

SCIENCEDOMAIN international <www.sciencedomain.org>

Linear Metrics and Effective Separating Sequences

Zvonko Iljazović¹*[,](#page-0-0) Anita Kuruc¹ and Lucija Validžić¹

 1 Department of Mathematics, Faculty of Science, University of Zagreb, Bijenička 30, 10 000 Zagreb, Croatia.

Article Information

DOI: 10.9734/BJMCS/2016/21852 $Editor(s)$: (1) Dariusz Jacek Jakbczak, Chair of Computer Science and Management in this Department, Technical University of Koszalin, Poland. (2) Paul Bracken, Department of Mathematics, The University of Texas-Pan American, Edinburg, TX 78539, USA. Reviewers: (1) Ali Mutlu, Celal Bayar University, Turkey. (2) Choonkil Park, Hanyang University, Republic of Korea. Complete Peer review History: <http://sciencedomain.org/review-history/11709>

Original Research Article

Received: 05 September 2015 Accepted: 23 September 2015 Published: 07 October 2015

Abstract

On the real line equipped with the Euclidean metric every two effective separating sequences which have a common computable point are equivalent. We prove that the same result holds for every linear metric on the real line.

Keywords: Effective separating sequence; computable metric space; linear metric.

2010 Mathematics Subject Classification: 03D78.

1 Introduction

A dense sequence $\alpha = (\alpha_i)$ in a metric space (X, d) is said to be effective separating if we can effectively compute the distance $d(\alpha_i, \alpha_j)$ for all $i, j \in \mathbb{N}$. Two effective separating sequences α and β in (X, d) are equivalent if α can be computed from β in certain sense and conversely, if β can be computed from α . Furthermore, we say that α and β are equivalent up to isometry if there exists an isometry $f: X \to X$ such that the α and $f \circ \beta$ are equivalent.

In general, effective separating sequences in a metric space (X, d) need not be equivalent, moreover they need not be equivalent up to isometry. However, it is known that in the metric space (\mathbf{R}, d) ,

^{*}Corresponding author: E-mail: zilj@math.hr

where d is the Euclidean metric on \bf{R} , every two effective separating sequences are equivalent up to isometry (although not necessarily equivalent), see [\[1,](#page-6-0) [2\]](#page-6-1). From this result can be concluded the following: if two effective separating sequences in (\mathbf{R}, d) have a common computable point, then they are equivalent.

In this paper we generalize the previous fact by taking d to be any linear metric on \bf{R} . By a linear metric d on **R** we mean a metric such that for any real numbers $x \leq y \leq z$ we have $d(x, z) = d(x, y) + d(y, z).$

2 Effective Separating Sequences

Let $k \in \mathbb{N} \setminus \{0\}$. A function $F : \mathbb{N}^k \to \mathbb{Q}$ is called **computable** if there exist computable (recursive) functions $a,b,c:{\bf N}^k\rightarrow{\bf N}$ such that

$$
F(x) = (-1)^{c(x)} \frac{a(x)}{b(x) + 1}
$$

for each $x \in \mathbb{N}^k$. A function $f : \mathbb{N}^k \to \mathbb{R}$ is called **computable** if there exists a computable function $F : \mathbf{N}^{k+1} \to \mathbf{Q}$ such that

$$
|f(x) - F(x, i)| < 2^{-i}
$$

for all $x \in \mathbb{N}^k$ and $i \in \mathbb{N}$ [\[3,](#page-6-2) [4\]](#page-6-3).

A number $x \in \mathbb{R}$ is said to be **computable** if there exists a computable function $g : \mathbb{N} \to \mathbb{Q}$ such that

$$
|x - g(i)| < 2^{-i}
$$

for each $i \in \mathbb{N}$.

In the following proposition we state some basic facts about computable functions $N^k \to \mathbf{R}$.

- **Proposition 2.1.** (i) If $f, g : \mathbb{N}^k \to \mathbb{R}$ are computable, then $f + g, f g, |f| : \mathbb{N}^k \to \mathbb{R}$ are computable.
	- (ii) If $F : \mathbb{N}^{k+1} \to \mathbb{R}$ is a computable function and $f : \mathbb{N}^k \to \mathbb{R}$ such that $|f(x) F(x, i)| < 2^{-i}$ for all $x \in \mathbb{N}^k$ and $i \in \mathbb{N}$, then f is computable.
- (iii) If $f, g: \mathbb{N}^k \to \mathbb{R}$ is a computable function, then the set $\{x \in \mathbb{N}^k \mid f(x) > g(x)\}\$ is c.e.

Let (X, d) be a metric space and let $\alpha = (\alpha_i)$ be a sequence in X. We say that α is an effective separating sequence in (X, d) if the set $\{\alpha_i | i \in \mathbb{N}\}\$ is dense in (X, d) and the function $\mathbb{N}^2 \to \mathbb{R}$,

$$
(i,j)\mapsto d(\alpha_i,\alpha_j)
$$

is computable [\[5\]](#page-7-0). If α is an effective separating sequence in (X, d) , then the triple (X, d, α) is called a computable metric space.

If (X, d, α) is a computable metric space and (x_i) a sequence in X, then (x_i) is said to be a computable sequence in (X, d, α) if there exists a computable function $F : \mathbb{N}^2 \to \mathbb{N}$ such that

$$
d(x_i, \alpha_{F(i,k)}) < 2^{-k}
$$

for all $i, k \in \mathbb{N}$. A point $x \in X$ is said to be **computable** in (X, d, α) if there exists a computable function $f: \mathbb{N} \to \mathbb{N}$ such that $d(x, \alpha_{f(k)}) < 2^{-k}$ for each $k \in \mathbb{N}$. Note that x is a computable point in (X, d, α) if and only if the constant sequence $(x, x, x, ...)$ is computable in (X, d, α) .

Proposition 2.2. Let (X, d, α) be a computable metric space and let x_0 be a computable point in this space. Then the function $\mathbf{N} \to \mathbf{R}$, $i \mapsto d(x_0, \alpha_i)$ is computable.

Proof. Let $f: \mathbb{N} \to \mathbb{N}$ be a computable function such that $d(x_0, \alpha_{f(k)}) < 2^{-k}$ for each $k \in \mathbb{N}$. In general, for all $a, b, c \in X$ we have $|d(a, c) - d(b, c)| \leq d(a, b)$, so $|d(x_0, \alpha_i) - d(\alpha_{f(k)}, \alpha_i)| \leq$ $d(x_0, \alpha_{f(k)})$ and therefore

$$
|d(x_0, \alpha_i) - d(\alpha_{f(k)}, \alpha_i)| < 2^{-k}
$$

for all $i, k \in \mathbb{N}$. Now the claim follows from Proposition [2.1\(](#page-0-1)ii).

 \Box

If (X, d, α) is a computable metric space, then we denote by S_α the set of all sequences which are computable in (X, d, α) .

Let (X, d) be a metric space and let α and β be effective separating sequences in this space. We say that α and β are **equivalent** and write $\alpha \sim \beta$ if β is a computable sequence in (X, d, α) . It is not hard to check that effective separating sequences α and β in (X, d) are equivalent if and only if $\mathcal{S}_{\alpha} = \mathcal{S}_{\beta}$ [\[1\]](#page-6-0). It follows that in this case the computable metric spaces (X, d, α) and (X, d, β) have the same computable points.

Example 2.1. Let d be the Euclidean metric on **R**. Let $\alpha : \mathbb{N} \to \mathbb{R}$ be a computable function whose range is dense in (\mathbf{R}, d) . Then α is an effective separating sequence in (\mathbf{R}, d) , which follows easily from Proposition [2.1\(](#page-0-1)i).

Let (x_i) be a sequence in **R** and $a \in \mathbf{R}$. Then it is easy to prove that (x_i) is a computable sequence in (\mathbf{R}, d, α) if and only if (x_i) is a computable sequence in \mathbf{R} (i.e. computable as a function $\mathbf{N} \to \mathbf{R}$) and a is a computable point in (\mathbf{R}, d, α) if and only if a is a computable number [\[1\]](#page-6-0). Hence S_{α} is the set of all sequences in **R** which are computable (as functions $N \rightarrow R$).

Suppose d is the Euclidean metric on **R** and α and β are effective separating sequences in (**R**, d). Suppose α is a computable sequence in **R**.

If $\alpha \sim \beta$, then by Example [2.1](#page-2-0) β is a computable sequence in **R**. Conversely, if β is a computable sequence in **R**, then by Example [2.1](#page-2-0) we have $\mathcal{S}_{\alpha} = \mathcal{S}_{\beta}$ and consequently $\alpha \sim \beta$. Hence $\alpha \sim \beta$ if and only if β is a computable sequence in **R**.

Let (X, d) be a metric space, α an effective separating sequence in (X, d) and $f : X \to X$ and isometry (i.e. a surjective function such that $d(f(x), f(y)) = d(x, y)$ for all $x, y \in X$). Then $f \circ \alpha$, i.e. $(f(\alpha_i))_{i\in\mathbb{N}}$ is clearly an effective separating sequence in (X, d) . Note the following: if x_0 is computable in (X, d, α) , then $f(x_0)$ is computable in $(X, d, f \circ \alpha)$.

Example 2.2. Let d be the Euclidean metric on R, let $\alpha : \mathbb{N} \to \mathbb{R}$ be a computable function whose range is dense in (\mathbf{R}, d) and let $c \in \mathbf{R}$. We define $\beta : \mathbf{N} \to \mathbf{R}$ by $\beta_i = \alpha_i + c$, $i \in \mathbf{N}$. Then $\beta = f \circ \alpha$, where $f: \mathbf{R} \to \mathbf{R}$ is the isometry given by $f(x) = x + c$.

Suppose c is not a computable number. Then β is not a computable sequence in **R**. Namely, if (x_i) is a computable sequence in **R**, then x_i is clearly a computable number for each $i \in \mathbb{N}$. Therefore, if β were computable, β_0 would be a computable number, i.e. $\alpha_0 + c$ would be a computable number and this would imply that c is computable (in general, the difference of two computable numbers is a computable number).

Since β is not a computable sequence in **R**, we have that α and β are not equivalent.

Let α and β be effective separating sequences in a metric space (X, d) . We say that α and β are equivalent up to isometry if there exists an isometry $f : X \to X$ such that $\alpha \sim f \circ \beta$.

Example [2.2](#page-2-1) shows that two effective separating sequences in (\mathbf{R}, d) , where d is the Euclidean metric on **R**, need not be equivalent. However, every two effective separating sequences in (\mathbf{R}, d) are equivalent up to isometry, see [\[1,](#page-6-0) [2\]](#page-6-1).

3 Effective Separating Sequences with a Common Computable Point

There are metric spaces in which every two effective separating sequences are equivalent, see [\[1\]](#page-6-0). As we saw, R with the Euclidean metric is not such a space, but the fact that every two effective separating sequences in this metric space are equivalent up to isometry has the following consequence.

Proposition 3.1. Let d be the Euclidean metric on **R**. Suppose α and β are effective separating sequences in (\mathbf{R}, d) such that the computable metric spaces (\mathbf{R}, d, α) and (\mathbf{R}, d, β) have a common computable point. Then $\alpha \sim \beta$.

Proof. Let x_0 be a common computable point of (\mathbf{R}, d, α) and (\mathbf{R}, d, β) .

Let us first assume that $x_0 = 0$ and that β is a computable sequence in **R**.

There exists an isometry $f : \mathbf{R} \to \mathbf{R}$ such that $\alpha \sim f \circ \beta$. Since 0 is a computable point in (X, d, β) , $f(0)$ is a computable point in $(X, d, f \circ \beta)$. Therefore $f(0)$ is a computable point in (X, d, α) .

In general, if y and z are computable points in (X, d, α) , then $d(y, z)$ is a computable number. Therefore, $d(f(0), 0)$ is a computable number.

Since f is an isometry, there exists $l \in \mathbf{R}$ such that $f(x) = x + l$ for each $x \in \mathbf{R}$ or $f(x) = -x + l$ for each $x \in \mathbf{R}$. In either case $f(0) = l$ and therefore $d(f(0), 0) = |l|$. Hence l is a computable number. It follows from Proposition [2.1\(](#page-0-1)i) that the sequences $(\beta_i + l)$ and $(-\beta_i + l)$ are computable in **R**.

We have $(\alpha_i) \sim (\beta_i + l)$ or $(\alpha_i) \sim (-\beta_i + l)$. Therefore α is computable sequence in **R** and it follows $\alpha \sim \beta$.

In general, let $g: \mathbf{R} \to \mathbf{R}$ be the function defined by $g(x) = x - x_0$. Then g is an isometry and we have that $g(x_0)$ is a computable point in $(X, d, g \circ \alpha)$ and in $(X, d, g \circ \beta)$. Let $\gamma : \mathbb{N} \to \mathbb{R}$ be some computable function whose range is dense in (\mathbf{R}, d) (for example, we can take any computable surjection $\mathbf{N} \to \mathbf{Q}$). Then 0 is a computable point in (X, d, γ) and by the first case we have $g \circ \alpha \sim \gamma$ and $g \circ \beta \sim \gamma$. It follows $g \circ \alpha \sim g \circ \beta$. Therefore $g^{-1} \circ (g \circ \alpha) \sim g^{-1} \circ (g \circ \beta)$, hence $\alpha \sim \beta$. \Box

Let d be a metric on **R**. We say that d is a **linear metric** if for all $x, y, z \in \mathbb{R}$ such that $x \le y \le z$ we have $d(x, z) = d(x, y) + d(y, z)$.

Clearly, the Euclidean metric on **is a linear metric. However, it is not the only linear metric as** the following proposition implies.

Proposition 3.2. Let $d : \mathbf{R} \times \mathbf{R} \to \mathbf{R}$ be a function. Then d is a linear metric if and only if there exists a strictly increasing function $f: \mathbf{R} \to \mathbf{R}$ such that

$$
d(x, y) = |f(x) - f(y)| \tag{3.1}
$$

for all $x, y \in \mathbf{R}$.

Proof. Suppose d is a linear metric. Let $f : \mathbf{R} \to \mathbf{R}$ be the function defined by

$$
f(x) = \begin{cases} d(0, x), & x \ge 0 \\ -d(0, x), & x \le 0. \end{cases}
$$

Let $x, y \in \mathbf{R}$, $x < y$. We claim that $f(x) < f(y)$.

If $0 \leq x \leq y$, then $d(0, y) = d(0, x) + d(x, y)$ and it follows $f(x) \leq f(y)$. In a similar way we conclude $f(x) < f(y)$ if $x < y \leq 0$. If $x < 0 < y$, then $f(x) < 0 < f(y)$.

Hence the function f is strictly increasing. We claim that (3.1) holds. It is enough to prove $d(x, y) = f(y) - f(x)$ for all $x, y \in \mathbf{R}$ such that $x < y$. However this follows easily from definition of f and the fact that d is a linear metric.

Conversely, if $f : \mathbf{R} \to \mathbf{R}$ is a strictly increasing function such that [\(3.1\)](#page-3-0) holds, then it is easy to see that d is a linear metric. \Box

For example, the function $d : \mathbf{R} \times \mathbf{R} \to \mathbf{R}$ defined by $d(x, y) = |\arctan x - \arctan y|$ is a linear metric. Note that d is a bounded metric.

In general, a linear metric need not be even topologically equivalent to the Euclidean metric as the following example shows.

Example 3.1. Let $f : \mathbf{R} \to \mathbf{R}$ be the function defined by

$$
f(x) = \begin{cases} x, & x \le 0 \\ x+1, & x > 0. \end{cases}
$$

Clearly, f is strictly increasing. Let $d : \mathbf{R} \times \mathbf{R} \to \mathbf{R}$ be defined by $d(x, y) = |f(x) - f(y)|$. Then d is a linear metric. We have

$$
\{x \in \mathbf{R} \mid d(x,0) < 1\} = \langle -1, 0],
$$

hence $\langle -1, 0]$ is an open ball in the metric space (\mathbf{R}, d) and therefore it is an open set in (\mathbf{R}, d) . On the other hand, the set $\langle -1, 0 \rangle$ is not open in **R** with respect to the Euclidean metric, hence d and the Euclidean metric on \bf{R} are not topologically equivalent.

Lemma 3.2. Let d be a linear metric on **R** and $a, b \in \mathbf{R}$, $a < b$. Let $x \in \mathbf{R}$. Then

$$
a < x \Longleftrightarrow d(x, b) < d(a, b) \text{ or } d(x, b) < d(x, a) \tag{3.2}
$$

$$
x < b \Longleftrightarrow d(x, a) < d(a, b) \text{ or } d(x, a) < d(x, b)
$$
\n
$$
(3.3)
$$

Proof. Suppose $a < x$. If $x \le b$, then $d(a, b) = d(a, x) + d(x, b)$ and it follows $d(x, b) < d(a, b)$. If $b < x$, then $d(a, x) = d(a, b) + d(b, x)$ and $d(x, b) < d(x, a)$. Hence the implication \Rightarrow in [\(3.2\)](#page-4-0) holds. Conversely, suppose $d(x, b) < d(a, b)$ or $d(x, b) < d(x, a)$. If $x \le a$, then

$$
d(x, b) = d(x, a) + d(a, b)
$$

implying $d(x, a) < d(x, b)$ and $d(a, b) \leq d(x, b)$ which is impossible. Hence $a < x$ and we conclude that (3.2) holds. In a similar way we get that (3.3) holds. \Box

Proposition 3.3. Let d be a linear metric and let α be an effective separating sequence in (\mathbf{R}, d) . Suppose x_0 is a computable point in (\mathbf{R}, d, α) . Then the sets

$$
S = \{i \in \mathbf{N} \mid x_0 < \alpha_i\} \quad and \quad T = \{i \in \mathbf{N} \mid \alpha_i < x_0\}
$$

are computably enumerable.

Proof. Let us choose $y_0 \in \mathbb{R}$ such that $x_0 < y_0$. Let $r = d(x_0, y_0)$. Clearly $r > 0$. Since the set $\{\alpha_i \mid i \in \mathbb{N}\}\$ is dense in (\mathbf{R}, d) , there exists $n \in \mathbb{N}$ such that $d(\alpha_n, y_0) < r$. We have $d(\alpha_n, y_0) < d(x_0, y_0)$ and Lemma [3.2](#page-4-2) implies that

 $x_0 < \alpha_n$.

Let $i \in \mathbb{N}$. By Lemma [3.2](#page-4-2) we have

$$
x_0 < \alpha_i \iff d(\alpha_i, \alpha_n) < d(x_0, \alpha_n) \text{ or } d(\alpha_i, \alpha_n) < d(\alpha_i, x_0). \tag{3.4}
$$

Let $f, q : \mathbb{N}^2 \to \mathbb{R}$ be the functions defined by $f(i) = d(\alpha_i, \alpha_n)$, $g(i) = d(\alpha_i, x_0)$. By Proposition [2.2](#page-1-0) f and q are computable functions. By (3.4) we have

$$
i \in S \iff f(i) < g(n) \text{ or } f(i) < g(i).
$$

It follows from this and Proposition [2.1\(](#page-0-1)iii) that S is the union of two c.e. sets. Hence S is c.e. In the same way we get that T is c.e. \Box

Lemma 3.3. Let d be a linear metric. Let $x, a, b \in \mathbb{R}$. If $x \le a$ and $x \le b$ or $a \le x$ and $b \le x$, then

$$
|d(x,a) - d(x,b)| = d(a,b).
$$
\n(3.5)

Proof. Suppose $x \le a$ and $x \le b$. If $a \le b$, then $d(x, b) = d(x, a) + d(a, b)$ and [\(3.5\)](#page-5-1) holds. The same conclusion we get if $b \le a$. The inequalities $a \le x$ and $b \le x$ imply [\(3.5\)](#page-5-1) in the same way. \square

In the next theorem we show that the claim of Proposition [3.1](#page-3-1) holds for every linear metric d.

Theorem 3.4. Let d be a linear metric. Suppose α and β are effective separating sequences in (\mathbf{R}, d) such that the computable metric spaces (\mathbf{R}, d, α) and (\mathbf{R}, d, β) have a common computable point. Then $\alpha \sim \beta$.

Proof. Let x_0 be a common computable point of (\mathbf{R}, d, α) and (\mathbf{R}, d, β) . Let

$$
S^{+} = \{ i \in \mathbf{N} \mid x_0 < \alpha_i \}, \quad S^{-} = \{ i \in \mathbf{N} \mid \alpha_i < x_0 \}
$$

and

$$
T^{+} = \{i \in \mathbf{N} \mid x_0 < \beta_i\}, \quad T^{-} = \{i \in \mathbf{N} \mid \beta_i < x_0\}.
$$

Let $i, k \in \mathbb{N}$. We claim that there exists $j \in \mathbb{N}$ such that

$$
|d(x_0, \beta_i) - d(x_0, \alpha_j)| < 2^{-k} \tag{3.6}
$$

and

$$
(j \in S^+
$$
 and $i \in T^+$) or $(j \in S^-$ and $i \in T^-$) or $(d(x_0, \beta_i) < 2^{-(k+1)}$ and $d(x_0, \alpha_j) < 2^{-(k+1)}$).
(3.7)

In order to prove this, let us first assume that $x_0 < \beta_i$. Let $r = d(x_0, \beta_i)$. Since α is a dense sequence, there exists $j \in \mathbb{N}$ such that

$$
d(\alpha_j, \beta_i) < \min\{2^{-k}, r\}. \tag{3.8}
$$

We have $d(\alpha_j, \beta_i) < r = d(x_0, \beta_i)$ and Lemma [3.2](#page-4-2) implies that $x_0 < \alpha_j$. So $i \in T^+$ and $j \in S^+$. On the other hand, $|d(x_0, \beta_i) - d(x_0, \alpha_j)| \leq d(\beta_i, \alpha_j)$ and $d(\beta_i, \alpha_j) < 2^{-k}$ by [\(3.8\)](#page-5-2), so $|d(x_0, \beta_i) - d(x_0, \alpha_j)| < 2^{-k}$. Hence [\(3.6\)](#page-5-3) and [\(3.7\)](#page-5-4) hold.

In the same way we conclude that [\(3.6\)](#page-5-3) and [\(3.7\)](#page-5-4) hold if $\beta_i < x_0$.

If $x_0 = \beta_i$, then we choose $j \in \mathbb{N}$ such that $d(x_0, \alpha_j) < 2^{-(k+1)}$. Then [\(3.6\)](#page-5-3) and [\(3.7\)](#page-5-4) clearly hold.

Let Ω be the set of all $(i, k, j) \in \mathbb{N}^3$ such that [\(3.6\)](#page-5-3) and [\(3.7\)](#page-5-4) hold. Hence for all $i, k \in \mathbb{N}$ there exists $j \in \mathbb{N}$ such that $(i, k, j) \in \Omega$. By Proposition [2.2](#page-1-0) and Proposition [2.1](#page-0-1) the set of all $(i, k, j) \in \mathbb{N}^3$ such that [\(3.6\)](#page-5-3) holds is c.e. Similarly, using Proposition [3.3](#page-4-3) we conclude that the set of all $(i, k, j) \in \mathbb{N}^3$

such that [\(3.7\)](#page-5-4) holds is c.e. Therefore Ω is c.e. as the intersection of two c.e. sets. Since for all $i, k \in \mathbb{N}$ there exists $j \in \mathbb{N}$ such that $(i, k, j) \in \Omega$, there exists a computable function $\varphi : \mathbb{N}^2 \to \mathbb{N}$ such that

$$
(i,k,\varphi(i,k)) \in \Omega \tag{3.9}
$$

for all $i, k \in \mathbb{N}$ (Single Valuedness Theorem).

Suppose that $(i, k, j) \in \Omega$. We claim that $d(\beta_i, \alpha_j) < 2^{-k}$. Since [\(3.7\)](#page-5-4) holds, we have three cases.

If $j \in S^+$ and $i \in T^+$, then $x_0 < \alpha_j$ and $x_0 < \beta_i$ and it follows from Lemma [3.3](#page-5-5) that

 $|d(x_0, \beta_i) - d(x_0, \alpha_i)| = d(\beta_i, \alpha_i).$

Now [\(3.6\)](#page-5-3) implies $d(\beta_i, \alpha_j) < 2^{-k}$.

The same conclusion we get if $j \in S^-$ and $i \in T^-$. If $d(x_0, \beta_i) < 2^{-(k+1)}$ and $d(x_0, \alpha_j) < 2^{-(k+1)}$, then clearly $d(\beta_i, \alpha_j) < 2^{-k}$.

Hence $(i, k, j) \in \Omega$ implies $d(\beta_i, \alpha_j) < 2^{-k}$. We conclude from [\(3.9\)](#page-6-4) that

$$
d(\beta_i, \alpha_{\varphi(i,k)}) < 2^{-k}
$$

for all $i, k \in \mathbb{N}$. Hence β is a computable sequence in (\mathbf{R}, d, α) , i.e. $\alpha \sim \beta$.

 \Box

4 Conclusion

In this paper we have examined conditions under which two effective separating sequences in a metric space are equivalent. We first focused on the metric space (\mathbf{R}, d) , where d is the Euclidean metric on **R**. If α and β are effective separating sequences in this space, then α and β need not be equivalent. However, we saw that results from [\[1,](#page-6-0) [2\]](#page-6-1) implied the following: if (\mathbf{R}, d, α) and (\mathbf{R}, d, β) have a common computable point, then α and β are equivalent.

In the main part of the paper we have generalized this result by introducing the notion of a linear metric and by showing that the latter statement holds for any linear metric d.

Competing Interests

The authors declare that no competing interests exist.

References

- [1] Iljazović Z. Isometries and computability structures. Journal of Universal Computer Science 2010;16:2569-2596.
- [2] Melnikov AG. Computably isometric spaces. Journal of Symbolic Logic 2013;78:1055-1085.
- [3] Pour-El MB, Richards I. Computability in analysis and physics. Springer-Verlag, Berlin-Heidelberg-New York; 1989.
- [4] Weihrauch K. Computable analysis. Springer, Berlin; 2000.

[5] Yasugi M, Mori T, Tsujji Y. Effective properties of sets and functions in metric spaces with computability structure. Theoretical Computer Science. 1999;66:127-138.

 $\mathcal{L}=\{1,2,3,4\}$, we can consider the constant of $\mathcal{L}=\{1,2,3,4\}$ \odot 2016 Iljazović et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License [\(http://creativecommons.org/licenses/by/4.0\)](http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history: The peer review history for this paper can be accessed here (Please copy paste the total link in your browser address bar) http://sciencedomain.org/review-history/11709