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Abstract

The bounds on the sum and product of chromatic numbers of a graph and its complement are

known as Nordhaus-Gaddum inequalities. In this paper, some variations on this result is studies.

First, recall their theorem, which gives bounds on the sum and the product of the chromatic

number of a graph with that of its complement. We also provide a new characterization of the

certain graph classes.

Keywords: Chromatic number of a graph; chromatic index of a graph; line graph.

2010 Mathematics Subject Classification: 05C15.

1 Introduction

For all terms and definitions, not defined specifically in this paper, we refer to [1],[2],[3]. Unless
mentioned otherwise, all graphs considered here are simple, finite and have no isolated vertices.

A graph G can be considered as a pair (V (G), E(G)) where V (G) is the set of vertices and E(G)
is the set of edges of G. The degree of a vertex v of a graph G is the number of edges incident on
v and is denoted by d(v). The minimum among the degrees of all the vertices of G is denoted by
δ(G) and the maximum among the degrees of all the vertices of G is denoted by ∆(G).
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Many problems in extremal graph theory seek the extreme values of graph parameters on families
of graphs. The classic paper of Nordhaus and Gaddum [4] study the extreme values of the sum (or
product) of a parameter on a graph and its complement, following solving these problems for the
chromatic number on n-vertex graphs. In this paper, we study such problems for some graphs and
their associated graphs.

Definition 1.1. [3] A coloring of a graph is an assignment of colors to its vertices so that no two
adjacent vertices have the same color. The set of all vertices with any one color is independent and
is called a color class. An n-coloring of a graph G uses n colors; it thereby partitions V into n color
classes. The chromatic number χ(G) is defined as the minimum n for which G has an n - coloring.
A graph G is n-colorable if χ(G) ≤ n and is n-chromatic if χ(G) = n.

Definition 1.2. [3] An edge-coloring or line-coloring of a graph G is an assignment of colors to its
edges (lines) so that no two adjacent edges (lines) are assigned the same color. An n-edge-coloring
of G is an edge-coloring of G which uses exactly n colors. The edge-chromatic number χ′(G) is the
minimum n for which G has an n-edge-coloring.

Recall the following theorem, which gives bounds on the sum and the product of the chromatic
number of a graph with that of its complement.

Theorem 1.1. [4] If G is a graph with V (G) = n and chromatic number χ(G) then

2
√
n ≤ χ(G) + χ(Ḡ) ≤ n+ 1 (1.1)

n ≤ χ(G).χ(Ḡ) ≤ (n+ 1)2

4
(1.2)

And there is no possible improvement of any of these bounds. In fact, much more can be said. Let
n be a positive integer. For every two positive integers a and b,

2
√
n ≤ a+ b ≤ n+ 1 (1.3)

n ≤ ab ≤ (n+ 1)2

4
(1.4)

There is a graph G of order n such that χ(G) = a and χ(Ḡ) = b.

Definition 1.3. [5] The line graph of a graph G, written L(G), is the graph whose vertices are the
edges of G, with ef ∈ E(L(G)) when e = uv and f = vw in G.

Definition 1.4. [6] The chromatic index (or edge chromatic number) χ′(G) of a graph G is the
minimum positive integer k for which G is k−edge colorable. Furthermore, χ′(G) = χ(L(G)) for
every nonempty graph G.

Theorem 1.2. [3] For any graph G, the edge-chromatic number satisfies the inequalities

∆ ≤ χ′ ≤ ∆ + 1 (1.5)

Theorem 1.3. [6] (Konig’s Theorem) If G is a nonempty bipartite graph, then χ′(G) = ∆(G).

Theorem 1.4. [7] Let G = Kn, the complete graph on n vertices, n ≥ 2. Then

χ′(G) =

{
∆(G) if n is even
∆(G) + 1 if n is odd

We denote the chromatic number of a graph G is denoted by χ(G) and the complement of G is
denoted by Ḡ.
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2 New Results

With the above background, we now prove the following.

Proposition 2.1. For a complete graph Kn, n ≥ 2,

χ(Kn) + χ(L(Kn)) =

{
2n− 1 if n is even
2n if n is odd

χ(Kn).χ(L(Kn)) =

{
n(n− 1) if n is even
n2 if n is odd

Proof. We know that χ(Kn) = n for all positive integer n. Let L(Kn) denotes the line graph of
Kn. Then, Kn is (n− 1) regular and by definition, χ(L(Kn)) = χ′(Kn). By theorem 1.4,

χ′(Kn) =

{
∆ = n− 1 if n is even
∆ + 1 = n if n is odd

ie,

χ(L(Kn)) = χ′(Kn) =

{
∆ = n− 1 if n is even
∆ + 1 = n if n is odd

Therefore

χ(Kn) + χ(L(Kn)) =

{
n+ n− 1 = 2n− 1 if n is even
n+ n = 2n if n is odd

Similarly,

χ(Kn).χ(L(Kn)) =

{
n(n− 1) if n is even
n.n = n2 if n is odd

Proposition 2.2. For a complete bipartite graph Km,n, m,n ≥ 0,
χ(Km,n) + χ(L(Km,n)) = 2 +max (m,n) and

χ(Km,n).χ(L(Km,n)) = 2 max (m,n)

Proof. We know that χ(Km,n) = 2 for all positive integer m,n. Let L(Km,n) denotes the line graph
of Km,n. Then, by definition, χ(L(Km,n)) = χ′(Km,n).

Therefore by theorem 1.3, χ(L(Km,n)) = χ′(Km,n) = max (m,n).

Then χ(Km,n) + χ(L(Km,n)) = 2 +max (m,n) and
χ(Km,n).χ(L(Km,n)) = 2 max (m,n)

Corollary 2.1. For a star graph K1,n,
χ(K1,n) + χ(L(K1,n)) = n+ 2 and

χ(K1,n).χ(L(K1,n)) = 2n

Proof. Since any two edges of a star graph K1,n are adjacent each other, then its line graph is a
complete graph with n vertices. We know χ(K1,n) = 2 and χ(L(K1,n)) = n.
Therefore χ(K1,n) + χ(L(K1,n)) = n+ 2 and
χ(K1,n).χ(L(K1,n)) = 2n.

A bistar graph (Bm,n) is a graph obtained by attaching m pendent edges to one end point and n
pendent edges to the other end point of K2.

The following result establishes the sum and product of chromatic numbers of a bistar graph and
its line graph.
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Proposition 2.3. For a bistar graph Bm,n,
χ(Bm,n) + χ(L(Bm,n)) = 2 +max (m,n) and

χ(Bm,n).χ(L(Bm,n)) = 2 max (m,n)

Proof. Let u, v be two vertices of K2. Let m edges be attached to u and n edges be attached to v.
Since all m edges at u are adjacent to each other and all n edges at v are adjacent to each other,
its line graph is the one point union of 2 complete graphs Km and Kn.
Then

χ(L(Bm,n)) =

{
m if m > n
n otherwise

Therefore
χ(Bm,n) + χ(L(Bm,n)) = 2 +max (m,n) and

χ(Bm,n).χ(L(Bm,n)) = 2 max (m,n)

Proposition 2.4. Let G be a bipartite graph with a bipartition (X,Y ) with |X| = m and |Y | = n,
then 4 ≤ χ(G) + χ(L(G) ≤ 2 +max (m,n) and
4 ≤ χ(G).χ(L(G) ≤ 2 max (m,n)

Proof. The minimal connected bipartite graph of m,n vertices will be Pm+n−1 and that of its line
graph is Pm+n−2. Chromatic number of G and L(G) is 2.

Therefore χ(G) + χ(L(G)) = 4 and χ(G).χ(L(G)) = 4 then

4 ≤ χ(G) + χ(L(G)) ≤ 2 +max (m,n) (2.1)

4 ≤ χ(G).χ(L(G)) ≤ 2 max (m,n) (2.2)

Definition 2.1. [3] For n ≥ 4, a wheel graph Wn is defined to be the graph K1 + Cn−1, where
Cn−1 is a cycle on n− 1 vertices.

Theorem 2.2. The chromatic index of a wheel graph Wn with n vertices is n− 1.

Proof. A wheel graph Wn with n vertices is K1 +Cn−1. Suppose K1 lies inside the circle Cn−1. Let
e1, e2, e3, ..., en−1 be the edges incident with the vertex K1 and we need n − 1 colors to color this
n − 1 edges. Let u1, u2, u3, ..., un−1 be the end vertices of e1, e2, e3, ..., en−1, which form the cycle
Cn−1. Then, there exists q1, q2, q3, ..., qn−1 edges incident to u1, u2, u3, ..., un−1. For any edge qj in
the cycle Cn−1, there exists an edge ei which is not adjacent to qj . Therefore ei and qj can have
the same color. That is using the same set of n− 1 colors, we can color the edges q1, q2, q3, ..., qn−1.
That means we can color the edges of a wheel graph Wn with n− 1 colors or the chromatic index
of Wn is n− 1.

Proposition 2.5. For a wheel graph Wn on n vertices and 2(n− 1) edges, n ≥ 4,

χ(Wn) + χ(L(Wn)) =

{
n+ 3 if n is even
n+ 2 if n is odd

χ(Wn).χ(L(Wn)) =

{
4(n− 1) if n is even
3(n− 1) if n is odd
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Proof. We know that

χ(Wn) =

{
4 if n is even
3 if n is odd

for all positive integer n ≥ 4. Let L(Wn) denotes the line graph of Wn. Then, χ(L(Wn)) =
χ′(Wn) = (n− 1) Therefore

χ(Wn) + χ(L(Wn)) =

{
4 + (n− 1) = n+ 3 if n is even
3 + (n− 1) = n+ 2 if n is odd

Similarly,

χ(Wn).χ(L(Wn)) =

{
4(n− 1) if n is even
3(n− 1) if n is odd

Definition 2.2. [8] Helm graphs are graphs obtained from a wheel by attaching one pendant edge
to each vertex of the cycle.

Theorem 2.3. The chromatic index of a helm graph Hn with 2n+ 1 vertices and 3n edges is n.

Proof. Let u1 is the central vertex and v1, v2, v3, ..., vn be the vertices of the cycle. Let w1, w2, w3, ..., wn

be the pendent vertices attached to v1, v2, v3, ..., vn respectively. Let e1, e2, e3, ..., en be the edges
incident on the vertex u1. Let l1, l2, l3, ..., ln be the edges of the cycle formed by the vertices
v1, v2, v3, ..., vn. Let q1, q2, q3, ..., qn be the pendent edges. Since each e1, e2, e3, ..., en are adjacent
to each other, to color the edges e1, e2, e3, ..., en, we need at least n colors. For every edge li, we can
find at least one edge ej such that liandej are non-adjacent. Color the edge li with the same color
of ej . Using the same set of n colors, we can color all the edges e1, e2, e3, ..., en and l1, l2, l3, ..., ln.
For any edge qk, there will be at least one edge ej and at least one edge li with the same color and
are non-adjacent to qk. Now assign this color to qk. Hence we color all the vertices of helm graph
using the same set of n colors.

Proposition 2.6. For a helm graph Hn on 2n+ 1 vertices, and 3n edges, n ≥ 3,

χ(Hn) + χ(L(Hn)) =

{
n+ 4 if n is even
n+ 3 if n is odd

χ(Hn).χ(L(Hn)) =

{
4n if n is even
3n if n is odd

Proof. We know that

χ(Hn) =

{
4 if n is even
3 if n is odd

for all positive integer n ≥ 4. Let L(Hn) denotes the line graph of Hn. Then, χ(L(Hn)) = χ′(Hn) =
n

Therefore

χ(Hn) + χ(L(Hn)) =

{
n+ 4 if n is even
n+ 3 if n is odd

Similarly,

χ(Hn).χ(L(Hn)) =

{
4n if n is even
3n if n is odd

Definition 2.3. [5] Given a vertex x and a set U of vertices, an x, U−fan is a set of paths from x
to U such that any two of them share only the vertex x.
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Theorem 2.4. The chromatic index of a fan graph F1,n with n+ 1 vertices is n.

Proof. The fan graph F1,n with n+ 1 vertices is K1 +Pn−1, where Pn−1 is a path on n−1 vertices.
Let e1, e2, e3, ..., en be the edges incident with the vertex K1 and we need n colors to color this n
edges. Let q1, q2, q3, ..., qn−1 be the edges in the path Pn−1. For any edge qj in the path Pn−1, there
exists an edge ei which is not adjacent to qj . Therefore ei and qj can have the same color. That is,
by taking (n − 1) colors out of n colors, we can color the edges q1, q2, q3, ..., qn−1. That is we can
color the edges of a fan graph F1,n with n colors or the chromatic index of F1,n is n.

Proposition 2.7. For a fan graph F1,n,
χ(F1,n) + χ(L(F1,n)) = n+ 4 and
χ(F1,n).χ(L(F1,n)) = 3(n+ 1)

Proof. For a fan graph F1,n, with e ≥ 1, we have χ(F1,n) = 3 for all positive integer n ≥ 2. Let
L(F1,n) denotes the line graph of F1,n. Then χ(L(F1,n)) = χ′(F1,n) = n.
Therefore χ(F1,n) + χ(L(F1,n)) = 3 + n = n+ 3 and
χ(F1,n).χ(L(F1,n)) = 3n.

3 Conclusions

The theoretical results obtained in this research may provide a better insight into the problems
involving chromatic number by improving the known lower and upper bounds on sums and products
of chromatic numbers of a graphG and an associated graph ofG. More properties and characteristics
of operations on chromatic number and also other graph parameters are yet to be investigated. The
problems of establishing the inequalities on sums and products of chromatic numbers for various
graphs and graph classes still remain unsettled. All these facts highlight a wide scope for further
studies in this area.
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