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Abstract

On the real line equipped with the Euclidean metric every two effective separating sequences

which have a common computable point are equivalent. We prove that the same result holds for

every linear metric on the real line.
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1 Introduction

A dense sequence o = («;) in a metric space (X,d) is said to be effective separating if we can
effectively compute the distance d(a;, ;) for all ¢, 5 € N. Two effective separating sequences a and
B in (X, d) are equivalent if @ can be computed from 3 in certain sense and conversely, if 3 can be
computed from «. Furthermore, we say that o and 8 are equivalent up to isometry if there exists
an isometry f: X — X such that the o and f o 8 are equivalent.

In general, effective separating sequences in a metric space (X, d) need not be equivalent, moreover
they need not be equivalent up to isometry. However, it is known that in the metric space (R, d),
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where d is the Euclidean metric on R, every two effective separating sequences are equivalent up
to isometry (although not necessarily equivalent), see [1, 2]. From this result can be concluded the
following: if two effective separating sequences in (R, d) have a common computable point, then
they are equivalent.

In this paper we generalize the previous fact by taking d to be any linear metric on R. By a
linear metric d on R we mean a metric such that for any real numbers x < y < z we have
d(z,z) = d(z,y) + d(y, 2).

2 Effective Separating Sequences

Let k € N\ {0}. A function F : N¥ — Q is called computable if there exist computable (recursive)
functions a, b, ¢ : N*¥ — N such that

_ e(z)_a(x)
F(z) = (-1)" )W

for each © € N*. A function f : N*¥ — R is called computable if there exists a computable
function F : N**! — Q such that .

|f(z) — F(z,i)| <27°
for all z € N* and i € N [3, 4].
A number z € R is said to be computable if there exists a computable function g : N — Q such
that )

|z —g(i)] <27

for each 7 € N.

In the following proposition we state some basic facts about computable functions N* — R.
Proposition 2.1. (i) If f,g : N* = R are computable, then f +g,f — g,|f] : N* = R are
computable.

(it) If F: N*"1 5 R is a computable function and f: N¥ = R such that |f(z) — F(z,i)] < 27°
for all x € N* and i € N, then f is computable.

(ii) If f,g: N* = R is a computable function, then the set {x € N* | f(x) > g(x)} is c.e.

Let (X,d) be a metric space and let & = (a;) be a sequence in X. We say that « is an effective
separating sequence in (X, d) if the set {; | i € N} is dense in (X, d) and the function N? — R,

(17]) — d(a’ivaj)

is computable [5]. If « is an effective separating sequence in (X, d), then the triple (X, d, «) is called
a computable metric space.

If (X,d,a) is a computable metric space and (x;) a sequence in X, then (z;) is said to be a
computable sequence in (X, d, a) if there exists a computable function F : N? — N such that

d(a:i, aF(i,k)) < Q_k

for all 7,k € N. A point z € X is said to be computable in (X, d, «) if there exists a computable
function f: N — N such that d(z, asx)) < 27" for each k € N. Note that z is a computable point
in (X,d, o) if and only if the constant sequence (z,z,x,...) is computable in (X, d, ).

Proposition 2.2. Let (X,d,a) be a computable metric space and let xo be a computable point in
this space. Then the function N — R, i — d(xo, o) is computable.
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Proof. Let f : N — N be a computable function such that d(zo,afy)) < 27* for each k € N.
In general, for all a,b,c € X we have |d(a,c) — d(b,c)| < d(a,b), so |d(xo, i) — d(opy, )| <
d(zo, apy) and therefore

jd(xo, ) = dlosy, )| < 27
for all i,k € N. Now the claim follows from Proposition 2.1(ii). O

If (X,d,«) is a computable metric space, then we denote by S, the set of all sequences which are
computable in (X, d, a).

Let (X,d) be a metric space and let « and 8 be effective separating sequences in this space. We
say that o and 3 are equivalent and write o ~ 8 if 8 is a computable sequence in (X, d, «). It is
not hard to check that effective separating sequences « and § in (X, d) are equivalent if and only if
Sa = 8p [1]. It follows that in this case the computable metric spaces (X, d, @) and (X,d, 3) have
the same computable points.

Example 2.1. Let d be the FEuclidean metric on R. Let a : N — R be a computable function
whose range is dense in (R,d). Then « is an effective separating sequence in (R, d), which follows
easily from Proposition 2.1(1).

Let (z;) be a sequence in R and a € R. Then it is easy to prove that (z;) is a computable sequence
in (R,d, o) if and only if (x;) is a computable sequence in R (i.e. computable as a function N — R)
and a is a computable point in (R,d,a) if and only if a is a computable number [1]. Hence Sq is
the set of all sequences in R which are computable (as functions N — R).

Suppose d is the Euclidean metric on R and « and 3 are effective separating sequences in (R, d).
Suppose « is a computable sequence in R.

If @ ~ B, then by Example 2.1 § is a computable sequence in R. Conversely, if 8 is a computable
sequence in R, then by Example 2.1 we have S, = Sg and consequently a ~ 8. Hence a ~ § if and
only if 5 is a computable sequence in R.

Let (X,d) be a metric space, o an effective separating sequence in (X,d) and f : X — X an
isometry (i.e. a surjective function such that d(f(x), f(y)) = d(z,y) for all z,y € X). Then f o a,
ie. (f(ai))ien is clearly an effective separating sequence in (X,d). Note the following: if xo is
computable in (X, d, ), then f(zg) is computable in (X, d, f o ).

Example 2.2. Let d be the Euclidean metric on R, let a : N — R be a computable function whose
range is dense in (R,d) and let c € R. We define 3: N — R by 8; = ai+c,1 € N. Then 8 = foa,
where f: R — R is the isometry given by f(z) =z + c.

Suppose ¢ is not a computable number. Then [ is not a computable sequence in R. Namely, if (z;)
is a computable sequence in R, then x; is clearly a computable number for each i € N. Therefore,
if B were computable, Bo would be a computable number, i.e. ao + ¢ would be a computable number
and this would imply that ¢ is computable (in general, the difference of two computable numbers is
a computable number).

Since B is not a computable sequence in R, we have that o and [ are not equivalent.

Let o and S be effective separating sequences in a metric space (X, d). We say that a and g are
equivalent up to isometry if there exists an isometry f: X — X such that a ~ f o .

Example 2.2 shows that two effective separating sequences in (R, d), where d is the Euclidean
metric on R, need not be equivalent. However, every two effective separating sequences in (R, d)
are equivalent up to isometry, see [1, 2].
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3 Effective Separating Sequences with a Common
Computable Point

There are metric spaces in which every two effective separating sequences are equivalent, see
[1]. As we saw, R with the Euclidean metric is not such a space, but the fact that every two
effective separating sequences in this metric space are equivalent up to isometry has the following
consequence.

Proposition 3.1. Let d be the Fuclidean metric on R. Suppose a and B are effective separating
sequences in (R,d) such that the computable metric spaces (R,d, o) and (R,d,8) have a common
computable point. Then o ~ 3.

Proof. Let xg be a common computable point of (R,d, @) and (R, d, 3).
Let us first assume that xo = 0 and that § is a computable sequence in R.

There exists an isometry f : R — R such that o ~ fo 3. Since 0 is a computable point in (X, d, 3),
f(0) is a computable point in (X,d, f o 8). Therefore f(0) is a computable point in (X, d, ).

In general, if y and z are computable points in (X,d,a), then d(y,z) is a computable number.
Therefore, d(f(0),0) is a computable number.

Since f is an isometry, there exists [ € R such that f(z) = z+1 for each x € R or f(x) = —z+1 for
each € R. In either case f(0) = [ and therefore d(f(0),0) = |/|. Hence [ is a computable number.
It follows from Proposition 2.1(i) that the sequences (3; + 1) and (—f3; + 1) are computable in R.

We have (a;) ~ (8i +1) or (a;) ~ (—B; +1). Therefore « is computable sequence in R and it follows
a~ B.

In general, let g : R — R be the function defined by g(x) =  — zo. Then ¢ is an isometry and
we have that g(zo) is a computable point in (X,d,g o «) and in (X,d,go ). Let v: N — R be
some computable function whose range is dense in (R, d) (for example, we can take any computable
surjection N — Q). Then 0 is a computable point in (X, d, ) and by the first case we have goa ~ ~y
and go B ~ 7. It follows g o & ~ g o 8. Therefore g~ o (goa) ~ g~ o (g o f), hence a ~ . O

Let d be a metric on R. We say that d is a linear metric if for all z,y,z € R such that x <y < z
we have d(z, z) = d(z,y) + d(y, 2).

Clearly, the Euclidean metric on R is a linear metric. However, it is not the only linear metric as
the following proposition implies.

Proposition 3.2. Letd: R xR — R be a function. Then d is a linear metric if and only if there
ezists a strictly increasing function f : R — R such that

d(z,y) = [f(z) — f(y)| (3.1)
for all x,y € R.

Proof. Suppose d is a linear metric. Let f : R — R be the function defined by

~ Jd(0,z), x>0
J(@) = {—d((),:v), z <0.

Let z,y € R, z < y. We claim that f(z) < f(y).
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If 0 <z <y, then d(0,y) = d(0,z) + d(z,y) and it follows f(z) < f(y). In a similar way we
conclude f(z) < f(y) if x <y <0. If x <0<y, then f(z) <0< f(y).

Hence the function f is strictly increasing. We claim that (3.1) holds. It is enough to prove
d(z,y) = f(y) — f(z) for all z,y € R such that z < y. However this follows easily from definition
of f and the fact that d is a linear metric.

Conversely, if f : R — R is a strictly increasing function such that (3.1) holds, then it is easy to
see that d is a linear metric. O

For example, the function d : R x R — R defined by d(z,y) = |arctanz — arctany| is a linear
metric. Note that d is a bounded metric.

In general, a linear metric need not be even topologically equivalent to the Euclidean metric as the
following example shows.

Example 3.1. Let f: R — R be the function defined by

T, z<0
f(m)_{erl, x> 0.

Clearly, [ is strictly increasing. Let d : R x R — R be defined by d(z,y) = |f(z) — f(y)|. Then d
is a linear metric. We have
{l’ €R | d((L‘,O) < 1} = <_130]7

hence (—1,0] s an open ball in the metric space (R, d) and therefore it is an open set in (R, d). On
the other hand, the set (—1,0] is not open in R with respect to the FEuclidean metric, hence d and
the Fuclidean metric on R are not topologically equivalent.

Lemma 3.2. Let d be a linear metric on R and a,b € R, a <b. Let x € R. Then
a <z <= d(z,b) < d(a,b) or d(z,b) < d(z,a) (3.2)
z < b<=d(z,a) < d(a,b) ord(z,a) < d(z,b) (3.3)

Proof. Suppose a < z. If z < b, then d(a,b) = d(a,z) + d(z,b) and it follows d(z,b) < d(a,b). If
b < z, then d(a,z) = d(a,b) + d(b,z) and d(z,b) < d(x,a). Hence the implication = in (3.2) holds.
Conversely, suppose d(z,b) < d(a,b) or d(z,b) < d(z,a). If z < a, then

d(z,b) = d(z,a) + d(a,b)

implying d(z,a) < d(z,b) and d(a,b) < d(z,b) which is impossible. Hence a < z and we conclude
that (3.2) holds. In a similar way we get that (3.3) holds. O

Proposition 3.3. Let d be a linear metric and let « be an effective separating sequence in (R, d).
Suppose xo is a computable point in (R,d, o). Then the sets

S={ieN|zo<a} and T={i e N|o; <o}
are computably enumerable.

Proof. Let us choose yo € R such that o < yo. Let r = d(xo,y0). Clearly » > 0. Since
the set {a; | ¢ € N} is dense in (R,d), there exists n € N such that d(an,yo) < r. We have
d(cn, yo) < d(zo,yo) and Lemma 3.2 implies that

o < Qp.
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Let i € N. By Lemma 3.2 we have
zo < a; <= d(as, an) < d(xo,an) or d(o, an) < d(ag, xo). (3.4)

Let f,g : N?> — R be the functions defined by f(i) = d(o,an), g(i) = d(ai,z0). By Proposition
2.2 f and g are computable functions. By (3.4) we have

1€ S < f(i) < g(n)or f(i) < g(4).

It follows from this and Proposition 2.1(iii) that S is the union of two c.e. sets. Hence S is c.e. In
the same way we get that T is c.e. O

Lemma 3.3. Let d be a linear metric. Let z,a,b € R. If x < aandx <bora<x andb < x,
then
|d(z,a) — d(z,b)| = d(a,b). (3.5)

Proof. Suppose z < a and < b. If a < b, then d(z,b) = d(z,a) + d(a,b) and (3.5) holds. The
same conclusion we get if b < a. The inequalities ¢ < z and b < x imply (3.5) in the same way. O

In the next theorem we show that the claim of Proposition 3.1 holds for every linear metric d.

Theorem 3.4. Let d be a linear metric. Suppose « and [ are effective separating sequences in
(R, d) such that the computable metric spaces (R,d,a) and (R,d,3) have a common computable
point. Then a ~ (.

Proof. Let xg be a common computable point of (R,d, «) and (R, d, 3). Let
S+:{iEN‘$0<ai}, S_:{i€N|Oéi<£L‘0}
and
T+:{i€N|1‘0<ﬂi}, T_:{i€N|ﬁi<:IJo}.
Let 4,k € N. We claim that there exists j € N such that
|d(it0, ﬁz) — d(.%‘o, Ocj')| < Q_k (36)
and
(jeSTandieT") or (j€S andi€T”) or (d(ZC(),,Bi) < 27" and d(zo, ;) < 27(’”1)) .

(3.7)
In order to prove this, let us first assume that zo < 3;. Let r = d(xo,8;). Since « is a dense
sequence, there exists 7 € N such that

d(a, i) < min{27% r}. (3.8)

We have d(oj,8:) < r = d(xo,8:) and Lemma 3.2 implies that zo < a;. So i € TT and
j € S*. On the other hand, |d(zo, 8:) — d(xo, ;)| < d(Bi, ;) and d(Bi,a;) < 27% by (3.8), so
|d(z0, B:) — d(o, ;)| < 27F. Hence (3.6) and (3.7) hold.

In the same way we conclude that (3.6) and (3.7) hold if 3; < xo.
If 2o = S, then we choose j € N such that d(zo,a;) < 2~ *+Y. Then (3.6) and (3.7) clearly hold.

Let Q be the set of all (i, &, j) € N® such that (3.6) and (3.7) hold. Hence for all i, k € N there exists
j € N such that (i, k, j) € Q. By Proposition 2.2 and Proposition 2.1 the set of all (i, k, j) € N* such
that (3.6) holds is c.e. Similarly, using Proposition 3.3 we conclude that the set of all (i, k, j) € N?
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such that (3.7) holds is c.e. Therefore Q is c.e. as the intersection of two c.e. sets. Since for all
i,k € N there exists j € N such that (i, %, j) € Q, there exists a computable function ¢ : N* — N
such that

(i, (i, 1)) € © (3.9)
for all i,k € N (Single Valuedness Theorem).

Suppose that (i, k,j) € Q. We claim that d(8;, ;) < 27F. Since (3.7) holds, we have three cases.

Ifje St and i e T, then zg < oj and xo < B; and it follows from Lemma 3.3 that
|d(zo, Bi) — d(zo, ;)| = d(Bi, o))
Now (3.6) implies d(8;, a;) < 27*.

The same conclusion we get if j € S~ and i € T~. If d(xo, 8;) < 2~**Y and d(xo, ;) < 27*+D)]
then clearly d(8;, ;) < 27F.

Hence (i, k, §) € Q implies d(f;, a;) < 27%. We conclude from (3.9) that

d(Bi, apgny) <27F

for all i, k € N. Hence 3 is a computable sequence in (R, d, a), i.e. a ~ . O

4 Conclusion

In this paper we have examined conditions under which two effective separating sequences in a
metric space are equivalent. We first focused on the metric space (R, d), where d is the Euclidean
metric on R. If a and 8 are effective separating sequences in this space, then a and S need not be
equivalent. However, we saw that results from [1, 2] implied the following: if (R, d, «) and (R, d, §)
have a common computable point, then o and 8 are equivalent.

In the main part of the paper we have generalized this result by introducing the notion of a linear
metric and by showing that the latter statement holds for any linear metric d.
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