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Solution of combined economic and emission dispatch 
problems of power systems without penalty
Sihem Zaoui and Abderrahim Belmadani

Department of Computer Science, Université des sciences et de la technologie d’Oran Mohamed 
BOUDIAF, USTO–MB, BP 1505, EL M’NAOUER, Oran, Algeria

ABSTRACT
In the present paper, the Optimization Without Penalty-based 
Optimization by Morphological Filter algorithm (OWP-based 
OMF) has been proposed to find the optimal solution for the 
Combined Economic and Emission Dispatch (CEED) problem. 
The objective function of the CEED problem is to minimize 
fuel cost and emission simultaneously while satisfying the load 
demand, equality and inequality constraints. The evaluation of 
OWP-based OMF performances is carried out on three test 
systems with 6, 10 and 40 generating units, with different con
straints and various costs. The present paper shows that OWP- 
based OMF gives an accurate and effective solution of the CEED 
problem and outperforms the other tested algorithms.
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Introduction

The electrical power system is planned and operated such that it could be 
reliable, economical, secure and to meet the environmental constraints. 
Economic Dispatch (ED) is the process of allocating the required load between 
the available generation units with minimal operational cost (Abido 2003). 
Economic Dispatch (ED) problem has become a crucial task in the operation 
and planning of power system (Chakrabarti and Halder 2010). It is very 
complex to solve because of a nonlinear objective function and a large number 
of constraints. Fossil-fuel-based power stations generate two-thirds of the 
electric power (Rex and Marsaline Beno 2017). The electricity produced 
from fossil fuel generator releases numerous noxious wastes. These comprise 
of carbon dioxide (CO2), sulfur dioxide (SO2), nitrogen oxide (NOx) and some 
particles, which in turn pollutes the atmosphere. These harmful environmen
tal pollutants emitted from fossil-fuel power plants can be reduced by appro
priately distributing the load among the available generators. But this will 
result to an increase in operating costs of power plants. Therefore, a solution 
that balances emissions and fuel costs needs to be determined. This can be 
solved through Combined Economic and Emission Dispatch (CEED) 

CONTACT Sihem Zaoui sihem.zaoui@univ-usto.dz Department of Computer Science, Université Des 
Sciences Et De La Technologie d’Oran Mohamed Boudiaf
This article has been republished with minor changes. These changes do not impact the academic content of the article.

APPLIED ARTIFICIAL INTELLIGENCE                    
2022, VOL. 36, NO. 1, e1976092 (66 pages) 
https://doi.org/10.1080/08839514.2021.1976092

© 2021 The Author(s). Published with license by Taylor & Francis Group, LLC. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/ 
licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly 
cited.

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/08839514.2021.1976092&domain=pdf&date_stamp=2022-05-09


problem. The main target of combined economic and emission dispatch is to 
minimize both fuel cost and emission simultaneously while satisfying the load 
demand, equality and inequality constraints.

Mostly, the CEED has been defined as a conflicting bi-objective optimiza
tion problem. Thus, the resolution of this kind of problem leads to a set of 
optimal solutions, called non-dominated solutions or Pareto solutions, instead 
of a single solution (Guesmi et al. 2020). From a mathematical viewpoint, 
approaches applied for solving CEED can be classifled into three categories. In 
the flrst category, fuel cost and emissions have been combined in a single- 
objective function by the linear weighted sum or normalizing fuel cost and 
emissions by using price penalty factors (Bhattacharjee, Bhattacharya, and 
Halder nee Dey 2014; Jiang, Ji, and Wang 2015a; Pazheri et al. 2015). 
The second category also converts the CEED into a single-objective problem 
but by incorporating the emissions in the system constraints (Jevtic et al. 2017; 
Palit and Chakraborty 2019). The third category involves both functions 
simultaneously where the Pareto set is generated in one run of the opted 
optimization algorithm (Morsali et al. 2014).

Researchers have been done studies to solve the CEED problem using classical 
and metaheuristic methods. The conventional mathematical optimization meth
ods such as gradient method (Dodu et al. 1972), lambda iteration method 
(Aravindhababu and Nayar 2002), linear programming (Parikh and 
Chattopadhyay 1996), Lagrangian multiplier method (El-Keib, Ma, and Hart 
1994), and classical technique based on coordination equations (Nanda 1994) 
have been implemented to solve CEED problem. However, most of them have 
difficulties in solving ED problems due to nonlinearity and nonconvexity fuel cost 
and emission characteristics. The conventional optimization methods prema
turely converge to the local optimal solution and are sensitive to the initial starting 
value. Moreover, these methods are not able to find a solution with a significant 
computational time for CEED problem (Benasla, Belmadani, and Rahli 2014).

Metaheuristic optimization algorithms play a decisive role in alleviating the 
problems of traditional methods. Genetic algorithm (GA)(Hamid et al. 2005), 
simulated annealing (SA) (Wong and Fung 1993), particle swarm optimization 
(PSO) (Hamid et al. 2005), artificial bee colony (ABC) (Bhongade and Agarwal 
2016), biogeography-based optimization (BBO) (Bhattacharya and 
Chattopadhyay 2010), flower pollination algorithm (FPA) (Abdelaziz, Ali, and 
Abd Elazim 2016), backtracking search algorithm (BSA) (Bhattacharjee, 
Bhattacharya, and Halder nee Dey 2015), lightning flash algorithm (LFA) 
(Kheshti et al. 2018) and real coded chemical reaction algorithm (RCCRO) 
(Bhattacharjee, Bhattacharya, and Halder nee Dey 2014) are the most popular 
metaheuristics. Certainly, different meta-heuristic algorithms have been employed 
to solve the CEED problem. Among the hybrid algorithms utilized in solving the 
CEED problem, we mention, (i) hybrids which combine two single-objective 
algorithms such as the artificial bee colony (ABC) algorithm is combined with 
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simulated annealing (SA) in (Sundaram, Saranya, and Sangeetha 2013), two 
different metaheuristic algorithms PSO and firefiy algorithm is combined in 
(Arunachalam, AgnesBhomila, and Ramesh Babu 2014), hybrid firefiy and bat 
algorithm in (Gherbi, Bouzeboudja, and Gherbi 2016) and hybrid PSO-GSA in 
(Radosavljević 2016). (ii) Hybrids which combine two multi-objective algorithms 
such as multi-objective GA-PSO in (Agarwal and Nanavati 2016), hybrid 
NSGAII-MOPSO in (Sundaram and Erdogmus 2017) and hybrid MOPSO- 
Differential Evolution (DE) in (Gong, Zhang, and Qi 2010). Although these 
heuristic algorithms generate the best solution to the combined economic and 
emission dispatch problem, none of them guarantees the best optimal solution.

This paper presents the Optimization Without Penalty-based Optimization 
by Morphological Filter algorithm (OWP-based OMF)(Zaoui and Belmadani 
2021) for solving Combined economic and emission dispatch problem. OWP- 
based OMF is a recent stochastic optimization algorithm inspired by morpho
logical transformations. The algorithm is used in order to successfully solve 
different engineering optimization problems. It is clear from the literature 
survey that the application of OWP-based OMF to solve ELD, ECD and CEED 
problems has not been discussed yet. This encourages us to adopt OWP-based 
OMF to deal with these problems. The performance of proposed algorithm is 
evaluated on different test systems, which are 6 generating units, 10 generating 
units and 40 generating units. The results are compared with the other 
algorithms in the literature. The experimental result shows that the proposed 
algorithm dominates other heuristic algorithms. The remainder of this paper 
is organized as follows: Section 2 provides a brief description and mathema
tical formulation of ELD, ECD and CEED problems. In section 3, the concept 
of OWP-based OMF is presented. Section 4 shows the result on six, ten and 
forty unit test systems. The last section specifies the conclusion part.

Formulation of CEED problem

The CEED problem is to minimize the fuel cost and emissions as two compet
ing objective functions at the same time with various equality and inequality 
constraints satisfaction. The problem can be formulated as follows.

Economic load dispatch (ELD)

The objective function of the ELD problem is minimizing the fuel cost for 
a specifled load demand while satisfying various system and unit constraints. 
Fuel costs are usually expressed as a quadratic function of output power 
(Wood, Wollenberg, and Sheblé 1996), as shown in equation 1. 
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FC ¼
Xd

i¼1
ðγiP

2
i þ βiPi þ αiÞ (1) 

where FC is the total fuel cost of generations ð$=hÞ, γi, βi and αi are the fuel 
cost coefflcients of the ith unit, Pi is the output power of the ith unit, and d is the 
number of generation units. In practice valve point effect is considered as the 
fuel cost function of the generator. The sharp increase in losses due to the wire 
drawing effects which occur as each steam admission valve starts to open leads 
to the nonlinear rippled input output curve (Walters and Sheble 1993) as 
shown in Figure 1. The obtained cost function based on the rippled curve is 
more accurate modeling. Thus, the fuel cost function of each fossil fuel 
generator is given as the sum of a quadratic and a sinusoidal function 
(Senthil and Manikandan 2010). 

FC ¼
Xd

i¼1
ðγiP

2
i þ βiPi þ αi þ ei � sinðfi � ðPmin

i � PiÞÞ
�
�

�
�Þ (2) 

where FC is the total fuel cost ð$=hÞ considering valve-point loadings, ei and fi 

are the fuel cost coefflcients of the ith unit that refect the valve-point effect.

Figure 1. Valve point loading effect.
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Emission dispatch (EMD)

Fossil fuel-fired power plants emit sulfur oxides, nitrogen oxides, and carbon 
oxides. The total emission of these pollutants can be also expressed as the sum 
of a quadratic function and an exponential function. This function is illu
strated as follows: 

E ¼
Xd

i¼1
ðaiP2

i þ biPi þ ci þ ηi � expðδi � PiÞÞ (3) 

where E is the total amount of emissions ðKg=hÞ, ai, bi, ci, η and δ are the 
emission coefflcients of the ith unit.

Constraints

During the minimization process, some equality and inequality constraints 
must be satisfied. In this process, an equality constraint is called a power 
balance and an inequality constraint is called a generation capacity constraint.

System power balance constraint
The minimization is performed subject to the equality constraint that the total 
electrical power generation should meet load demand and total transmission 
loss: 

Xd

i¼1
Pi ¼ PD þ PL (4) 

where PD is the total load demand, and PL is the total power transmission 
losses which can be expressed as a function of the units output power and 
B-loss coefflcients. The simplest form of loss equation is Kron’s formula as 
presented in equation 5. 

PL ¼
Xd

i¼1

Xd

j¼1
ðPiBijPjÞ þ

Xd

i¼1
B0iPi þ B00 (5) 

where Bij is the ijth element of the loss coefflcients square matrix, B0i is the ith 

element of the loss coefflcients vector and B00 is the loss coefflcient constant.

Power output constraints
According to this constraint, each generator should produce power within 
a minimum and maximum limit. 

Pmin
i � Pi � Pmax

i i ¼ 1; 2; 3; . . . ; d (6) 

APPLIED ARTIFICIAL INTELLIGENCE e1976092-49



Combined economic emission dispatch (CEED)

The CEED problem can be formulated by combining two independent objec
tives, which are emission and fuel cost using a price penalty factor. In this way, 
the bi-objective CEED problem is expressed in a single-objective form. To 
solve the CEED problem, this form is intended to minimize while satisfying 
the constraints expressed above. The single-objective CEED problem is for
mulated as follows: 

TC ¼ w� FC þ ð1 � wÞ � pf � E (7) 

where TC is the total operating cost in $=h, w is the weighting factor that can 
be varied between 0 and 1 and pf is the price penalty factor in ð$=kg or $=tonÞ. 
The various types of penalty factors are formulated in Table 1 (Dey, Basak, and 
Bhattacharyya 2021; Dey, Bhattacharyya, and Fausto Pedro García 2021; Dey 
et al. 2020; Dey, Roy, and Bhattacharyya 2018). By the following steps pf for 
a specified load demand can be calculated:

Step 1: Calculate hi for each unit according to 8: 

hi ¼
FðPmax

i Þ

EðPmax
i Þ

i ¼ 1; . . . ; d $=Kg (8) 

Step 2: Sort hi values in an ascending order.
Step 3: Add maximum output power of each unit one at a time starting 

from the unit with smallest hi until 
P

pmax
i � PD.

Step 4: hi associated with the last unit is pf for the given load demand 
(Benasla, Belmadani, and Rahli 2014).

Table 1. Penalty factor calculation.
Penalty factor types Penalty factor formula

pfj;max� max

=
FCðPmaxj Þ

EðPmaxj Þ pfj;min� min

=
FCðPminj Þ

EðPminj Þ pfj;max� min

=
FCðPmaxj Þ

EðPminj Þ pfj;min� max

=
FCðPminj Þ

EðPmaxj Þ pfj;average

=
pfj;max� maxþpfj;min� minþpfj;max� minþpfj;min� max

4
pfj;com =

pfj;average
number of generators
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The proposed algorithm

The Optimization Without Penalty-based Optimization by Morphological 
Filter algorithm (OWP-based OMF) is a new heuristic optimization algorithm 
described by (Zaoui and Belmadani 2021). This algorithm, which is based on 
the erosion process, it consists to flnd the minimum combination of pixel 
values in the neighborhood of morphological filter. OWP-based OMF has 
been adopted in this paper to solve ELD, EMD and CEED problems. The 
Optimization by Morphological Filters (OMF) algorithm is a stochastic opti
mization approach inspired by transformations of mathematical morphology 
where several morphological filters are launched in parallel and each of them 
returns a minimum found in its neighborhood. The general principle of the 
OMF algorithm is to compare the solution represented by the center of the 
filter with those represented by its neighbors. If one of the neighbors gives 
a better solution, then the center of this filter is moved to that neighbor. 
Otherwise, the size of the filter previously fixed decreases to visit a closer 
neighbor. The criterion for stopping this algorithm is visiting the search space 
until the size of the filter is negligible, close to zero. The algorithm starts with 
random generation, all variables generated must be ranged in the interval [0, 
R]. This is assured by normalization process (Postaire and Vasseur 1981) 
defined as follows: 

x0 ¼
x � xmin

xmax � xmin
� R:

The number of filters and the number of neighbors are fixed at the initi
alization step. During the search process, if a better neighbor is found, the 
center of the filter is moved on it. Otherwise, the size of the filter is reduced in 
order to check a closer neighborhood. The algorithm stops when the sizes of 
all the filters become too small �2 . The reduction is ensured by the following 
formula: 

filter size ¼
R

C � k
; (9) 

where R is the range of search space, k denotes the number of reductions of the 
size of the actual filter and C is a constant which is fixed in our case at 1:001. In 
morphology, erosion decreases the outline of objects. This function is adapted 
by formula 9 to decrease the filter size.

The ith coordinate of each neighbor is calculated by taking one of the 
following options: do not change, shift left, shift right or take a random 
position. The first three possibilities are realized with the following equation: 

xi Neighbor ¼ xi Filter þ a� filter size; (10) 
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where filter size denotes the size of the filter in progress and a is a parameter 
randomly chosen from the set f1; � 1; 0g. To explore unvisited regions of the 
search space and to diversify the search, the ith coordinate can be calculated 
using to the following formula: 

xi Neighbor ¼ random� R: (11) 

A constraint handling approach without penalty, called OWP (Optimization 
Without Penalty), is introduced for solving constrained optimization pro
blems in order to force the respect of the constraints. Firstly, the approach 
consists in addition of a loop; call it intensification loop; which allows having 
more choice of neighbors and more chance of having feasible solutions. It 
intensifies the local search of the neighbors of each filter. Secondly, we ensure 
that the next criteria will be always enforced to compare two solutions at 
a time: a) Any feasible solution is preferred over an infeasible solution, b) 
Between two feasible solutions, the solution having the best value of the 
objective function is preferred, c) Between two infeasible solutions, the solu
tion with a lower violation value is preferred. This violation can be evaluated in 
different ways:

1) The summation: 

DVð x Þ ¼
X

f 2
j :

2) The average: 

DVð x Þ ¼
P

f 2
j

NV
:

3) The number of constraints not respected: 

DVð x Þ ¼ NV:

such as: DVðxÞ is the degree of violation, NV is the number of constraints not 
respected, the function fj measures the violation of the jth constraint.

The degree of violation qualifies the solution: If ðDVðxÞ> 0Þ then the 
solution is considered as infeasible; if ðDVðxÞ � 0Þ the solution is considered 
feasible. Under no circumstances, the violation degree is added to the objective 
function of the infeasible solution. So, the infeasible solution is not penalized 
and it is not rejected. Interested readers may refer (Zaoui and Belmadani 
2021), which contains the detail of the OWP-based OMF Algorithm.

Table 2. The parameter for the OWP-based OMF algorithm.
NFilter NNeighbor NIntensification

Test System 1& 2 9 3 2
Test System 3 12 3 2
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Case studies and results

To assess the efficiency of the OWP-based OMF, it has been applied to solve 
ELD, EMD and CEED problems by considering (03) three various test systems. 
These test systems are widely used as benchmarks in the power system field by 
many other researchers around the world for similar purposes. The results 
obtained from the OWP-based OMF are compared with other optimization 
algorithms, which have already been tested and reported by earlier authors. 
The parameters of the OWP-based OMF algorithm are presented in Table 2.

Both the Quade’s test and Friedman’s test were used to test the statistical 
significance (Derrac et al. 2011). Note that they were implemented by the 
KEEL software (Alcala-Fdez et al. 2009). Also, to further investigate the 
performance of the proposed algorithm in detail, we use the box plot that is 
commonly known as a statistical method for graphically depicting differences 
among groups of data. The boxplot is a summary of 30 sets of results obtained 
by OWP-based OMF while evaluating ELD, EMD and CEED problems for 
different test systems. The median is the line dividing the box, the upper and 
lower quartiles of the data, Q1-Q3 respectively, define the ends of the box. The 
minimum and maximum data points are drawn as points at the ends of the 
lines extending from the box.

Test System I:
The standard IEEE 30-bus consists of six generating units having quadratic 

cost and emission functions. This power system is interconnected by 41 
transmission lines and the total system demand for the 21 load buses is 
2.834 MW. The input data for the 6-generator system are taken from 
(Chatterjee, Ghoshal, and Mukherjee 2012). To compare our results with the 
results reported in previous works, the system is considered lossless. For this 
test system, the fuel cost given by equation 1, the emission given by equation 3 
and total cost given by equation 7 are individually optimized.

Bold entries signify the best results
NR means not reported in the referred literature.

Table 3. Best achieved solutions for test system I: 6 generators (Pd ¼ 2:834MW).
Units ELD EMD CEED

PG1 (MW) 0.109719 0.390482 0.23286
PG2 (MW) 0.299766 0.493212 0.535011
PG3 (MW) 0.524298 0.502448 0.42019
PG4 (MW) 1.016198 0.453322 0.880278
PG5 (MW) 0.524298 0.502448 0.35909
PG6 (MW) 0.359719 0.492085 0.406568
Total generation (pu) 2.834 2.834 2.834
Fuel cost ($/h) 600.111385 633.284828 611.121863
Emission (ton/h) 0.205005 0.186125 0.195626
Total Cost ($/h) – – 465.697239
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Table 3 presents the best solutions found by OWP-based OMF, including 
generation output of each unit for ELD, EMD and CEED problem. In Table 4, 
the optimization results are compared to other optimization algorithms in the 
recent literature. Except in the case of the fuel cost in CEED minimization, the 
minimum values of fuel cost, emission and total cost obtained from the 

Table 4. Comparison of the minimum FC in ELD, minimum E in EMD, and minimum TC in CEED 
obtained by difirent algorithms for test system I: 6 generators.

Algorithms
Fuel cost 

minimization
Emission 

minimization Best compromise solution

FC ($/h) E (ton/h) TC ($/h) FC ($/h) E (ton/h)
GSA (Jiang et al. 2015b) 602.2311 0.1954 1792.9181 618.4426 0.1981
DE (Niknam, Mojarrad, and Firouzi 

2013)
601.3428 0.194217 NR NR NR

SOA (Benasla, Belmadani, and Rahli 
2014)

600.986 0.18729* 1821.914 624.604 0.18708

MOHS (Sivasubramani and Swarup 
2011)

600.6909 0.1947 NR 608.7367 0.2023

GAEPSO (Jiang et al. 2015b) 600.2978 0.1942 1788.4129 615.3802 0.1978
MDE (Niknam, Mojarrad, and Firouzi 

2013)
600.173 0.194208 NR NR NR

MSA (Jevtic et al. 2017) 600.11141 0.19420 NR 606.80105 0.20329
PSOGSA (Radosavljević 2016) 600.11141 0.194203 NR 606.79829 0.203289
Tribe-MDE (Niknam, Mojarrad, and 

Firouzi 2013)
600.1114 0.194202 NR NR NR

OWP-based OMF 600.1113 0.186125 465.697239 611.121863 0.195626

*Emission calculated based on reported power generation and emission coefficients in (Benasla, Belmadani, and Rahli 
2014) is equal to 0.195978.

Figure 2. Comparison of the results for Pd ¼ 2:834MW.
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proposed OWP-based OMF are lesser in comparison to reported best results 
in the literature. The result in the case of the CEED minimization obtained by 
OWP-based OMF can be approximately considered as a result with high cost 
and low pollution. From Figure 2, it appears that the proposed algorithm has 
the best performance when comparing other optimization algorithms. 
Furthermore, the rankings of multiple algorithms obtained by the 

Figure 3. Ranking of OWP-based OMF and the compared algorithms by the Friedman’s test on test 
system I.

Figure 4. Ranking of OWP-based OMF and the compared algorithms by the Quade’s test on test 
system I.

Table 5. Statistical results obtained over 30 runs with OWP-based OMF for test system 1.
Min Max Mean Standard Q1 Median Q3 Time (s)

ELD 600.1114 600.1125 600.111503 0.000283 600.1114 600.1114 600.1114 0.094
EMD 0.186125 0.187046 0.186183 0.000200 0.1861 0.1861 0.186133 0.093
CEED 465.696222 465.699553 465.69757 0.000780 465.697 465.697 465.6981 0.031
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Friedman’s test and Quade’s test is presented in Figure 3,4 respectively. These 
figures show that OWP-based OMF gets the first ranking between the com
pared algorithms.

Based on the values mentioned in Table 5, the box plot figure was formed 
and is presented in Figure 5. From these plots, it is seen that the chances of 
getting minimum ELD, EMD or CEED is very high as each one of them has 
lower quartile near to its median from OWP-based OMF.

Test System II:
This case study consists of ten generation units considering the valve-point 

effect. The fuel cost coefficients, generators constraint, emission coefficients 
and transmission loss coefficients matrix are taken from (Basu 2011). The 
generation outputs of the most appropriate solutions for ELD, EMD and 
CEED problems for 2000 MW load demand are listed in Table 6. Table 7 
shows the summarized results that are obtained by OWP-based OMF com
pared with various optimization algorithms for minimum FC in ELD, mini
mum E in EMD and minimum TC in CEED.

Bold entries signify the best results
NR means not reported in the referred literature.

Figure 5. Box plot-distributed results for ELD, EMD and CEED problems for test system I.

Table 6. Best achieved solutions for test system II: 10 generators (Pd ¼ 2000MW).
Units ELD EMD CEED

PG1 (MW) 55 55 55
PG2 (MW) 80 80 80
PG3 (MW) 106.8771 80.9248 81.1085
PG4 (MW) 100.7023 81.1019 80.7725
PG5 (MW) 81.5370 160 160
PG6 (MW) 82.9221 240 240
PG7 (MW) 300 294.5495 291.5934
PG8 (MW) 340 297.6624 296.0321
PG9 (MW) 470 396.3406 398.8523
PG10 (MW) 470 396.0266 398.3150
Total generation (pu) 2087.0387 2081.6060 2081.6740
Power Loss 87.0386 81.6057 81.6790
Fuel cost ($/h) 111497.6407 116411.9936 116391.8270
Emission (ton/h) 4572.4396 3932.2538 3932.4035
Total Cost ($/h) – – 320946.3799
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From this table, it can be seen that the proposed algorithm outperforms 
many algorithms used to solve ELD, EMD and CEED problems because these 
results are either better or comparable to those obtained using other algo
rithms. This highlights its ability to find better solutions. From Figure 6, it is 
observed that the proposed algorithm gives the better total power loss.

According to the results of the Friedman’s test and Quade’s test shown in 
Figure 7 and 8 respectively, OWP-OMF is ranked the first.

A box plot figure was formed based on the values in Table 8 and is shown in 
Figure 9. From these plots, it’s evident that the OWP-based OMF can produce 
solutions which always remain closer to the best-obtained value in each trial; 
the median is smallest for the proposed algorithm.

Table 7. Comparison of the minimum FC in ELD, minimum E in EMD, and minimum TC in CEED 
obtained by difirent algorithms for test system II: 10 generators.

Algorithms
Fuel cost 

minimization
Emission 

minimization Best compromise solution

FC ($/h) E (ton/h) TC ($/h) FC ($/h) E (ton/h) PL
DE (Basu 2011) 111500 3923.4* NR NR NR NR
TLBO (Roy and Bhui 

2013)
111500 3932.2 NR 113471 4113.5 83.8459

QOTLBO (Roy and Bhui 
2013)

111498 3932.2 NR 113460 4110.2 83.8433

SMA (Ahmed et al. 2021) NR NR NR 113490 4108.6 83.89
KKO (Srivastava and Das 

2020)
NR NR NR 113481 3982.85 84.17

WOA (Rex, Edwin, and 
Annrose 2019)

NR NR 321220 113610 3989.5 82.9669

OWP-based OMF 111497.6407 3932.2538 320946.3799 116391.8270 3932.4035 81.6790

*Emission calculated based on reported power generation and emission coefficients in (Basu 2011) is equal to 
3932.417288.

Figure 6. Comparison of the results for Ploss.
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Test System III:
This test system consists of forty (40) generating units with non-smooth fuel 

cost and emission level functions. The input data for the 40-generators test 
system are taken from (Basu 2011), which has a total load of 10,500 MW and 
no transmission losses are considered. Since this is a larger system with more 
nonlinear elements, it has more local minima, so it will be more difficult to 
achieve the global solution. Table 9 presents the optimum results obtained by 
OWP-based OMF for ELD, EMD and CEED problems.

Bold entries signify the best results
NR means not reported in the referred literature.

Figure 7. Ranking of OWP-OMF and the compared algorithms by the Friedman’s test on test 
system II.

Figure 8. Ranking of OWP-OMF and the compared algorithms by the Quade’s test on test system II.

Table 8. Statistical results obtained over 30 runs with OWP-based OMF for test system 2.
Min Max Mean Standard Q1 Median Q3 Time (s)

ELD 111497.640 111497.642 111497.64 0.00039 111497.6414 111497.6416 111497.6418 0.031
EMD 3932.253 3932.255 3932.2542 0.00032 3932.2539 3932.2540 3932.2543 0.016
CEED 320946.384 320946.385 320946.39 0.00021 320946.384 320946.385 320946.3852 0.032
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The results obtained using the OWP-based OMF are compared to some 
other algorithms reported in the literature as shown in Table 10. From this 
table, it can be seen that the proposed algorithm provides better results and 
outperforms many algorithms used to solve ELD, EMD and CEED problems. 
Except in the case of the fuel cost in CEED minimization, the minimum values 
of fuel cost, emission and total cost obtained from the proposed OWP-based 
OMF are lesser in comparison to reported best results in the literature. The 
result in the case of the CEED minimization obtained by OWP-based OMF 
can be approximately considered as a result with high cost and low pollution. 
From Figure 10, it appears that the proposed algorithm has the competitive 
performance when comparing other recent optimization algorithms.

Figure 9. Box plot-distributed results for ELD, EMD and CEED problems for test system II.

Table 9. Best achieved solutions for test system III: 40 generators (Pd ¼ 10500MW).
Units ELD EMD CEED Units ELD EMD CEED

PG1 (MW) 111.6961 114 114 PG21 (MW) 523.1440 439.4349 437.4749
PG2 (MW) 111.3125 114 114 PG22 (MW) 523.2872 439.4954 437.3899
PG3 (MW) 97.3397 120 120 PG23 (MW) 523.2862 439.6127 437.9355
PG4 (MW) 179.7161 169.3896 178.1443 PG24 (MW) 523.2782 439.7326 437.5263
PG5 (MW) 87.7900 97 97 PG25 (MW) 523.2517 440.1845 437.5633
PG6 (MW) 140 124.1845 129.9247 PG26 (MW) 523.2835 440.1239 437.6229
PG7 (MW) 259.5241 299.7437 300 PG27 (MW) 10 28.97960 19.5926
PG8 (MW) 284.5739 297.9777 299.8678 PG28 (MW) 10 28.9527 19.5290
PG9 (MW) 284.4869 297.2446 298.9768 PG29 (MW) 10 28.9676 19.5488
PG10 (MW) 130 130 130 PG30 (MW) 87.7587 97 97
PG11 (MW) 94 298.4228 307.6796 PG31 (MW) 190 172.3832 175.7052
PG12 (MW) 94 298.0930 307.0133 PG32 (MW) 190 172.3506 175.8870
PG13 (MW) 214.7560 433.5619 433.9764 PG33 (MW) 190 172.3367 175.1343
PG14 (MW) 394.2935 421.6761 408.9414 PG34 (MW) 164.7192 200 200
PG15 (MW) 394.1647 422.7523 411.9811 PG35 (MW) 194.3587 200 200
PG16 (MW) 394.2238 422.7974 411.9954 PG36 (MW) 199.6042 200 200
PG17 (MW) 489.2651 439.3725 452.0437 PG37 (MW) 109.9278 100.7880 104.1737
PG18 (MW) 489.2467 439.4338 452.1124 PG38 (MW) 110 100.8778 104.1864
PG19 (MW) 511.2367 439.3958 437.1739 PG39 (MW) 109.9198 100.8685 104.0048
PG20 (MW) 511.2989 439.4240 437.4983 PG40 (MW) 511.2548 439.4403 437.3952

ELD EMD CEED
Total generation (pu) 10500 10500 10500
Fuel cost ($/h) 121308.4046 129855.4288 128595.9724
Emission (ton/h) 359798.2078 176682.3690 178557.2230
Total Cost ($/h) – – 95722.2719

APPLIED ARTIFICIAL INTELLIGENCE e1976092-59



Also, according to the results of the Friedman’s test and Quade’s test shown 
in Figure 11,12 OWP-OMF is ranked the flrst.

According to the values mentioned in Table 11, a box plot is formed, as 
shown in Figure 13. It can be concluded from these figures that the objective 
function value of each run is nearly close to the best result for each problem; 
ELD, EMD and CEED problems.

Table 10. Comparison of the minimum FC in ELD, minimum E in EMD, and minimum TC in CEED 
obtained by difirent algorithms for test system III: 40 generators.

Algorithms
Fuel cost 

minimization
Emission 

minimization Best compromise solution

FC ($/h) E (ton/h) TC ($/h) FC ($/h) E (ton/h)
CBA (Adarsh et al. 2016) 121412.5468 NR NR NR NR
MOMVO (Sundaram 2020) 123410 178150 NR 125470 209910
MSSA (Elsayed et al. 2016) 121413.4686 NR NR NR NR
CE-SQP (Subathra et al. 2015) 121412.88 NR NR NR NR
QPSO (Meng et al. 2010) 121448.21 NR NR NR NR
DE (Elsayed and El-Saadany 

2015)
121412.68 NR NR NR NR

SMA (Ahmed et al. 2021) 121413.0 NR NR NR NR
NSGA-II.R (Kuk et al. 2021) 121414.50 176718.90 NR 125668.93 195668.93
QOTLBO (Roy and Bhui 2013) 121428.00 176682.50 NR 125161.00 206490.40
KKO (Srivastava and Das 

2020)
NR NR NR 125852 210837

PSOGSA (Radosavljević 2016) 121461,429 176678,019 NR 128710,905 178591,659
WOA (Rex, Edwin, and 

Annrose 2019)
NR NR 1510240 123644 213240

OWP-based OMF 121308.4046 176682.3690 95722.2719 128595.9724 178557.2230

Figure 10. Comparison of the results for Pd ¼ 10500MW.
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Figure 11. Ranking of OWP-OMF and the compared algorithms by the Friedman’s test on test 
system III.

Figure 12. Ranking of OWP-OMF and the compared algorithms by the Quade’s test on test system 
III.

Table 11. Statistical results obtained over 30 runs with OWP-based OMF for test system 3.
Min Max Mean Standard Q1 Median Q3 Time (s)

ELD 121307.08 121315.9 121312.97 1.741 121312.07 121312.80 121314.43 0.203
EMD 176682.20 176682.41 176682.34 0.043 176682.31 176682.33 176682.37 0.438
CEED 95722.01 95722.97 95722.39 0.200 95722.25 95722.39 95722.52 0.078

Figure 13. Box plot evaluation for ELD, EMD and CEED problems for test system III.
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Conclusion

OWP-based OMF is one of the recent heuristic algorithms presented by 
ZAOUI and BELMADANI (Zaoui and Belmadani 2021) for solving engineer
ing optimization problems. In this paper, OWP-based OMF is successfully 
applied to solve a combined economic and emission dispatch problem. The 
proposed algorithm is tested on three different test systems. Here, inequality 
constraints like valve-point loading, emission, transmission line loss are 
addressed. The results demonstrate the effectiveness and robustness of the 
proposed algorithm in solving the CEED problem. In addition, the results of 
the proposed OWP-based OMF algorithm have been compared to other 
heuristic algorithms published in the recent literature. The proposed algo
rithm can provide better solutions than other algorithms. It can be seen from 
the comparison that the proposed algorithm determines an effective and high- 
quality solution to the CEED problem.
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