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Abstract

On the real line equipped with the Euclidean metric every two effective separating sequences

which have a common computable point are equivalent. We prove that the same result holds for

every linear metric on the real line.
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1 Introduction

A dense sequence α = (αi) in a metric space (X, d) is said to be effective separating if we can
effectively compute the distance d(αi, αj) for all i, j ∈ N. Two effective separating sequences α and
β in (X, d) are equivalent if α can be computed from β in certain sense and conversely, if β can be
computed from α. Furthermore, we say that α and β are equivalent up to isometry if there exists
an isometry f : X → X such that the α and f ◦ β are equivalent.

In general, effective separating sequences in a metric space (X, d) need not be equivalent, moreover
they need not be equivalent up to isometry. However, it is known that in the metric space (R, d),
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where d is the Euclidean metric on R, every two effective separating sequences are equivalent up
to isometry (although not necessarily equivalent), see [1, 2]. From this result can be concluded the
following: if two effective separating sequences in (R, d) have a common computable point, then
they are equivalent.

In this paper we generalize the previous fact by taking d to be any linear metric on R. By a
linear metric d on R we mean a metric such that for any real numbers x ≤ y ≤ z we have
d(x, z) = d(x, y) + d(y, z).

2 Effective Separating Sequences

Let k ∈ N\{0}. A function F : Nk → Q is called computable if there exist computable (recursive)
functions a, b, c : Nk → N such that

F (x) = (−1)c(x)
a(x)

b(x) + 1

for each x ∈ Nk. A function f : Nk → R is called computable if there exists a computable
function F : Nk+1 → Q such that

|f(x)− F (x, i)| < 2−i

for all x ∈ Nk and i ∈ N [3, 4].

A number x ∈ R is said to be computable if there exists a computable function g : N→ Q such
that

|x− g(i)| < 2−i

for each i ∈ N.

In the following proposition we state some basic facts about computable functions Nk → R.

Proposition 2.1. (i) If f, g : Nk → R are computable, then f + g, f − g, |f | : Nk → R are
computable.

(ii) If F : Nk+1 → R is a computable function and f : Nk → R such that |f(x)− F (x, i)| < 2−i

for all x ∈ Nk and i ∈ N, then f is computable.

(iii) If f, g : Nk → R is a computable function, then the set {x ∈ Nk | f(x) > g(x)} is c.e.

Let (X, d) be a metric space and let α = (αi) be a sequence in X. We say that α is an effective
separating sequence in (X, d) if the set {αi | i ∈ N} is dense in (X, d) and the function N2 → R,

(i, j) 7→ d(αi, αj)

is computable [5]. If α is an effective separating sequence in (X, d), then the triple (X, d, α) is called
a computable metric space.

If (X, d, α) is a computable metric space and (xi) a sequence in X, then (xi) is said to be a
computable sequence in (X, d, α) if there exists a computable function F : N2 → N such that

d(xi, αF (i,k)) < 2−k

for all i, k ∈ N. A point x ∈ X is said to be computable in (X, d, α) if there exists a computable
function f : N→ N such that d(x, αf(k)) < 2−k for each k ∈ N. Note that x is a computable point
in (X, d, α) if and only if the constant sequence (x, x, x, . . . ) is computable in (X, d, α).

Proposition 2.2. Let (X, d, α) be a computable metric space and let x0 be a computable point in
this space. Then the function N→ R , i 7→ d(x0, αi) is computable.
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Proof. Let f : N → N be a computable function such that d(x0, αf(k)) < 2−k for each k ∈ N.
In general, for all a, b, c ∈ X we have |d(a, c) − d(b, c)| ≤ d(a, b), so |d(x0, αi) − d(αf(k), αi)| ≤
d(x0, αf(k)) and therefore

|d(x0, αi)− d(αf(k), αi)| < 2−k

for all i, k ∈ N. Now the claim follows from Proposition 2.1(ii).

If (X, d, α) is a computable metric space, then we denote by Sα the set of all sequences which are
computable in (X, d, α).

Let (X, d) be a metric space and let α and β be effective separating sequences in this space. We
say that α and β are equivalent and write α ∼ β if β is a computable sequence in (X, d, α). It is
not hard to check that effective separating sequences α and β in (X, d) are equivalent if and only if
Sα = Sβ [1]. It follows that in this case the computable metric spaces (X, d, α) and (X, d, β) have
the same computable points.

Example 2.1. Let d be the Euclidean metric on R. Let α : N → R be a computable function
whose range is dense in (R, d). Then α is an effective separating sequence in (R, d), which follows
easily from Proposition 2.1(i).

Let (xi) be a sequence in R and a ∈ R. Then it is easy to prove that (xi) is a computable sequence
in (R, d, α) if and only if (xi) is a computable sequence in R (i.e. computable as a function N→ R)
and a is a computable point in (R, d, α) if and only if a is a computable number [1]. Hence Sα is
the set of all sequences in R which are computable (as functions N→ R).

Suppose d is the Euclidean metric on R and α and β are effective separating sequences in (R, d).
Suppose α is a computable sequence in R.

If α ∼ β, then by Example 2.1 β is a computable sequence in R. Conversely, if β is a computable
sequence in R, then by Example 2.1 we have Sα = Sβ and consequently α ∼ β. Hence α ∼ β if and
only if β is a computable sequence in R.

Let (X, d) be a metric space, α an effective separating sequence in (X, d) and f : X → X an
isometry (i.e. a surjective function such that d(f(x), f(y)) = d(x, y) for all x, y ∈ X). Then f ◦ α,
i.e. (f(αi))i∈N is clearly an effective separating sequence in (X, d). Note the following: if x0 is
computable in (X, d, α), then f(x0) is computable in (X, d, f ◦ α).

Example 2.2. Let d be the Euclidean metric on R, let α : N→ R be a computable function whose
range is dense in (R, d) and let c ∈ R. We define β : N→ R by βi = αi+c, i ∈ N. Then β = f ◦α,
where f : R→ R is the isometry given by f(x) = x+ c.

Suppose c is not a computable number. Then β is not a computable sequence in R. Namely, if (xi)
is a computable sequence in R, then xi is clearly a computable number for each i ∈ N. Therefore,
if β were computable, β0 would be a computable number, i.e. α0 + c would be a computable number
and this would imply that c is computable (in general, the difference of two computable numbers is
a computable number).

Since β is not a computable sequence in R, we have that α and β are not equivalent.

Let α and β be effective separating sequences in a metric space (X, d). We say that α and β are
equivalent up to isometry if there exists an isometry f : X → X such that α ∼ f ◦ β.

Example 2.2 shows that two effective separating sequences in (R, d), where d is the Euclidean
metric on R, need not be equivalent. However, every two effective separating sequences in (R, d)
are equivalent up to isometry, see [1, 2].
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3 Effective Separating Sequences with a Common
Computable Point

There are metric spaces in which every two effective separating sequences are equivalent, see
[1]. As we saw, R with the Euclidean metric is not such a space, but the fact that every two
effective separating sequences in this metric space are equivalent up to isometry has the following
consequence.

Proposition 3.1. Let d be the Euclidean metric on R. Suppose α and β are effective separating
sequences in (R, d) such that the computable metric spaces (R, d, α) and (R, d, β) have a common
computable point. Then α ∼ β.

Proof. Let x0 be a common computable point of (R, d, α) and (R, d, β).

Let us first assume that x0 = 0 and that β is a computable sequence in R.

There exists an isometry f : R→ R such that α ∼ f ◦β. Since 0 is a computable point in (X, d, β),
f(0) is a computable point in (X, d, f ◦ β). Therefore f(0) is a computable point in (X, d, α).

In general, if y and z are computable points in (X, d, α), then d(y, z) is a computable number.
Therefore, d(f(0), 0) is a computable number.

Since f is an isometry, there exists l ∈ R such that f(x) = x+ l for each x ∈ R or f(x) = −x+ l for
each x ∈ R. In either case f(0) = l and therefore d(f(0), 0) = |l|. Hence l is a computable number.
It follows from Proposition 2.1(i) that the sequences (βi + l) and (−βi + l) are computable in R.

We have (αi) ∼ (βi+ l) or (αi) ∼ (−βi+ l). Therefore α is computable sequence in R and it follows
α ∼ β.

In general, let g : R → R be the function defined by g(x) = x − x0. Then g is an isometry and
we have that g(x0) is a computable point in (X, d, g ◦ α) and in (X, d, g ◦ β). Let γ : N → R be
some computable function whose range is dense in (R, d) (for example, we can take any computable
surjection N→ Q). Then 0 is a computable point in (X, d, γ) and by the first case we have g◦α ∼ γ
and g ◦ β ∼ γ. It follows g ◦ α ∼ g ◦ β. Therefore g−1 ◦ (g ◦ α) ∼ g−1 ◦ (g ◦ β), hence α ∼ β.

Let d be a metric on R. We say that d is a linear metric if for all x, y, z ∈ R such that x ≤ y ≤ z
we have d(x, z) = d(x, y) + d(y, z).

Clearly, the Euclidean metric on R is a linear metric. However, it is not the only linear metric as
the following proposition implies.

Proposition 3.2. Let d : R×R→ R be a function. Then d is a linear metric if and only if there
exists a strictly increasing function f : R→ R such that

d(x, y) = |f(x)− f(y)| (3.1)

for all x, y ∈ R.

Proof. Suppose d is a linear metric. Let f : R→ R be the function defined by

f(x) =

{
d(0, x), x ≥ 0

−d(0, x), x ≤ 0.

Let x, y ∈ R, x < y. We claim that f(x) < f(y).
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If 0 ≤ x < y, then d(0, y) = d(0, x) + d(x, y) and it follows f(x) < f(y). In a similar way we
conclude f(x) < f(y) if x < y ≤ 0. If x < 0 < y, then f(x) < 0 < f(y).

Hence the function f is strictly increasing. We claim that (3.1) holds. It is enough to prove
d(x, y) = f(y) − f(x) for all x, y ∈ R such that x < y. However this follows easily from definition
of f and the fact that d is a linear metric.

Conversely, if f : R → R is a strictly increasing function such that (3.1) holds, then it is easy to
see that d is a linear metric.

For example, the function d : R × R → R defined by d(x, y) = | arctanx − arctan y| is a linear
metric. Note that d is a bounded metric.

In general, a linear metric need not be even topologically equivalent to the Euclidean metric as the
following example shows.

Example 3.1. Let f : R→ R be the function defined by

f(x) =

{
x, x ≤ 0

x+ 1, x > 0.

Clearly, f is strictly increasing. Let d : R ×R → R be defined by d(x, y) = |f(x) − f(y)|. Then d
is a linear metric. We have

{x ∈ R | d(x, 0) < 1} = 〈−1, 0],

hence 〈−1, 0] is an open ball in the metric space (R, d) and therefore it is an open set in (R, d). On
the other hand, the set 〈−1, 0] is not open in R with respect to the Euclidean metric, hence d and
the Euclidean metric on R are not topologically equivalent.

Lemma 3.2. Let d be a linear metric on R and a, b ∈ R, a < b. Let x ∈ R. Then

a < x⇐⇒ d(x, b) < d(a, b) or d(x, b) < d(x, a) (3.2)

x < b⇐⇒ d(x, a) < d(a, b) or d(x, a) < d(x, b) (3.3)

Proof. Suppose a < x. If x ≤ b, then d(a, b) = d(a, x) + d(x, b) and it follows d(x, b) < d(a, b). If
b < x, then d(a, x) = d(a, b) + d(b, x) and d(x, b) < d(x, a). Hence the implication ⇒ in (3.2) holds.
Conversely, suppose d(x, b) < d(a, b) or d(x, b) < d(x, a). If x ≤ a, then

d(x, b) = d(x, a) + d(a, b)

implying d(x, a) < d(x, b) and d(a, b) ≤ d(x, b) which is impossible. Hence a < x and we conclude
that (3.2) holds. In a similar way we get that (3.3) holds.

Proposition 3.3. Let d be a linear metric and let α be an effective separating sequence in (R, d).
Suppose x0 is a computable point in (R, d, α). Then the sets

S = {i ∈ N | x0 < αi} and T = {i ∈ N | αi < x0}

are computably enumerable.

Proof. Let us choose y0 ∈ R such that x0 < y0. Let r = d(x0, y0). Clearly r > 0. Since
the set {αi | i ∈ N} is dense in (R, d), there exists n ∈ N such that d(αn, y0) < r. We have
d(αn, y0) < d(x0, y0) and Lemma 3.2 implies that

x0 < αn.

5
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Let i ∈ N. By Lemma 3.2 we have

x0 < αi ⇐⇒ d(αi, αn) < d(x0, αn) or d(αi, αn) < d(αi, x0). (3.4)

Let f, g : N2 → R be the functions defined by f(i) = d(αi, αn), g(i) = d(αi, x0). By Proposition
2.2 f and g are computable functions. By (3.4) we have

i ∈ S ⇐⇒ f(i) < g(n) or f(i) < g(i).

It follows from this and Proposition 2.1(iii) that S is the union of two c.e. sets. Hence S is c.e. In
the same way we get that T is c.e.

Lemma 3.3. Let d be a linear metric. Let x, a, b ∈ R. If x ≤ a and x ≤ b or a ≤ x and b ≤ x,
then

|d(x, a)− d(x, b)| = d(a, b). (3.5)

Proof. Suppose x ≤ a and x ≤ b. If a ≤ b, then d(x, b) = d(x, a) + d(a, b) and (3.5) holds. The
same conclusion we get if b ≤ a. The inequalities a ≤ x and b ≤ x imply (3.5) in the same way.

In the next theorem we show that the claim of Proposition 3.1 holds for every linear metric d.

Theorem 3.4. Let d be a linear metric. Suppose α and β are effective separating sequences in
(R, d) such that the computable metric spaces (R, d, α) and (R, d, β) have a common computable
point. Then α ∼ β.

Proof. Let x0 be a common computable point of (R, d, α) and (R, d, β). Let

S+ = {i ∈ N | x0 < αi}, S− = {i ∈ N | αi < x0}

and
T+ = {i ∈ N | x0 < βi}, T− = {i ∈ N | βi < x0}.

Let i, k ∈ N. We claim that there exists j ∈ N such that

|d(x0, βi)− d(x0, αj)| < 2−k (3.6)

and(
j ∈ S+ and i ∈ T+) or

(
j ∈ S− and i ∈ T−

)
or
(
d(x0, βi) < 2−(k+1) and d(x0, αj) < 2−(k+1)

)
.

(3.7)
In order to prove this, let us first assume that x0 < βi. Let r = d(x0, βi). Since α is a dense
sequence, there exists j ∈ N such that

d(αj , βi) < min{2−k, r}. (3.8)

We have d(αj , βi) < r = d(x0, βi) and Lemma 3.2 implies that x0 < αj . So i ∈ T+ and
j ∈ S+. On the other hand, |d(x0, βi) − d(x0, αj)| ≤ d(βi, αj) and d(βi, αj) < 2−k by (3.8), so
|d(x0, βi)− d(x0, αj)| < 2−k. Hence (3.6) and (3.7) hold.

In the same way we conclude that (3.6) and (3.7) hold if βi < x0.

If x0 = βi, then we choose j ∈ N such that d(x0, αj) < 2−(k+1). Then (3.6) and (3.7) clearly hold.

Let Ω be the set of all (i, k, j) ∈ N3 such that (3.6) and (3.7) hold. Hence for all i, k ∈ N there exists
j ∈ N such that (i, k, j) ∈ Ω. By Proposition 2.2 and Proposition 2.1 the set of all (i, k, j) ∈ N3 such
that (3.6) holds is c.e. Similarly, using Proposition 3.3 we conclude that the set of all (i, k, j) ∈ N3
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Iljazović et al.; BJMCS, 12(2), 1-8, 2016; Article no.BJMCS.21852

such that (3.7) holds is c.e. Therefore Ω is c.e. as the intersection of two c.e. sets. Since for all
i, k ∈ N there exists j ∈ N such that (i, k, j) ∈ Ω, there exists a computable function ϕ : N2 → N
such that

(i, k, ϕ(i, k)) ∈ Ω (3.9)

for all i, k ∈ N (Single Valuedness Theorem).

Suppose that (i, k, j) ∈ Ω. We claim that d(βi, αj) < 2−k. Since (3.7) holds, we have three cases.

If j ∈ S+ and i ∈ T+, then x0 < αj and x0 < βi and it follows from Lemma 3.3 that

|d(x0, βi)− d(x0, αj)| = d(βi, αj).

Now (3.6) implies d(βi, αj) < 2−k.

The same conclusion we get if j ∈ S− and i ∈ T−. If d(x0, βi) < 2−(k+1) and d(x0, αj) < 2−(k+1),
then clearly d(βi, αj) < 2−k.

Hence (i, k, j) ∈ Ω implies d(βi, αj) < 2−k. We conclude from (3.9) that

d(βi, αϕ(i,k)) < 2−k

for all i, k ∈ N. Hence β is a computable sequence in (R, d, α), i.e. α ∼ β.

4 Conclusion

In this paper we have examined conditions under which two effective separating sequences in a
metric space are equivalent. We first focused on the metric space (R, d), where d is the Euclidean
metric on R. If α and β are effective separating sequences in this space, then α and β need not be
equivalent. However, we saw that results from [1, 2] implied the following: if (R, d, α) and (R, d, β)
have a common computable point, then α and β are equivalent.

In the main part of the paper we have generalized this result by introducing the notion of a linear
metric and by showing that the latter statement holds for any linear metric d.
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c© 2016 Iljazović et al.; This is an Open Access article distributed under the terms of the Creative

Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here (Please copy paste the total link in your browser
address bar)
http://sciencedomain.org/review-history/11709

8

http://creativecommons.org/licenses/by/4.0

	Introduction
	Effective Separating Sequences
	Effective   Separating   Sequences   with   a   Common Computable Point
	Conclusion

