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Finger Contact Area Analysis with Convolutional Neural 
Networks
Thomas Ules , Matthias Haselmann, Michael Grieβer, and Dieter P. Gruber

Polymer Competence Center Leoben GmbH, Leoben, Austria

ABSTRACT
The detection of the contact area formed between a human 
finger and a counter surface is of great interest because it is the 
key parameter for various interaction parameters. Adhesional 
friction forces and the thermal contact conductance critically 
depend on the contact area, further influencing the tactile 
sensation of stickiness and warmth. The contact area is also of 
concern regarding safety issues. Injuries caused by objects slip
ping out of our hands might be prevented by optimizing the 
contact area and the concomitant grip through appropriate 
surface structures and material choice. Until now the contact 
area is mainly studied on smooth and transparent materials. The 
contact area is recorded optically and rule-based image proces
sing methods can be used for detection. These methods might 
be insufficient for rough surfaces where the contact area is 
optically unclear due to light scattering. In this paper we 
demonstrate the successful analysis of such optically unclear 
contact area images via convolutional neural networks to iden
tify the fingerprint ridges in contact with structured surfaces. 
The proposed method relies on the generation of synthetic 
contact images that provide the pixelwise ground truth for the 
efficient training of a segmentation pipeline based on convolu
tional neural networks.
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Introduction

The contact area formed between a human finger and a counter surface is the key 
parameter for a variety of interaction processes. The contact area is the main 
factor for adhesional friction forces, which are dominant for many finger/counter 
surface systems (Derler and Gerhardt (2012)). The frictional forces determine to 
a large extent how sticky the surface is felt (van Kuilenburg, Masen, and van der 
Heide (2015)). In addition, an understanding of the contact area and its evolution 
with time could possibly minimize the danger of severe injuries imposed by 
objects that slip a person’s hand (Dzidek et al. (2017)). Furthermore, the contact 
area affects the heat flux determining the sensation of warmth when touching 
a material (van Kuilenburg, Masen, and van der Heide (2015)). So far, the 
contact area has been mainly studied on flat transparent counter surfaces using 
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optical methods. The majority of the literature relies on light scattering (Gruber, 
Winkler, and Resch (2015)) and Frustrated Total Internal Reflection (FTIR) to 
produce a high-contrast image of the contact areas. Different optical set-ups have 
been employed to take advantage of the FTIR to study the dynamics of a fingertip 
during the tactile exploration of smooth and transparent counter surfaces (André 
et al. (2011); Bochereau et al. (2017); Delhaye et al. (2016), (2014))) or the 
temporal evolution of the contact area and its implication on friction (Dzidek 
et al. (2017)). Another approach was employed by Liu et al. (2017) who used 
Optical Coherence Tomography in combination with digital image correlation 
techniques to study the surface strain and sub-surface deformation of a finger 
pad in contact with a Quartz glass during a combination of applied normal load 
and tangential force. For the detection of the contact area formed between 
a human finger and a smooth counter surface, rule-based image processing 
methods are usually applied. These methods include the combination of mor
phological operations with image thresholding techniques (Delhaye, Lefèvre, and 
Thonnard (2014)). While these methods provide good results for smooth and 
transparent counter surfaces, they might be insufficient for rough counter 
surfaces where the contact area is possibly highly disturbed by surface structures. 
In this contribution we address this topic and propose a segmentation pipeline 
based on convolutional neural networks designed to pixelwise detect the contact 
areas formed between a human finger and structured surfaces. Our work is 
related to the topic of fingerprint recognition which is concerned with fingerprint 
matching for means of an individuals authentication where the goal is to find 
appropriate features that allow proper matching rather than the exact area of 
contact (Valdes-Ramirez et al. 2019;, Singla et al. 2020)). In addition, the 
restoration of corrupted fingerprint images is investigated to enhance the result 
of existing automated fingerprint recognition systems. For example, Wong and 
Lai (2020) proposed a multi-task CNN that was trained to reconstruct synthe
tically corrupted fingerprint images generated with SFinGe (Maltoni (2004)). In 
contrast to the topic of fingerprint restoration, extended missing areas of the 
finger pad ridges in the contact images should not be reconstructed when 
pursuing the goal of contact area analysis as in such cases no contact between 
finger and surface is established. Due to these differences we used a different 
network architecture and pursued a different approach for the generation of the 
synthetic finger-surface images.

The contribution of our work can be summarized as follows:

● We propose an experimental testing site for recording contact images of 
human fingers on moving (semi-) transparent surfaces with different 
haptic attributes (see Subsections 2.1–2.3). While on smooth surfaces 
a segmentation of fingerprint ridges of a human finger is possible with 
rule-based image processing, this is not the case for rough semi- 
transparent surfaces.
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● For the segmentation of finger pad ridges on rough semi-transparent 
surfaces we propose the training of convolutional neural networks on 
synthetic finger-surface contact images. These images were computed by 
fusing images showing rough surfaces with images of a finger in contact 
with smooth and transparent surfaces. The corresponding ground truth is 
generated by means of rule-based image processing techniques applied on 
the images of a finger in contact with transparent surfaces (see 
Subsections 2.3 and 2.4).

● We propose a two-stage CNN-architecture where the first network is used 
for detecting the region of interest (ROI) reflecting the gross contact area, 
containing contact and non-contact regions within the contact boundary, 
and the second network is used for the segmentation of the finger pad 
ridges within the detected ROI (see Section 3). We demonstrate that 
training is possible with only 20 training images (see Section 4).

Experimental

Testing Site

The contact area images, formed between a human finger and surfaces of 
different roughness, were recorded at a measurement stand described by Ules 
et al. (2020). A brief introduction is given in the following. The measurement 
stand was created to measure some of the prime physical parameters that are 
responsible for the touch-feel of surfaces. These are frictional forces, vibrations 
elicited in the human finger upon dynamic exploration and the contact area 
formed between the human finger and the counter surface. For the measure
ment the human finger was kept in fixed position while a counter surface 
moved below in periodic linear motion. The contact area was recorded while 
in sliding contact, through the counter surface with a 5-megapixel camera 
(Prosilica GC2450C CCD, Allied-Vision, Germany) with a frame rate of 
27 fps.

The contact area formed between a human finger and a flat, transparent 
surface was illuminated through the counter surface. The light crosses the 
sample prior to its transmittance into the finger due to Frustrated Total 
Internal Reflection (FTIR) at the finger/sample contact areas while at non- 
contact areas the light is partially reflected at the glass/air transition. With the 
camera being placed under the angle of illumination a strong contrast between 
contact (dark) and non-contact areas (bright) was achieved. Rough surfaces 
prevent such an illumination through the counter surface as light undergoes 
multiple scattering when passing the sample. Rough surfaces were therefore 
illuminated from the opposite side, where the contact between the finger and 
the surface is formed, via a LED strip surrounding the finger. The utilized wave 
length range of 460–475 nm provided the required contrast conditions. Blue 
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light yields good contrast in the contact area images, resulting from the 
wavelength dependent interaction of the human skin with light. While red 
light exhibits large penetration depths leading to poor contrast, blue light 
penetrates the skin much less (Anderson and Parrish (1981)). Consequently, 
this yields sharp transitions from contact to non-contact areas. In combination 
with the appropriate image analysis method, introduced in this work, this 
setup allowed the differentiation between contact and non-contact areas.

Counter Surface

To produce the smooth counter surface a polyurethane based coating was cast 
on glass slides. For the rough counter surface the polyurethane coating was 
mixed with polyurethane based microspheres with sizes between 50 and 60 μm 
to provide the desired surface roughness (Ules et al. (2020)). To study the 
surface roughness, surface topography measurements were conducted with 
a 3D optical surface metrology system (Leica DCM8, Leica Microsystems, 
Germany). The images were obtained using an EPI 10x lens and the Focus 
Variation mode with green light. This allows for a theoretical optical resolu
tion of 0.47 μm and a vertical resolution better than 30 nm. While the smooth 
surface yields a low average surface roughness Sa value of 0.16 μm the rough 
surface yields an average surface roughness Sa value of 5.7 μm. For a 3 
dimensional image of the surface topography see Figure 1.

Contact Images

For contact images recorded with a human finger in sliding contact with 
a transparent and smooth counter surface (termed smooth contact image in 
the following) see Figure 2a and b semi-transparent rough counter surface 
(termed rough contact image in the following) see Figure 3a.

Figure 1. 3D-view of the surface topography of the smooth (a) and the rough surface (b), recorded 
with the 3D microscope Leica DCM8, using the focus variation mode and a 10x magnification lens.
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The smooth contact images displayed clear structures where the dark 
contact area could easily be discerned from brighter non-contact areas. This 
allowed to extract the contact area with high precision by means of rule-based 
image processing techniques provided by the image processing tools in the 
OpenCV library (Bradski (2000)). The detected contact areas served as ground 
truth for the synthetic images (see Subsection 2.4). The extraction was divided 
into two steps. First, the region of interest (ROI) that reflects the gross contact 
area, containing contact and non-contact regions within the contact boundary, 
was extracted. Only the blue channel of the RGB image was used as the 
illumination set-up was adjusted to yield saturated blue pixels outside this 
area. Next, the image was converted to gray-scale and blurred to get 
a homogenous darker patch that reflects the ROI with otherwise bright 
regions. After global thresholding and image inversion a binary image was 
obtained with the ROI displayed in white. The next step detected the ridge 
contact area formed by the finger pad ridges within the ROI. This area 
excludes any effects of microstructures on the ridge contact area. For the 
analysis a combination of the green and blue color channels was used to 
improve the contrast between contact and non-contact areas. Adaptive thresh
olding was applied to binarize the image. After image inversion a binary image 
was obtained where the contacting finger pad ridges are displayed in white. 

Figure 2. Contact area image of a finger on a glass plate while in sliding contact. (a) Raw RGB 
image and (b) Gray-scale converted image with the contours of the detected contact area super
imposed in blue.

Figure 3. Contact image of a finger on the rough surface while in sliding contact. (a) Raw RGB 
image and (b) Gray- scale image rendered as running average of 8 subsequent images. The pattern 
made of rectangles was necessary in the conventional image analysis.
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Due to sweat pores located on the finger pad ridges, the detected contact 
regions contain areas that show the geometry of the sweat pores. These are 
non-contact areas and they need to be removed from the images because the 
detected contact area serves as ground truth for the synthetic images used for 
CNN training and would mislead the training process. The synthetic images 
and the corresponding ground truth images must therefore resemble the 
rough contact images closely where such structures were not visible due to 
strong scattering effects (see Section 2.4). Consequently, image morphological 
transformations such as opening and closing were applied. Closing filled 
missing contact regions within the contacting ridges caused by sweat pores. 
Opening removed small, single regions outside the contacting ridges (non- 
contact areas), which possibly originate from sweat secretion and imperfec
tions in the coating. The detected contact area can be seen in Figure 2b. To 
improve the visibility of the matching quality, only the contours of the 
analyzed contact areas were superimposed on a gray-scale version of the 
contact image shown in (a) in blue color. Manual visual inspection proved 
the detected areas to fit the contacting areas quite well.

The contact area images recorded on the rough surface hardly revealed the 
areas in contact due to the intense structures introduced by the surface rough
ness and the microspheres within the coating, see Figure 3a. These structures 
are too prominent to allow the evaluation of the area of contact on the basis of 
a single image. To enable the analysis the running average of 8 images was 
formed (see Figure 3b). In contrast to the surface structures, the finger pad 
ridges that are in contact with the counter surface hardly move between 
consecutive images. This improved the overall image quality in terms of 
visibility of the areas in contact, but generated a distracting stripe structure 
along the direction of counter surface movement. In addition, varying bright
ness conditions were observed across the contact area. Figure 3b for instance, 
displays a brighter center area and declining brightness toward the edges of 
contact. Note that the pattern of rectangles visible in the top part of the contact 
images, was required for the contact area analysis described by Ules et al. 
(2020). For the analysis method presented here it is neither necessary nor does 
it introduce any errors to the analysis of the contact area.

For the segmentation of the contact area on these averaged rough contact 
images, an algorithm is required that can deal with the varying brightness 
conditions within a single image and between different images. Furthermore, 
the existing stripe structures add strong noise to the images and occasionally 
resemble the finger pad ridges. Convolutional neural networks, trained end-to 
-end, are a good choice for these tasks, as they typically outperform other 
segmentation approaches, as shown several years ago (Long, Shelhamer, and 
Darrell (2015)). The challenge with CNN-based solutions, however, is the 
typically high demand for training data, which means in this specific case 
that a pixelwise ground truth has to be provided for each image used for 
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training. Manual pixelwise annotation is extremely time-consuming and 
would also be quite error-prone due to the weak and often unclear transitions 
between finger pad ridges and surface structures. We therefore generated the 
training images in a synthetic way so that the corresponding ground truths 
were provided without manual annotation.

Training Data

To provide the training data for the segmentation pipeline, synthetic contact 
area images were created which resemble the real data (averaged rough contact 
images) and for which the ground truth was known precisely. To form the 
synthetic images, a smooth contact image was fused with a running average of 
8 images of the rough surface. Hence, the same number of images were 
averaged as for the real images formation to create similar surface structures. 
Before passing the real images to the CNN for analysis, the intensities of their 
RGB channels were adjusted to enhance the contrast between contact and 
non-contact areas. The same procedure was therefore applied to the synthetic 
images. Good results were obtained when this adjustment was performed on 
the individual images prior to fusion. Next, the images were converted to gray- 
scale and subjected to a contrast limited adaptive histogram equalization 
(createCLAHE from the OpenCV library) to achieve the desired increase in 
contrast. Finally, the images were fused with 80% intensity of the surface image 
and 20% of the smooth contact image. This process is displayed in Figure 4 
where a smooth contact image (a) is fused with an averaged rough surface 
image (b) to form the synthetic image (c). Additionally, for training the first 
stage of the segmentation pipeline, the region of interest (ROI) was manually 
marked for both synthetic and real images, which corresponds to the gross 
contact area. The ground truth for training of the second stage of the segmen
tation pipeline was generated for the synthetic images by means of rule-based 
image processing techniques applied on the smooth contact images (see 
Subsection 2.3).

Figure 4. Generation of synthetic images. (a) Finger through a glass plate, (b) running average of 8 
surface images and (c) the combined synthetic image.
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Segmentation Pipeline

Two approaches are apparent for estimating the contact area with con
volutional neural networks (CNNs). First, a CNN could be used as 
a regression model where the output layer consists of a single unit that 
directly predicts the total contact area. Second, a CNN could be used to 
pixel-wisely classify between contact area and non-contact area, which 
results in an image processing step generally known as image segmenta
tion. The total contact area can then be computed by counting all the 
“contact pixels” times the area per pixel. Latter results from the magnifi
cation scale of the optical setup. While it is difficult for domain experts to 
draw a pixel-wise ground truth, it is easy for them to determine whether 
a given ground truth is predominantly correct or incorrect. Therefore the 
big advantage of the image segmentation approach is that the perfor
mance of the pipeline is much more transparent for domain-experts and 
can be qualitatively much better assessed and monitored.

Since the synthetic images generated for network training differ signifi
cantly from the real images outside the region of interest (ROI) (compare 
Figure 3b to Figure 4c), a pipeline consisting of two independently trained 
neural networks was used. The aim of the first network was to detect only the 
ROI in which the second network was then trained to segment the finger pad 
ridges. The advantage of this approach is that for training of the first network 
not only synthetic images could be used but also real images, since the region 
of interest could be relatively simply provided for a small number of real 
images by manual labeling. This way the second network only has to deal with 
finger pad ridges within the ROI, where the synthetic images were optimized 
to resemble the real images.

ROI Detection

The recorded contact images are of size 886 � 886. For the automatic 
detection of the ROI using the first network, the images were scaled down 
to 128� 128. The used CNN has 6 layers and only 28346 parameters, 
which turned out to be sufficient for the task. The small network archi
tecture and data augmentation during training phase, including random 
translation, rotation, scaling, shearing and flipping (vertically and hori
zontally) helped prevent overfitting. This is crucial since only 20 images 
were used for training. The network uses (2,2)-strided convolutions for 
downscaling and bilinear rescaling for upscaling. In order to enlarge the 
receptive field two dilated convolutional layers were used. Exponential 
linear units (ELUs) were used as activation functions. The detailed net
work architecture is described in Figure 5.

e1987035-74 T. ULES ET AL.



Segmentation of the Finger Pad Ridges

The second stage of the pipeline used for the segmentation of the finger pad 
ridges within the ROI is similar to the pipeline described by Haselmann, 
Gruber, and Tabatabai (2018). In comparison to the ROI detection, 
a significantly higher image resolution is required. Consequently, the images 
of size 886� 886 were not down-scaled such as in the first stage. Nevertheless, 
an even smaller number of training images (10) were used for the network 
training. In order to increase the number of training samples without increas
ing the number of full-size training images, patches were extracted and 
processed independently. The resulting fragmentation of the original images 
did not only increase the number of training samples, but also reduced the 
required input size of the network and therefore the dimensionality of the task. 

Figure 5. Architecture of the segmentation pipeline. The first network intended to detect the 
region of interest (ROI) consists of 6 layers: Conv(3, 1, 2, 16) – Conv(3, 1, 2, 32) – Conv(3, 2, 1, 32) – 
Conv(3, 4, 1, 32) – Upscaling(2x) – Conv(3, 1, 1, 16) – Upscaling(2x) – Conv(3, 1, 1, 1), where Conv(k, 
d, s, c) denotes a convolutional layer with k � k-kernels, a dilation rate of d, a stride of s and c 
output channels. The second network used for the detection of the finger pad ridges within the 
ROI consists of 17 layers: Conv(5, 1, 1, 32) – Conv(3, 1, 1, 64) – Conv(3, 1, 1, 64) – Conv(3, 1, 2, 128) – 
Conv(3, 1, 1, 128) – Conv(3, 1, 1, 128) – Conv(3, 2, 1, 128) – Conv(3, 4, 1, 128) – Conv(3, 8, 1, 128) – 
Conv(3, 16, 1, 128) – Conv(3, 1, 1, 128) – Conv(3, 1, 1, 128) – Upscaling(2� ) – Conv(3, 1, 1, 64) – 
Conv(3, 1, 1, 64) – Conv(3, 1, 1, 32) – Conv(3, 1, 1, 16) – Conv(3, 1, 1, 1).
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However, the size of the extracted patches can not be arbitrarily reduced. It is 
necessary that individual patches show sufficient semantic information to 
allow a distinction between contact area and non-contact area. For the given 
contact area images a patch size of 128� 128 was chosen.

For the network training, image patches were extracted in real-time at 
randomized positions from the synthesized full-size images within the 
ROI. For further data augmentation, randomized affine image transforma
tions as well as image shearing and flipping were applied. In order to 
avoid image borders caused by affine transformations, patches larger than 
the target size were initially extracted and after applying the affine trans
formations center-cropped to the final size of 128� 128 pixels (see 
Figure 6).

During the test phase on real images, patches were not extracted at 
random positions but with a moving window and a step size of 64. This 
resulting overlap causes every region of the tested images to be covered up 
to four times, which can be seen as a kind of test time data augmentation 
which is generally known to have a positive impact on the classification 
performance of a CNN (He et al. (2018)). For the qualitative evaluation of 
the contact area segmentation and before summing up to the total num
ber of “contact” pixels the individually processed patches were reas
sembled to the full-size images again.

For the given segmentation task within the ROI a fully convolutional net
work similar to the one described by Haselmann, Gruber, and Tabatabai 
(2018) was used (see Figure 5). The net consists of 17 layers, where the 4th 
layer has a stride of 2, which reduces the resolution of the feature maps to 
64� 64. For an enlarged receptive field a series of convolution layers with 
a dilation rate greater than 1 was used in the middle of the network (layers 7– 
10). The feature maps were upscaled again to 128� 128 after the 13th layer via 
bilinear rescaling. Mirror-padding was used for all layers. Exponential linear 
units (ELUs) were used as activation functions. The network has 952017 
parameters.

Figure 6. Depiction of the preprocessing steps illustrating the extraction of the image patch from 
the original image used for the network training.
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Results and Discussion

Training

Both CNNs were trained from scratch with the ADAM optimizer (Kingma 
and Ba (2015)) and the hyper-parameters β1 ¼ 0:9, β2 ¼ 0:999 2¼ 10� 8. The 
CNN for ROI detection was trained for 300 epochs with a batch size of 5 
and a learning rate of 1e� 3 on 20 contact area images, including 10 synthetic 
and 10 real ones (for all images the ROI was manually marked as described 
in Sec. 3). The predicted ROI, reflecting the gross contact area, is in close 
accordance to the manually marked ROI as can be seen in Figure 7b. On the 
5 synthetic and 5 real validation images the model’s error rate is 0.65%. As 
can be seen in Figure 7a the models shows a good generalization without 
notable overfitting. The network for segmentation of the finger pad ridges 
within the ROI was trained on extracted patches from 10 synthetic contact 
area images for about 80k iterations with a batch size of 64 and a learning 
rate of 2e� 4. As can be seen in Figure 8a there was hardly any overfitting on 
the synthetic validation data as well. On the 5 synthetic validation images the 
model shows an error rate of 0.77%.)

Test on Unseen Real Images

After the training of both proposed networks, the pipeline was used to 
segment unseen contact images between different fingers and rough semi- 
transparent surfaces. A quantitative analysis of the segmentation is not 
possible since a ground truth was not available for comparison. This 

Figure 7. Training of the first CNN for the detection of the region of interest reflecting the gross 
contact area.
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would have required a manual segmentation which would have been 
a very time-consuming and difficult task. Furthermore, a manual segmen
tation would probably be quite erroneous due to the partial low contrast 
difference between finger pad ridges and surface structures within the 
ROI. To prove the high accuracy of the CNN, the contact area prediction 
is showcased in Figure 9 for two recordings. For a better visibility of the 

Figure 8. Training of the second CNN for the segmentation of the finger pad ridges within the 
region of interest.

Figure 9. Result of the contact area analysis of a finger in contact with rough surfaces via the CNN 
for two different contact images. The contours of the predicted contact area are superimposed in 
red on the respective images. Close ups of two separate regions, highlighted by red and blue 
squares, are added for the respective image.
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matching quality, only the contours of the predicted areas were super
imposed on the respective image. In addition, close-ups are displayed to 
highlight the details. Manual inspection shows qualitatively well predicted 
contact areas. White horizontal structures do not cause an erroneous 
disruption of the predicted finger pad ridges and the predicted contact 
area is correctly terminated when ridges end. The images also contain 
darker horizontal structures that are not mistakenly interpreted as con
tacting areas. Minor mismatch is observed at bifurcation points, where the 
predicted area tends to end prematurely. This is assumed to arise from 
too few bifurcations apparent in the training data.

Conclusion

In this contribution we present a new approach that enables the analysis 
of the contact area formed between a human finger and a rough surface in 
sliding contact. We propose an experimental testing site that allows the 
continuous acquisition of corresponding images, showing not only the 
apparent contact area with the outlines of the finger but also the apparent 
finger pad ridges contact area. While on smooth surfaces a segmentation 
of the finger pad ridges is possible with rule-based image processing 
techniques, this is not the case for rough surfaces. For this reason, we 
investigated the segmentation of finger pad ridges via convolutional neural 
networks (CNNs). Since pixel-wise labeling of the finger pad ridges is 
difficult and extremely time-consuming we propose the use of synthetic 
contact images that were generated by fusing images of rough surfaces 
with contact images on smooth transparent surfaces. Since for the latter 
a ground truth based on rule-based image processing is available, this is 
also the case for the generated synthetic images. We further proposed 
a segmentation pipeline consisting of two independently trained CNNs. 
While the first network was trained to detect the gross contact area, 
the second network was trained to segment the finger pad ridges within 
the gross contact area. We further demonstrate that the pipeline can be 
trained using only 10–20 training images without showing notable over
fitting on the validation images. At the end we demonstrate the applica
tion of the pipeline on unseen real images of fingers in sliding contact 
with a rough surface. It was qualitatively shown that in most cases the 
finger pad ridges in contact with the surface can be well segmented by the 
proposed pipeline.

Disclosure Statement

No potential conflict of interest was reported by the author(s).

APPLIED ARTIFICIAL INTELLIGENCE e1987035-79



Funding

The research work was performed within the COMET-project „Engineering and full- 
characterization of polymer based haptic materials“ (project-no.: 854178) at the Polymer 
Competence Center Leoben GmbH (PCCL, Austria) within the framework of the COMET- 
program of the Federal Ministry for Climate Action, Environment, Energy, Mobility, 
Innovation and Technology and the Federal Ministry for Digital and Economic Affairs. The 
PCCL is funded by the Austrian Government and the State Governments of Styria, Lower 
Austria and Upper Austria.

ORCID

Thomas Ules http://orcid.org/0000-0001-9764-0650

References

Anderson, R. R., and J. A. Parrish. 1981. The optics of human skin. The Journal of Investigative 
Dermatology 77 (1):13–19. doi:10.1111/1523-1747.ep12479191.

André, T., V. Lévesque, V. Hayward, P. Lefèvre, and J.-L. Thonnard. 2011. Effect of skin 
hydration on the dynamics of fingertip gripping contact. Journal of the Royal Society, 
Interface 8 (64):1574–83. doi:10.1098/rsif.2011.0086.

Bochereau, S., B. Dzidek, M. Adams, and V. Hayward. 2017. Characterizing and imaging gross 
and real finger contacts under dynamic loading. IEEE Transactions on Haptics 10 (4):456–65. 
doi:10.1109/TOH.2017.2686849.

Bradski, G. 2000. The opencv library. Dr. Dobb’s Journal of Software Tools 25 (11):120–26.
Delhaye, B., A. Barrea, B. B. Edin, P. Lefèvre, and J.-L. Thonnard. 2016. Surface strain 

measurements of fingertip skin under shearing. Journal of the Royal Society, Interface 
13 (115):20150874. doi:10.1098/rsif.2015.0874.

Delhaye, B., P. Lefèvre, and J.-L. Thonnard. 2014. Dynamics of fingertip contact during the 
onset of tangential slip. Journal of the Royal Society, Interface 11 (100):20140698. 
doi:10.1098/rsif.2014.0698.

Derler, S., and L.-C. Gerhardt. 2012. Tribology of skin: Review and analysis of experimental 
results for the friction coefficient of human skin. Tribology Letters 45 (1):1–27. doi:10.1007/ 
s11249-011-9854-y.

Dzidek, B., S. Bochereau, S. A. Johnson, V. Hayward, and M. J. Adams. 2017. Why pens have 
rubbery grips. Proceedings of the National Academy of Sciences of the United States of 
America 114 (41):10864–69. doi:10.1073/pnas.1706233114.

Gruber, D. P., G. Winkler, and K. Resch. 2015. Comprehensive study on the light shielding 
potential of thermotropic layers for the development of new materials. Applied Optics 
54 (2):150–56. doi:10.1364/AO.54.000150.

Haselmann, M., D. P. Gruber, and P. Tabatabai. 2018. Anomaly detection using deep learning 
based image completion. In 2018 17th IEEE International Conference of Machine Learning 
(ICMLA), 1237–42. IEEE.

He, T., Z. Zhang, H. Zhang, Z. Zhang, J. Xie, and M. Li. 2018. Bag of tricks for image 
classification with convolutional neural networks.

Kingma, D. P., and J. Ba. 2015. Adam: A method for stochastic optimization. In International 
Conference for Learning Representations, San Diego.

e1987035-80 T. ULES ET AL.

https://doi.org/10.1111/1523-1747.ep12479191
https://doi.org/10.1098/rsif.2011.0086
https://doi.org/10.1109/TOH.2017.2686849
https://doi.org/10.1098/rsif.2015.0874
https://doi.org/10.1098/rsif.2014.0698
https://doi.org/10.1007/s11249-011-9854-y
https://doi.org/10.1007/s11249-011-9854-y
https://doi.org/10.1073/pnas.1706233114
https://doi.org/10.1364/AO.54.000150


Liu, X., R. Maiti, Z. H. Lu, M. J. Carré, S. J. Matcher, and R. Lewis. 2017. New non-invasive 
techniques to quantify skin surface strain and sub-surface layer deformation of finger-pad 
during sliding. Biotribology 12:52–58. doi:10.1016/j.biotri.2017.07.001.

Long, J., E. Shelhamer, and T. Darrell. 2015. Fully convolutional networks for semantic 
segmentation. In IEEE Conference of Computer Vision and Pattern Recognition (CVPR), 
1–8. IEEE, Boston, MA, USA.

Maltoni, D. 2004. Generation of synthetic fingerprint image databases. In Automatic fingerprint 
recognition systems, ed. N. Ratha and R. Bolle, 361–84. New York, NY: Springer.

Singla, N., M. Kaur, and S. Sofat (2020). Automated latent fingerprint identification system: A 
review. Forensic Science International 309, 1–16.

Ules, T., A. Hausberger, M. Grießer, S. Schlögl, and D. P. Gruber. 2020. Introduction of a new 
in-situ measurement system for the study of touch-feel relevant surface properties. Polymers 
12 (6):1380. doi:10.3390/polym12061380.

Valdes-Ramirez, D., M. A. Medina-Perez, R. Monroy, O. Loyola-Gonzalez, J. Rodriguez, 
A. Morales, and F. Herrera. 2019. A review of fingerprint feature representations and their 
applications for latent fingerprint identification: Trends and evaluation. IEEE Access 
7:48484–99. doi:10.1109/ACCESS.2019.2909497.

van Kuilenburg, J., M. A. Masen, and E. van der Heide. 2015. A review of fingerpad contact 
mechanics and friction and how this affects tactile perception. Proceedings of the Institution 
of Mechanical Engineers, Part J: Journal of Engineering Tribology 229 (3):243–58. 
doi:10.1177/1350650113504908.

Wong, W. J., and S.-H. Lai. 2020. Multi-task cnn for restoring corrupted fingerprint images. 
Pattern Recognition 101:107203. doi:10.1016/j.patcog.2020.107203.

APPLIED ARTIFICIAL INTELLIGENCE e1987035-81

https://doi.org/10.1016/j.biotri.2017.07.001
https://doi.org/10.3390/polym12061380
https://doi.org/10.1109/ACCESS.2019.2909497
https://doi.org/10.1177/1350650113504908
https://doi.org/10.1016/j.patcog.2020.107203

	Abstract
	Introduction
	Experimental
	Testing Site
	Counter Surface
	Contact Images
	Training Data

	Segmentation Pipeline
	ROI Detection
	Segmentation of the Finger Pad Ridges

	Results and Discussion
	Training
	Test on Unseen Real Images

	Conclusion
	Disclosure Statement
	Funding
	ORCID
	References

