in three public datasets, where the matching 
strength and gray values are inversely proportional. It can be observed that 
points with a low matching degree are concentrated in or near the edge region 
of the moving target. These low matching points are invalid in the regular 
matching task.

As shown in Figure 3, the first row represents the background region, and 
the second row represents the motion object area. As can be seen from the 
window in Figure 3, although the camera is in motion, the information 
between the cameras in the background is constant, and the two windows 
between the adjacent frames of the first line are highly similar. In the windows 
of the second row, the same part of the motion target shows displacement for 

Figure 2. Schematic diagram of matching degree.

Figure 3. Foreground and background motion analysis.
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the background owing to motion, and the motion target itself may undergo 
deformation, leading to a low similarity in local information of the same target 
and the close surrounding between two adjacent windows (frames) in 
the second row, which accounts for the observation that in Figure 2, the points 
with a low matching degree are concentrated at the motion target and in its 
close surrounding. We believe that motion object saliency refers to the local 
information difference caused by motion, and the greater the difference 
indicates the greater the relative intensity of motion object saliency. 
Therefore, this paper uses local matching methods to detect failure matches 
with a low matching degree, aiming to use these points to characterize the 
motion object saliency.

Formal Definition and Collection Method of FMP

In this paper, local failure matching point with low matching degree is used to 
represent the saliency of motion object, characterized by a low local matching 
degree. The local optimal matching of the feature descriptor will be used to 
describe its matching degree. Define the input video sequence 
F ¼ F1; F2 . . .f g,Pk ¼ p1; p2 . . .f g representing the set of feature descriptor 
keys of frame K.

And define a weight matrix Wk of Pk
�
�
�
�� Pkþ1
�
�

�
�,where Pk

�
�
�
� is the number 

of feature points of Pk. Wk is defined as: 

Wk
i;j ¼ M pk

i
� �
� M pkþ1

j

� ��
�
�

�
�
�; pk

i 2 Pk; pkþ1
i 2 Pkþ1 (1) 

where M represents the feature descriptor of feature point P. We use the local 
window W to find the locally optimal matching descriptor BMk for the k-th frame 

BMk
i ¼ minWk

i;j; p
k
i 2 Pk; pkþ1

i 2 Pkþ1;BMk
i 2 BMk (2) 

In this way, a pair of matching vectors in the local window We are obtained. 
Select candidate descriptors characterized by descriptors with significant dif
ferences in the local vector field. Compare the current frame with the previous 
frame and the next frame respectively. If a candidate descriptor appears at the 
same location in all three frames, the descriptor is considered to be a stable 
feature descriptor with low local matching, which is FMP in this paper.

Figure 4 illustrates the main detection process of FMP. On the one 
hand, compare the current frame t with the previous frame t � ΔT and 
the next frame t þ ΔT respectively, and obtain two sets of local matching 
points. On the other hand, using the random sample consensus 
(RANSAC) algorithm on the above two sets, subsets of points are 
extracted, and the points in each subset have the same matching vector 
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field. DKt pt
i

� �
represents the inter-frame offset of the best matching 

descriptor pi in the t-th frame. PB represents the background descriptor 
with the same motion law as the camera: 

DKt pt
i

� �
¼ dx pt

i
� �
þ dy pt

i
� ��

�; pt
i 2 Pt�

� (3) 

PBt ¼ pt
i ju DKtð Þ>DKt pt

i
� �� �

; pt
i 2 Pt (4) 

where dx pt
i

� �
; dy pt

i
� �

represents the offset of pt
i in the x and y directions of two 

adjacent frames. u DKtð Þ is the mean of DKt: The optimal matching subset 
consists of PB. Two distinct descriptor subsets are obtained by subtracting the 
optimal matching subset from the corresponding matching set. One weakly 
matching descriptor subset is obtained from frame t and t � ΔT, and the other 
is obtained from frame t and t þ ΔT If descriptors in two weakly matching 
descriptor subsets appear at the same position in frame t, such descriptors are 
finally defined as FMP.

The dynamic changes of motion object on time scales are different. 
When the foreground object moves slowly, the optimal motion object 
region cannot be extracted efficiently simply by matching 3 adjacent 
frames. In this paper, we increased the number of frames matched in 
the experiment and find the optimal motion object region by matching 5 
adjacent frames.

Table 1 shows that 5-frame analysis can detect more feature descrip
tors than 3-frame analysis. Although increasing the number of FMP in 
the background, the percentage increase was much smaller than that on 
the motion object. The reason is that FMP is mainly focused on the 
marginal regions with staggered motion object and background. The 
5-frame analysis increases the retrieval range of the FMP, obtaining 
more FMP to describe the motion object and the degree of relative 
movement.

Frame t-

Frame t

Frame t+ T

Set of matching 
points

Set of matching 
points

Set of Points 
extracted by 
RANSAC

Set of Points 
extracted by 
RANSAC

-

-

Set of Points with a low 
matching degree in frames

t- T and t 

Set of Points with a low 
matching degree in frames

t+ T and t

Points
simultaneously
exist in frame  t

Discard

Put in FMP

N

Figure 4. FMP definition flowchart.
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In some experiments, the three-frame analysis method detected a higher 
percentage of FMP, and it was the difference in camera motion rate that 
resulted in more FMP in the background. The comprehensive experimental 
results show that the five-frame analysis method is more effective in the 
detection of FMP in moving target regions.

Motion Object Saliency Detection Based on FMP

In this section, we will discuss motion object saliency detection model based 
on multimodal FMP. The detection model can be seen as a reverse application 
of the neglected failure matching point in the routine matching tasks of 
multiple classical feature descriptors, mainly due to the local distortion caused 
by the relative motion object and the background.

Relevant Work

As shown in Figure 5, any 3 feature descriptors are used to detect the failure 
matching point of low matching degree, providing 3 sets of FMP set. For each 
algorithm, allowing loose constraints on the number of feature descriptors, 
and a set of loose FMP set with large numbers of FMP have been generated, 
while the other two algorithms use strict constraints to generate 2 sets of strict 
FMP set. The 2 sets of strict FMP set were used to determine removing the 
FMP present on the background in the loose FMP set, while increasing the 
number of FMP in the motion object region. Next, the FMP is superimposed 
to form a new set, using a convex packet-based concave detection algorithm to 
further clarify the FMP within the motion object region, and then expresses 
the saliency of the motion object using a Gaussian beam. Finally, the motion 
object were filled using a morphological closed manipulation.

Table 1. Three-frame analysis and five-frame analysis data comparison.
FMP from 

three-frame 
analysis

FMP from five- 
frame analysis

Percentage of FMP in Ground 
Truth by three-frame method

Percentage of FMP in Ground 
Truth by five-frame method

Motor Cross 271 423 93.8% 94.6%
Parkour 110 237 91.3% 89.4%
Tennis 138 241 92.2% 94.2%
Soldier 230 546 95.5% 97.8%
Horse Jump 130 226 89.3% 93.7%
swing 353 642 87.9% 91.1%
bmx-bumps 122 243 91.7% 92.3%
kite-surf 242 465 84.6% 88.4%
motorbike 145 304 93.1% 94.5%
paragliding- 

launch
253 497 88.9% 90.7%

girl 94 158 97.3% 96.3%

APPLIED ARTIFICIAL INTELLIGENCE e2110695-3013



Motion Object Saliency Detection Model Based on Multimodal FMP

In this paper, three classical algorithms of SIFT (Lowe 1999), ORB (Rublee 
et al. 2011), and AKAZE (Alcantarilla, Nuevo, and Bartoli 2013) were selected 
as the input of the joint decision framework to remove random FMP in the 
background. The reason for choosing them is that the spatial complementarity 
of these three algorithms can enrich the number of FMP, making the results of 
the joint decision-making more accurate.

These algorithms are allowed to have a relaxed constraint on the number of 
point sets, resulting in a large number of relaxed FMP. Although several FMP 
are added in the target area, a considerable number of FMP appear randomly 
in the background. With a rigorous constraint, the three algorithms retrieve 
fewer FMP, but most of them are concentrated in the motion target area, with 
extremely few points randomly appearing in the background. Using the 
rigorous FMP generated by two algorithms, a joint decision is made to remove 
random FMP that are in the relaxed FMP of the third algorithm but randomly 
appear in the background.

For one of the three feature detection algorithms, its relaxed FMP is denoted 
as R, whereas the rigorous FMP of the other two algorithms is denoted as T1 
and T2, respectively.

In the k-th frame, the rigorous FMP subset is defined as Tm;m ¼ 1; 2; 3 . . . n 
the relaxed FMP subset is defined as Rm;m ¼ 1; 2; 3 . . . n. Using t as an 
example, we define the position distance dist between two descriptors in 
the set: 

distk pi; pj
� �

¼ Vk
i

�
� � Vk

j

�
�
�; pi; pj 2 Tm (5) 

where V represents the coordinate position of the descriptor p. Then we 
calculate the average distance meank

m pið Þ from the descriptor p to the other 
descriptors in the set Tm, and the variance uk

m pið Þ between them 

Video clips

Algorithm 3 
match

Algorithm 2 
match

Algorithm 1 
match

Computing fail 
match points

Computing fail 
match points

Computing fail 
match points Three types of 

fail match 
points 

eliminate 
background 

points

Rich the inner 
keypoint

Transform 
to gaussian 

blur
Extract the contour

morphological 
closing 

operations

Figure 5. General flowchart of experiment.
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meank
m pið Þ ¼

Pw
j¼1 distk

m pi; pj
� �

w
; j�i; pi; pj 2 Tm (6) 

uk
m pið Þ ¼

Pw
j¼1 distk

m pi; pj
� �

� meank
m pið Þ

� �2

w
; j�i; pi; pj 2 Tm (7) 

The other n-1 sets are also calculated using the above formula. We define 
a decision algorithm f, and calculate the average distance meank

R from each 
keypoint pk

i in the relaxed FMP subset to the rigorous FMP subset. And find 
the two rigorous WMD sets Tm closest to the keypoint pk

i .
The max uk

m pið Þ
� �

represents the maximum variance of Tm, it is the variance 
value of the descriptor with the largest deviation in Tm. If the variance of the 
current pi in the two rigorous FMP subsets is less than the maximum variance 
max uk

m pið Þ
� �

of the two subsets, the descriptor is defined as FMP. Finally, this 
paper divides the feature descriptors in the relaxed FMP subset into two 
categories: FMP and BG descriptors: 

WMD ¼ pk
i j

Pw
j¼1 distk

m pi; pj
� �

� meank
m pið Þ

� �2

w
< max uk

m pið Þ
� �

( )

(8) 

BG descriptors ¼ Rk � WMD (9) 

With ΔT in Figure 5 being set to 1 and 2, the FMP results for frame t are 
obtained, and the two results are superimposed, with the removal of FMP that 
randomly appear on the background. As shown in Figure 6(a), there are a total 
of 562 points before the joint decision of the three algorithms; after the joint 
decision, a total of 756 FMP are acquired. When the acquired FMP is high 
enough in quantity, the outline of the motion target is already clear. To further 
enrich the information inside the motion object area, a convex hull-based 
concave point detection algorithm – a method suited for a set of discrete 
points – is adopted here to detect the outline of the discrete points. The FMP 
that had been removed according to the decision are now included within the 
motion target outline to enrich the motion object saliency, as shown in Figure 7, 
wherein the number of FMP in Figure 7(a) is 756; however, the number 
increases to 1,146 inside the motion target area after the enrichment process.

As the feature descriptors used in the three algorithms have a diameter of 32 
pixels, it is deemed here that the range of motion object saliency expressed by 
each FMP should be 32 pixels in diameter. Thus, Gaussian beam spots, each 
having a diameter of 32 pixels, are used to represent the feature descriptors, 
and the gray value at the center of each spot is set to 25. Then use 
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morphological closing operations to fill the target. By doing so, motion object 
saliency is generated as shown in the above figure, with the highlighted 
portions being regarded as having relatively obvious motion, as depicted in 
Figure 7(d).

Experimental Results and Discussion

To evaluate motion object saliency detection model based on multimodal FMP 
proposed in this paper, the DAVIS and SegTrackv2 benchmark datasets were 
used in the experiment. In the experiment, the standard precision–recall curve 
(PR curve), F-score, and average absolute error (MAE) were used as perfor
mance indicators, comparing seven recent advanced object saliency detection 
algorithms subjectively and objectively, including GS (Geodesic saliency using 
background priors) (Wei et al. 2012), MR (Saliency detection via graph-based 
manifold ranking) (Yang et al. 2013), RBD (Zhu et al. 2014), SR (Hou and Zhang 
2007), SF (Perazzi et al. 2012), SA(Wang et al. 2018), CAG(Chen et al. 2021).

Figure 6. Flowchart of three algorithms decision.

Figure 7. Draws the outline of a set of points and use Gaussian beam spots represent motion 
object saliency.
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Subjective Evaluation

The experimental results for continuous scenes are shown in Figure 8, where 
the first row shows the original images of the swing sequence, and the third 
row shows the motocross-bumps sequence, and the second and fourth rows 
show the results of motion object saliency detection in this paper.

As we can see from Figure 9, in the scene with a relatively prominent 
background, the partial contrast algorithm cannot detect the significance of 
motion object well in the video, while the partial algorithm can detect more 
backgrounds. In this paper, our algorithm can detect the motion object 
saliency clearly and there is no background noise distributed in the result. 
Although the intensity of the local detail part of the motor target is weak, the 
local difference in the movement intensity on the motor target is also appro
priately expressed.

Objective Evaluation

For performance evaluation, we used the standard precision–recall curve (PR 
curve), F score, and MAE (mean absolute errors). PR curve is one of the 
important indexes used to evaluate the performance of the model, and the 
F score is the harmonic average of precision and recall, which is used to 
evaluate the overall performance. We set the to stress the importance of 
precision (Achanta et al. 2009). MAE is to directly calculate the significance 
map binarization of the model output and compare it with Ground-truth to 
obtain the mean absolute error between them.

Figure 8. Experimental results for continuous scenes.

APPLIED ARTIFICIAL INTELLIGENCE e2110695-3017



From Figure 10, we can see that our results and detection rates remain more 
stable with the increasing recall rate in (a) than most algorithms, one of which 
is that our algorithm can successfully suppress background noise. Our average 
F-score value in (b) is around 0.8, and the average MAE value is below 0.05, 
approximating the CAG model of fusion color and optical flow features, which 
means that our results in this paper are close to Ground Truth.

Discussion

The motion object saliency detection model based on multimodal FMP is a low 
matching degree of failure matching point (FMP) reverse application model, in 
which FMP is inspired by the innate biological vision mechanism of human 
attention to complex scenes or complex movements. FMP and the degree of 
motion object movement are strongly related. The detection model was evaluated 

Figure 9. Experimental results of FMP and other six advanced object saliency detection algorithms 
results in the DAVIS and SegTrackv2 datasets.
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on the DAVIS and SegTrackv2 benchmark datasets. Figures 9 and 10 provide the 
results of the comparison with the other algorithms. Based on these experimental 
data, we can get an overall conclusion: the multimodal-based motion object 
saliency detection model has relatively good performance in the DAVIS and 
SegTrackv2 benchmark datasets, and our algorithm can effectively suppress the 
noise from the background and clarify the relative saliency of the motion object. 
Since the underlying features of multimodal FMP originate from classical feature 
descriptor detection methods, this indicates that further analysis and considera
tion are needed in feature descriptor selection.

Conclusions and Future Work

Feature descriptor is a classical model that describes the typical features of an image 
and simplifies the effective information of the image. Based on the mechanism of 
biological visual saliency perception of motion object, this paper proposes a new 
idea to effectively use the failure matching point (FMP). Based on the multimodal 
FMP, we developed a motion object saliency detection model. Essentially, the 
detection model proposed here is proposed in the practical phenomenon where 
the FMP and the degree of motor target motion are correlated. By evaluating the 
DAVIS benchmark dataset with seven models. The comparative results demon
strate the usability and effectiveness of the proposed model in the motion object 
saliency detection task. In addition to borrowing existing classical feature descrip
tors, a thought worth exploring is to imitate the innate sensitivity of biological 
vision to motor targets without extensive training and learning. In future work, we 

Figure 10. a is the graph of PR, b is the histogram of F score, and c is the histogram of MAE.
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will investigate how to design some new detection models for more computer 
vision tasks starting from biological vision phenomena.
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