

British Journal of Mathematics & Computer Science

12(2): 1-20, 2016, Article no.BJMCS.20504

ISSN: 2231-0851

SCIENCEDOMAIN international
www.sciencedomain.org

*Corresponding author: E-mail: dr_emansultan@yahoo.com, mz80m@yahoo.com;

Numerical Solution of Fuzzy Partial Differential Equations by
Using Modified Fuzzy Neural Networks

Eman A. Hussian1* and Mazin H. Suhhiem2

1Department of Mathematics, College of Sciences, AL-Mustansiriyah University, Baghdad, Iraq.

2Department of Statistics, College of Adm. and Econ., University of Sumar, Alrefiey, Iraq.

Article Information

DOI: 10.9734/BJMCS/2016/20504
Editor(s):

(1) Sheng Zhang, Department of Mathematics, Bohai University, Jinzhou, China.
Reviewers:

(1) Anonymous, Hong Kong Polytechnic University, Hong Kong, China.
(2) K. Kannan, SASTRA University, Kumbakonam, India.

(3) Grienggrai Rajchakit, Maejo University, Thailand.
Complete Peer review History: http://sciencedomain.org/review-history/11685

Received: 30 July 2015
Accepted: 31 August 2015

Published: 05 October 2015

Abstract

The aim of this work is to present a modified method for finding the numerical solutions of fuzzy partial
differential equations by using fuzzy artificial neural networks. Using a fuzzy trial neural solution
depending on the fuzzy initial values and the fuzzy boundary conditions of the problem. Using modified
fuzzy neural network makes that training points should be selected over an open interval without training
the network in the range of first and end points. In fact, This new method based on replacing each
element in the training set by a polynomial of first degree. The fuzzy trial solution of fuzzy partial
differential equation is written as a sum of two parts. The first part satisfies the fuzzy conditions, it
contains no fuzzy adjustable parameters. The second part involves a feed-forward fuzzy neural network
containing fuzzy adjustable parameters. In comparison with existing similar fuzzy neural networks, the
proposed method provides solutions with high accuracy. Finally, we illustrate our approach by two
problems.

Keywords: Fuzzy partial differential equation; fuzzy neural network; feed-forward neural network; BFGS
method; hyperbolic tangent function.

1 Introduction

Many methods have been developed so far for solving fuzzy differential equations (FDEs). Most of the
practical problems require the solution of a FDE which satisfies fuzzy initial or fuzzy boundary conditions.
The theory of FDEs was treated by Kaleva [1], Ouyang and Wu [2], Nieto [3], Buckley and Feuring [4],

Original Research Article

Hussian and Suhhiem; BJMCS, 12(2): 1-20, 2016; Article no.BJMCS.20504

2

Seikkala also recently there appeared the papers of Bede, Bede and Gal [5], Diamond [6,7], Georgiou and
Nieto and et al. [8], Nieto and Lopez [9].

In the following, we have mentioned some numerical solution which have proposed by other scientists.
Abbasbandy and Allahviranloo have solved FDEs by Runge-Kuta and Taylor methods [10,11]. Also,
Allahviranloo and et al. solved FDEs by predictor- corrector and transformation methods [12,13,14].
Ghazanfari and Shakerami developed Runge-Kuta like formula of order 4 for solving FDEs [15]. Nystrom
method has been introduced for solving FDEs [16]. Allahviranloo and Kermani solved fuzzy linear partial
differential equations under new definition of fuzzy derivative [17]. Dahalan and Muthuvalu and et al.
developed the Performance of (Half-Sweep Alternating Group Explicit) method with Seikkala derivative for
two dimensional fuzzy Poisson equation [18].

In recent years artificial neural networks for estimation of the ordinary differential equation (ODE) and
partial differential equation (PDE) have been used. In (1990) lee and Kang [19] used parallel processor
computers to solve a first order ODEs with Hopfield neural network models. In (1994) Meade and
Fernandez [20,21] solved linear and non-linear ODEs by using feed-forward neural networks architecture
and B-splines of degree one. In (1997) Lagaris and et al. [22,23] used artificial neural network for solving
ODEs and PDEs with the initial/ boundary value problems. In (1999) Liu and Jammes [24] developed some
properties of the trial solution to solve the ODEs by using artificial neural networks. In (2004) Tawfiq [25]
presented and developed supervised and unsupervised algorithms for solving ODEs and PDEs. In (2006)
malek and shekari [26] presented numerical method based on artificial neural network and optimization
techniques which the higher-order ODE answers approximates by finding a package form analytical of
specific functions. In (2008) Pattanaik and Mishra [27] applied and developed some properties of ANN for
solution of PDE in RF Engineering. In (2011) Oraibi [28] design feed-forward neural networks for solving
ordinary initial value problem. In (2015) Hussian and Suhhiem [29] used modified artificial neural networks
for solving PDEs.

Numerical solution of FDEs by using artificial neural networks is the subject of a very modern because it
only goes back to 2010. In (2010) Effati and pakdaman [30] used artificial neural network for solving FDEs,
they used for the first time the artificial neural network to approximate fuzzy initial value problems. In
(2012) Mosleh and Otadi [31] used artificial neural networks for solving fuzzy Fredholm integro-differential
eauations. In (2013) Ezadi and et al. [32] used artificial neural networks based on semi-Taylor series to solve
first order FDE. In (2015) Hussian and Suhhiem [33] used modified artificial neural networks for solving
FDEs.

Numerical solution of FDEs by using fuzzy artificial neural networks is more modern than the previous
subject, where it goes back to 2012. In (2012) Mosleh and Otadi [34] used fuzzy artificial neural network for
solving first order FDEs, they used for the first time the fuzzy artificial neural network to approximate fuzzy
initial value problems. In (2013) Mosleh [35] used fuzzy artificial neural network for solving a system of
FDEs. In (2014) Mosleh and Otadi [36] used fuzzy artificial neural network for solving second order FDEs.
In (2015) Hussian and Suhhiem [37] used modified fuzzy neural networks for solving Fuzzy ordinary
differential equations.

In this work we proposed a new numerical method to find the approximate solution of fuzzy partial
differential equations (FPDEs), this method can result in improved numerical methods for solving FPDEs. In
this proposed method, fuzzy neural network model (FNNM) is applied as universal approximator. We use
fuzzy trial function, this fuzzy trial function is a combination of two terms. A first term is responsible for
the fuzzy conditions while the second term contains the fuzzy neural network adjustable parameters to be
calculated. The main aim of this paper is to illustrate how fuzzy connection weights are adjusted in the
learning of fuzzy neural networks. Our fuzzy neural network in this work is a three-Layer feed- forward
neural network where connection weights and biases are fuzzy numbers. This modified method is called
modified fuzzy neural network (MFNN) for solving FPDEs. This new method based on replacing each x in
the training set (where x ∈ �a, b�) by the polynomial Q (x) =
 (x + 1) such that Q (x) ∈ (a, b) by choosing a
suitable
 ∈ (0 , 1) . In this paper, we will illustrate this modified method by solving two numerical
examples. In general, this modified method is effective for solving FPDEs.

Hussian and Suhhiem; BJMCS, 12(2): 1-20, 2016; Article no.BJMCS.20504

3

2 Preliminaries

In this section the basic notations used in fuzzy calculus are introduced.

Definition 2.1. [38]:

A fuzzy number u is completely determined by any pair u= �u , u�� of functions u (r), u� (r) : R ⟶ �0,1�
satisfying the conditions:
 (1) u (r) is a bounded, monotonic, increasing (non – decreasing) left continuous function for all r ∈ (�0,1� and right continuous for r=0. (2) u� (r) is a bounded, monotonic, decreasing (non – increasing) left continuous function for all r ∈ (�0,1� and right continuous for r=0. (3) For all r ∈ (�0,1� we have u (r) ≤ u� (r).

For every u =�u , u�� , v = �v , v� and � > 0 we define addition and multiplication as follows:
 (u + v) (r) = u (r) + v (r) (1)

 (u + v) (r) = u� (r) + v (r) (2)
 (k u) (r) = K u (r) , (k u) (r) = K u� (r) (3)

The collection of all fuzzy numbers with addition and multiplication as defined by �� . (1) ⟶ (3) is
denoted by E1 . For r ∈ (�0,1�, we define the r - cuts of fuzzy number u with �u�! ="x ∈ R|u (x) ≥ r% and

for r=0 the support of u is defined as �u�& ="x ∈ R|u (x) > 0%.

Definition 2.2. [38]:

The function f: R ⟶ E1 is called a fuzzy function. Now if, for an arbitrary fixed t1 ∈ R and
 > 0 there exist
a (> 0 such that:)t - t1) < (⟹ d �f(t) , f(t1)� <

then f is said to be continuous function.

Definition 2.3. [30]:

let u, v ∈ E1 . If there exist w ∈ E1 such that u = v+w then w is called the H-difference (Hukuhara-difference)
of u, v and it is denoted by w= u Θ v. In this work the Θ sign stands always for H-difference, and let us
remark that u Θ v ≠ u + (-1) v.

Definition 2.4. [30]:

Let f: [a,b] → �1 and 2& ∈ [a,b]. We say that f is H-differential (Hukuhara-differential) at 2&, if there
exists an element fˊ(2&) ∈ �1 such that for all h> 0 sufficiently small, ∃ f(2& +h) Θ f(2&), f(2&) Θ f(2& - h)
and the limits.
 lim7→& 8(9: ;<) Θ 8(9:)7 = lim7→& 8(9:) Θ 8(9: = <)7 = fˊ(2&). (4)

Hussian and Suhhiem; BJMCS, 12(2): 1-20, 2016; Article no.BJMCS.20504

4

3 Fuzzy Neural Network

A fuzzy neural network or neuro -fuzzy system is a learning machine that finds the parameters of a fuzzy
system (i.e. fuzzy sets, fuzzy rules) by exploiting approximation from the neural networks. Combining fuzzy
system with neural network. Both neural network and fuzzy system have some things in common [37].

Artificial neural networks are an exciting form of the artificial intelligence which mimic the learning
process of the human brain in order to extract patterns from historical data. Simple perceptrons need a
teacher to tell the network what the desired output should by. These are supervised networks. In an
unsupervised net, the network adapts purely in response to its input [39].

4 Operations of Fuzzy Numbers

We briefly on mention fuzzy numbers operation defined by the extension principle .Since output vector of
feed-forward neural network is fuzzy in this paper, the following addition, multiplication and nonlinear
mapping of fuzzy number are necessary for defining our fuzzy neural network [37]:

ϻA+B (z) = Max {ϻA (x) ᴧ ϻB (y) │z = x + y} (5)

ϻAB (z) = Max {ϻA(x) ᴧ ϻB (y) │z = x y} (6)

ϻ>(net)(z) = Max? ϻnet (x) │z = @(x)A (7)

where A, B and net are fuzzy number , ϻ (∗) denotes the membership function of each fuzzy number, ᴧ is
the minimum operator and @(.) is a continuous activation function (such as hyperbolic tangent function)
inside the hidden neurons. The above operations of fuzzy numbers are numerically performed on level sets
(i.e. r-cuts).

The r-level set of a fuzzy number A is defined as:
 �A�C = " x ϵ R │ ϻA (x) ≥ r % , 0 < r ≤ 1 (8)

Since level sets of fuzzy numbers become closed intervals we denote �A�C as : �A�C = D �A�Lr , �A�Ur H

where �A�Lr and �A�Ur are the lower limit and the upper limit of the r-level set �A�C respectively From interval

arithmetic , the above operations of fuzzy number are written for r-level set as follows:

�A�C +�B�C = I�A�Lr + �B�Lr , �A�Ur + �B�Ur K (9)

�A�C �B�C = LMin O�A�Lr. �B�Lr , �A�Lr . �B�Ur , �A�Ur . �B�Lr , �A�Ur . �B�Ur P ,
Max O�A�Lr. �B�Lr , �A�Lr. �B�Ur , �A�Ur . �B�Lr , �A�Ur . �B�Ur P Q (10)

@(�net�C) = @ SI�net�Lr , �net�Ur KT= D@ U�net�LrV , @ U�net�Ur VH (11)

Hussian and Suhhiem; BJMCS, 12(2): 1-20, 2016; Article no.BJMCS.20504

5

5 Input – Output Relation of Each Unit

Let us consider a fuzzy three – layer feed – forward neural network with n input units, m hidden units and s
output units. Target vector, connection weights and biases are fuzzy numbers and input vector is real
number. For convenience in this discussion, FNNM with an input layer, a single hidden layer, and an output
layer in Fig. 1 is represented as a basic structural architecture. Here, the dimension of FNNM is denoted by
the number of neurons in each layer , that is n W m W s, where n , m and s are the number of the neurons in
the input layer, the hidden layer and the output layer , respectively [35,36] .

Fig. 1. Three-layer feed-forward Fuzzy neural network

The architecture of the model shows how FNNM transforms the n inputs (x1 , xX, … , xZ , … , x[) into the s
fuzzy outputs (�y1�C , �yX�C , … �y]�C , … �y^�C) throughout the m hidden fuzzy neurons ��z1�C , �zX�C , … �z̀ �C , … �za�C� , where the cycles represent the neurons in each layer. Let �b̀ �C be the fuzzy
bias for the fuzzy neuron �z̀ �C , �c]�C be the fuzzy bias for the fuzzy neuron �y]�C , �w`Z�C be the fuzzy
weight connecting crisp neuron xZ to fuzzy neuron �z̀ �C , and �w]`�C be the fuzzy weight connecting fuzzy
neuron �z̀ �C to fuzzy neuron �y]�C .

When an n – dimensional input vector (x1 , xX, … , xZ , … , x[) is presented to our fuzzy neural network , its
input – output relation can be written as follows , where F : R[⟶ E^ :

Input units:
 oZ = xZ , i = 1,2,3, …n (12)

Hidden units:
 z̀ = F �net`� , g = 1,2,3, …,m, (13)

Hussian and Suhhiem; BJMCS, 12(2): 1-20, 2016; Article no.BJMCS.20504

6

net` = ∑ oZ w`Z + b̀[Zi1 (14)

Output units:

 y] = F (net]) , k = 1,2,3, …, s, (15)
 net] = ∑ w]` z̀ +ài1 c] (16)

The architecture of our fuzzy neural network is shown in Fig. 1, where connection weights, biases, and
targets are fuzzy numbers and inputs are real numbers. The input – output relation in Eqs. (12 – 16) is
defined by the extension principle.

6 Calculation of Fuzzy Output

The fuzzy output from each unit in Eqs. (12 – 16) is numerically calculated for real inputs and level sets of
fuzzy weights and fuzzy biases. The input – output relations of our fuzzy neural network can be written for
the r – level sets [34].

Input units:
 oZ = xZ , i = 1,2,3, …n (17)

Hidden units:
 �z̀ �C = F ��net`�C� , g = 1,2,3, …,m, (18)
 �net`�C = ∑ oZ �w`Z�C + �b`�C[Zi1 (19)

Output units:
 �y]�C = F (�net]�C) , k = 1,2,3, …, s, (20)

 �net]�C = ∑ �w]`�C �z̀ �C+ài1 �c]�C . (21)

From Eqs. (17 – 21), we can see that the r – level sets of the fuzzy outputs y]´s are calculated from those of
the fuzzy weights, fuzzy biases and the crisp inputs.

From the operations of fuzzy numbers, the above relations are rewritten as follows when the inputs xZ´s are
non – negative, i.e., xZ ≥ 0.

Input units:
 oZ = xZ (22)

Hidden units:
 �z̀ �C = F ��net̀ �C� = Dmz̀ nCo , mz̀ nCpH = . DF Umnet`nCoV , F Umnet`nCpVH (23)

where
 mnet`nCo = ∑ oZ mw`ZnCo + mb`nCo[Zi1 (24)

Hussian and Suhhiem; BJMCS, 12(2): 1-20, 2016; Article no.BJMCS.20504

7

mnet`nCp = ∑ oZ mw`ZnCp + mb̀ nCp[Zi1 (25)

Output units:
 �y]�C = F (�net]�C) = ��y]�Co , �y]�Cp� = . �F(�net]�Co) , F(�net]�Cp)� (26)
 �net]�Co = ∑ mw]`nCo mz̀ nCo ̀ ∈q + ∑ mw]`nCo mz̀ nCp ̀ ∈r + �c]�Co (27)

 �net]�Cp = ∑ mw]`nCp mz̀ nCp ̀ ∈s + ∑ mw]`nCp mz̀ nCo ̀ ∈t + �c]�Cp (28)

For mz̀ nCp ≥ mz̀ nCo ≥ 0 , where

 a = Og ∶ mw]`nCo ≥ 0P , b = Og ∶ mw]`nCo < 0P

c = Og ∶ mw]`nCp ≥ 0P , d = Og ∶ mw]`nCp < 0P ,

a ∪ b = "1,2,3, … , m% and c ∪ d = "1,2,3, … , m% .

7 Fuzzy Neural Network Approach for Solving FDEs

To solve any fuzzy ordinary differential equation (i.e., first order FDE , second order FDE ,etc.) we consider
a three – layered FNNM with one unit entry x , one hidden layer consisting of m activation functions and
one unit output N(x , p) . The activation function for the hidden units of our fuzzy neural network is
hyperbolic tangent function. Here, the dimension of FNNM is (1 x m x 1).

For every entry x the input neuron makes no changes in its input, so the input to the hidden neurons is
[34,37]:
 net̀ = x w` + b` , g = 1,2,3, …,m, (29)

where w` is a weight parameter from input layer to the gth unit in the hidden layer, b̀ is an gth bias for the gth unit in the hidden layer.

The output, in the hidden neurons is:
 z̀ = s �net̀ � , g = 1,2,3, …,m, (30)

where s is the hyperbolic tangent activation function. The output neuron make no change in its input, so the
input to the output neuron is equal to output:

N = v1 z1 + vX zX + vy zy + … + v̀ z̀ + … + va za = ∑ v̀ z̀ài1 (31)

where v̀ is a weight parameter from gth unit in the hidden layer to the output layer.

From Eqs. (22 – 28), we can see that the r – level sets of the Eqs. (29 – 31) are calculated from those of the
fuzzy weights, fuzzy biases and crisp inputs. For our fuzzy neural network, we can derive the learning
algorithm without assuming that the input x is non – negative. For reducing the complexity of the learning
algorithm, input x usually assumed as non-negative in the fuzzy neural network, i.e., x ≥ 0 :

Hussian and Suhhiem; BJMCS, 12(2): 1-20, 2016; Article no.BJMCS.20504

8

Input unit:

 o = x, (32)

Hidden units:
 �z̀ �C = Dmz̀ nCo , mz̀ nCpH = Ds Umnet`nCoV , s Umnet̀ nCpVH (33)

 Where
 mnet`nCo = o mw`nCo + mb`nCo , mnet`nCp = o mw`nCp + mb`nCp

Output unit:

 �N�C = ��N�Co , �N�Cp� , where
 �N�Co = ∑ mv̀ nCo mz̀ nCo+ ∑ mv̀ nCo mz̀ nCp`∈b ̀ ∈a (34)

 �N�Cp = ∑ mv̀ nCp mz̀ nCp+ ∑ mv̀ nCp mz̀ nCo`∈d ̀ ∈c (35)

For mz̀ nCp ≥ mz̀ nCo ≥ 0, where: a = Og ∶ mv̀ nCo ≥ 0P , b = Og ∶ mv̀ nCo < 0P

c = Og ∶ mv̀ nCp ≥ 0P , d = Og ∶ mv̀ nCp < 0P ,

a ∪ b = "1,2, … m% and c ∪ d = "1,2, … m%.

For illustration the solution steps, we will consider the first order FDE:
 t z ({)t{ = F (x , y), x ∈ �a , b� , y (a) = A (36)

where A is a fuzzy number in E1 with r – level sets :
 �A�C = ��A�Co , �A�Cp� , r ∈ �0, 1� .

The fuzzy trial solution for this problem is:
 �y|(x , p)�C = �A�C + (x − a) �N(x , p)�C (37)

This fuzzy solution by intention satisfies the fuzzy initial condition in (36).

The error function that must be minimized for the problem (36) is in the form:

E = ∑ �EZCo + EZCp�~Zi1 (38)

EZCo = � Dt z� ({� ,�)t{ HC
o − mF �xZ , y| (xZ , p)�nCo �X

 (39)

 EZCp = � Dt z� ({� ,�)t{ HC
p − mF �xZ , y| (xZ , p)�nCp �X

 (40)

Hussian and Suhhiem; BJMCS, 12(2): 1-20, 2016; Article no.BJMCS.20504

9

Where "xZ%Zi1~ are discrete points belonging to the interval �a , b� (training set) and in the cost function (38) , ECo and ECp can be viewed as the squared errors for the lower and upper limits of the r – level sets. It is easy
to express the first derivative of �N(x , p)�C in terms of the derivative of the hyperbolic tangent, i.e.,

� ������x
 = ∑ mv̀ nCo � m��n��� m[�|�n�� � m[�|�n���xq + ∑ mv̀ nCo � m��n��� m[�|�n�� � m[�|�n���xr (41)

� ������x
 = ∑ mv̀ nCp � m��n��� m[�|�n�� � m[�|�n���xs + ∑ mv̀ nCp � m��n��� m[�|�n�� � m[�|�n���xt (42)

where

a = Og ∶ mv̀ nCo ≥ 0P , b = Og ∶ mv̀ nCo < 0P ,

c = Og ∶ mv̀ nCp ≥ 0P , d = Og ∶ mv̀ nCp < 0P ,

a ∪ b = "1,2,3, … m% and c ∪ d = "1,2,3, … m% . Also we have
 � m[�|�n���x

 = mw`nCo ,
� m[�|�n���x

 = mw`nCp

 � m��n��� m[�|�n�� = 1 - Umz̀ nCoVX
 ,

� m��n��� m[�|�n�� = 1 - Umz̀ nCpVX

Now differentiating from fuzzy trial function myt

(x , p)n
r
 in (39) and (40) we obtain:

 myt (x ,p)n
r

L

�x
 = �N (x , p)�r

L + (x − a)
� �N (x ,p)�rL�x

 (43)

 myt (x ,p)n
r

U

�x
 = �N (x , p)�r

U + (x − a)
� �N (x ,p)�rU�x

 (44)

Therefore, we get

EZCo =

���
���

∑ mv̀ nCo mz̀ nCo+ ∑ mv̀ nCo mz̀ nCp+ (xZ − a)rqU∑ mv̀ nCo mw`nCo �1 − Umz̀ nCoV�q + ∑ mv̀ nCo mw`nCp �1 − Umz̀ nCpV�r V
−F �xZ, �A�Co+ (xZ − a) U∑ mv̀ nCo mz̀ nCo+ ∑ mv̀ nCo mz̀ nCprq V� ���

���
X
 (45)

EZCp =

���
���

∑ mv̀ nCp mz̀ nCp+ ∑ mv̀ nCp mz̀ nCo+ (xZ − a)tsU∑ mv̀ nCp mw`nCp �1 − Umz̀ nCpV�s + ∑ mv̀ nCp mw`nCo �1 − Umz̀ nCoV�t V
−F �xZ, �A�Cp+ (xZ − a) U∑ mv̀ nCp mz̀ nCp+ ∑ mv̀ nCp mz̀ nCots V� ���

���
X
 (46)

Now we substitute (45) and (46) in (38) to find the error function that must be minimized for problem (36).

For the higher order fuzzy ordinary differential equations and FPDEs eq. (45) and eq. (46) will be very
complex and the computations are very difficult.

Hussian and Suhhiem; BJMCS, 12(2): 1-20, 2016; Article no.BJMCS.20504

10

Therefore, for reducing the complexity of the learning algorithm, we will propose a partially fuzzy neural
network in the next section.

8 Partially Fuzzy Neural Networks

One drawback of the fully fuzzy neural networks with fuzzy connection weights is long computation time.
Another drawback is that the learning algorithm is complicated. Therefore, for reducing the complexity of
the learning algorithm, a partially fuzzy neural network (PFNN) architecture has been proposed where
connection weights to the output unit are fuzzy numbers while connection weights and biases to the hidden
units are real numbers [34,37].

The input – output relation of each unit of our PFNN in Eqs. (32-35) can be rewritten for r – level sets as
follows:

Input unit: o = x

Hidden units: z̀ = s �net`� , g = 1,2,3, … m

where net` = o w` + b`

Output unit: �N�C = ��N�Co , �N�Cp�=D∑ mv̀ nCoz̀ ài1 , ∑ mv̀ nCpz̀ ài1 H

Now to find the minimized error function (under PFNN) for problem (36):
 � ������x

 = ∑ mv̀ nCo � ��� [�|� � [�|��x
ài1 = ∑ mv̀ nCo ài1 w` �1 − z̀ X� (47)

 � ������x
 = ∑ mv̀ nCp � ��� [�|� � [�|��x

ài1 = ∑ mv̀ nCp ài1 w` �1 − z̀ X� (48)

By substituting Eqs (47 and 48) in Eqs (39 and 40) , we obtain :

EZCo = L∑ z̀ài1 mv̀ nCo+ (xZ − a) ∑ w`ài1 �1 − z̀ X�mv̀ nCo−F UxZ, ���Co+ (xZ − a) ∑ z̀ ài1 mv̀ nCoV QX
 (49)

EZCp = L∑ z̀ài1 mv̀ nCp+ (xZ − a) ∑ w`ài1 �1 − z̀ X�mv̀ nCp−F UxZ, ���Cp+ (xZ − a) ∑ z̀ ài1 mv̀ nCpV QX
 (50)

and then we substitute (49) and (50) in (38) to find the error function that must be minimized for problem (36) (with respect to PFNN).

9 Fuzzy Neural Network Approach for Solving FPDEs

To solve any fuzzy partial differential equation , we consider a three – layered FNNM with two unit
entries x and y , one hidden layer consisting of m activation functions , and one unit output N(x , y, p).

Here, the dimension of FNNM is (2 x m x 1).

Hussian and Suhhiem; BJMCS, 12(2): 1-20, 2016; Article no.BJMCS.20504

11

For every entries x and y, the input neurons makes no changes in its inputs, so the input to the hidden
neurons is:
 net̀ = x w`1 + y w`X + b` , g = 1,2,3, … m (51)

where w`1 and w`X are a weights from the input layer to the gth unit in the hidden layer, b` is an gth bias for
the gth unit in the hidden layer.

The output in the hidden neurons is:
 z̀ = s �net̀ � , g = 1,2,3, …,m (52)

The output neuron make no changes in its input, so the input to the. Output neuron is equal to output:

N = ∑ v̀ z̀ài1 (53)

From Eqs.(22-28) , we can see that the r – level sets of the Eqs. (51 – 53) are calculated from those of the
fuzzy weights, fuzzy biases and crisp inputs (Fig. 2). For our fuzzy neural network, we can derive the
learning algorithm without assuming that the inputs x and y are non – negative. For reducing the complexity
of the learning algorithm, the inputs x and y usually assumed as non – negative in the fuzzy neural network,
i.e., x ≥ o and y ≥ o:

Input units:

x = x, y = y (54)

Fig. 2. (2 x m x 1) feed-forward fuzzy neural network

Hussian and Suhhiem; BJMCS, 12(2): 1-20, 2016; Article no.BJMCS.20504

12

Hidden units:
 �z̀ �C = Dmz̀ nCo , mz̀ nCpH = Ds Umnet`nCoV , s Umnet̀ nCpVH (55)

 mnet̀ nCo = x mw`1nCo + y mw`XnCo+ mb̀ nCo (56)

 mnet`nCp = x mw`1nCp + y mw`XnCp+ mb̀ nCp (57)

Output unit:
 �N�C = ��N�Co , �N�Cp� (58)
 �N�Co = ∑ mv̀ nCo mz̀ nCo+ ∑ mv̀ nCo mz̀ nCp`∈b ̀ ∈a (59)

 �N�Cp = ∑ mv̀ nCp mz̀ nCp+ ∑ mv̀ nCp mz̀ nCo`∈d ̀ ∈c (60)

For mz̀ nCp ≥ mz̀ nCo ≥ o, where : a = Og ∶ mv̀ nCo ≥ oP ,b = Og ∶ mv̀ nCo < oP

c = Og ∶ mv̀ nCp ≥ oP , d = Og ∶ mv̀ nCp < oP ,

a ∪ b = "1,2,3, … m% and c ∪ d = "1,2,3, … m% .

Also, the input – output of each unit of our PFNN in Eqs. (54-60) can be rewritten for r – level sets as
follows:

Input unit:

 x = x , y = y (61)

Hidden units:
 z̀ = s �net̀ � , g = 1,2,3, … m (62)

 where
 net̀ = x w`1 + y w`X+ b̀ (63)

Output unit:
 �N�C = ��N�Co , �N�Cp� =D∑ mv̀ nCoz̀ ài1 , ∑ mv̀ nCpz̀ ài1 H (64)

10 Description of the Method

We treat here one and two-dimensional problems only. However, it is straightforward to extend the method
to more dimensions. For example, if we consider the two-dimensional fuzzy Poisson equation:
 �� p� {� +

�� p� z� = f (x , y) , x , y ∈ �a , b� (65)

Hussian and Suhhiem; BJMCS, 12(2): 1-20, 2016; Article no.BJMCS.20504

13

with the Dirichlet fuzzy boundary conditions (for x , y ∈ �0,1�):

U(0, y) = f0(y) , U(1, y) = f1(y) , U(x , 0) = g0(x) and U(x , 1) = g1(x).

where: f (x , y) , f0(y) , f1(y) , g0(x) and g1(x) are fuzzy numbers or fuzzy functions with r-level sets
(parametric form) :
 �f0(y)�r = Df

0
(y) , f0(y)H , �f1(y)�r = Df

1
(y) , f1(y)H

 mg0(x)n
r
 = Dg

0
(x) , g0(x)H , mg1(x)n

r
 = Dg

1
(x) , g1(x)H

 The fuzzy trial solution �UT(x , y)�r = � U

T
(x , y, r, p) , UT(x , y, r, p) � can be chosen as follows [29]:

U

T
(x , y, r, p) = A(x , y) + x y (1 − x) (1 − y) N(x , y, r, p)

UT(x , y, r, p) = A(x , y) + x y (1 − x) (1 − y) N(x , y, r, p) (66)

where A(x , y) and A(x , y) are chosen so as to satisfy the fuzzy boundary conditions, namely:

A(x , y) = (1 - x) f
0
(y) + x f

1
(y) + (1 - y)

Ig
0
(x) − D(1 − x) g

0
(0) + x g

0
(1)HK+ y Ig

1
(x) − D(1 − x) g

1
(0) + x g

1
(1)HK

A(x , y) = (1 - x) f0(y) + x f1(y) + (1 - y)

 Dg0
(x) − m(1 − x) g0

(0) + x g0(1)nH+ y Dg1
(x) − m(1 − x) g1

(0) + x g1(1)nH (67)

The minimized error function will be: E = ∑ �Eir

L + Eir
U�g

ii1 , where

EZCo = � D��p�� {� + ��p�� z� HC
o − �f (xZ , yZ)�Co �X

EZCp = � D��p�� {� + ��p�� z� HC
p − �f (xZ , yZ)�Cp �X

 (68)

where �xi , yi� are points in the domain �0 ,1� W �0 ,1�.

11 Proposed Method

In this section we will introduce a novel method to modify the fuzzy neural network. This new method based
on replacing each x in the input vector (training set) x�� = (x1 , x2 , … , xn) , x̀ ∈ �a, b� by a polynomial of first
degree.

In [40] Ezadi and parandin used the function: Q(x) =
 (x + 1),
 ∈ (0,1).

then the input vector will be: (Q(x1) , Q(xX) , … Q(x[)), Q(x`) ∈ (a , b). In this paper, we named this
proposed method modified fuzzy neural network. Using modified fuzzy neural network makes that training

Hussian and Suhhiem; BJMCS, 12(2): 1-20, 2016; Article no.BJMCS.20504

14

points should be selected over the open interval (a , b) without training the neural network in the range of
first and end points. Therefore, the calculating volume involving computational error is reduced. In fact, the
training points depending on the distance �a , b� selected for training fuzzy neural network are converted to
similar points in the open interval (a , b) by using the new approach, then the fuzzy network is trained in
these similar areas [21,22].

12 Numerical Examples

To show the behavior and properties of the new method, two problems will be solved in this section. For
each example, the accuracy of the method is illustrated by computing the deviations �error�r L , �error�r

U
where
 �error�r

L=)�Ua(x , y)�r
L-�UT(x , y)�r

L) , �error�r
U=)�Ua(x , y)�r

U-�UT(x , y)�r
U)

and
 �Ua(x , y)�r=��Ua(x , y)�r

L , �Ua(x , y)�r
U� the analytical solution

 �UT(x , y)�r =��UT(x , y)�r
L , �UT(x , y)�r

U� the trial solution

For all examples, multilayer perceptron consisting of one hidden layer with 10 units and one linear output
unit is used. To minimize the error function, we used BFGS (Broyden-Fletcher-Goldfarb-Shanno) quasi-
Newton method (For more details, see [41,42]).

Example (1): Consider the fuzzy Poisson problem:
 �� p�� {� (x , y) +

�� p�� z� (x , y) = K� x ez , x , y ∈ �0 , 1� ,

where K�(r) = �0.75 + 0.25 r , 1.25− 0.25 r� with the fuzzy conditions:

U� (0 , y) = 0 , U� (1 , y) = K� ey , 0 ≤ y ≤ 1

and

U� (x , 0) = K� x , U� (x , 1) = K� ex , 0 ≤ x ≤ 1 .

The fuzzy analytical solution for this problem is :
 �Ua(x , y)�r = �(0.75 + 0.25r) xey , (1.25− 0.25r) xey�.

The fuzzy trial solution for this problem is :
 �UT(x , y)�r = �(0.75 + 0.25r) xey , (1.25 − 0.25r) xey�

 + xy (1 − x) (1 − y) �N(x , y, p)�r .

The error function for m = 10 units in the hidden layer and for g = 11 equally spaced points inside the
interval �0 , 1� for each variable x and y is trained.

For
 = 0.4, the training set will be:

0.4 (x + 1) , ∀ x ∈ �0 , 1� and 0.4 (y + 1) , ∀ y ∈ �0 , 1�.

Hussian and Suhhiem; BJMCS, 12(2): 1-20, 2016; Article no.BJMCS.20504

15

Analytical and trial solutions for this problem can be found in Table (1) and Table (2).

For this problem, the minimized error function is:
 E = ∑ �Eir

L + Eir
U�11

ii1

where

EZCo =

��
��
��
��
��
��
�(yZ − yZX)

�
�

(xZ − xZX) ∑ mv̀ nCo w`1X s´´1&`i1 �Q(xZ) w`1+ Q(yZ) w`X+ b`�
+(2 − 4xZ) ∑ mv̀ nCow`1s´1&`i1 �Q(xZ) w`1+ Q(yZ) w`X+ b`�

− 2 ∑ mv̀ nCos1&`i1 �Q(xZ) w`1+ Q(yZ) w`X+ b`� ¤
¥¦

 +
(xZ − xZX)

�
�

(yZ − yZX) ∑ mv̀ nCo w`XX s´´1&`i1 �Q(xZ) w`1+ Q(yZ) w`X+ b`�
+(2 − 4yZ) ∑ mv̀ nCow`Xs´1&`i1 �Q(xZ) w`1+ Q(yZ) w`X+ b`�

− 2 ∑ mv̀ nCos1&`i1 �Q(xZ) w`1+ Q(yZ) w`X+ b`� ¤
¥¦

 ��
��
��
��
��
��
�X

EZCp=

��
��
��
��
��
��
�(yZ − yZX)

�
�

(xZ − xZX) ∑ mv̀ nCp w`1X s´´1&`i1 �Q(xZ) w`1+ Q(yZ) w`X+ b`�
+(2 − 4xZ) ∑ mv̀ nCpw`1s´1&`i1 �Q(xZ) w`1+ Q(yZ) w`X+ b`�

− 2 ∑ mv̀ nCps1&`i1 �Q(xZ) w`1+ Q(yZ) w`X+ b`� ¤
¥¦

 +
(xZ − xZX)

�
�

(yZ − yZX) ∑ mv̀ nCp w`XX s´´1&`i1 �Q(xZ) w`1+ Q(yZ) w`X+ b`�
+(2 − 4yZ) ∑ mv̀ nCpw`Xs´1&`i1 �Q(xZ) w`1+ Q(yZ) w`X+ b`�

− 2 ∑ mv̀ nCps1&`i1 �Q(xZ) w`1+ Q(yZ) w`X+ b`� ¤
¥¦

 ��
��
��
��
��
��
�X

Table 1. Numerical results for example (1), for r = 0.5

x § �¨©(ª , §)�«¬ �¨©(ª , §)�«̈ �¨(ª , §)�«¬ �¨(ª , §)�«̈ �®««¯«�«¬ �®««¯«�«̈
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0
0.096702455
0.213745482
0.354337937
0.522138644
0.721315555
0.956612370
1.233423533
1.557878650
1.936937450
2.378496600

0
0.124331728
0.274815620
0.455577347
0.671321113
0.927405714
1.229930190
1.585830257
2.002986836
2.490348150
3.058067057

0
0.096702461
0.213745474
0.354337929
0.522138646
0.721315505
0.956612401
1.233423539
1.557878654
1.936937457
2.378496600

0
0.124331737
0.274815626
0.455577342
0.671321109
0.927405718
1.229930266
1.585830346
2.002986840
2.490348154
3.058067057

0
6.6854 e-9
8.5672 e-9
8.3301 e-9
2.4376 e-9
5.0158 e-8
3.1330 e-8
6.7012 e-9
4.8833 e-9
7.6347 e-9
0

0
9.3281 e-9
6.5423 e-9
5.7664 e-9
4.9806 e-9
4.5307 e-9
7.6771 e-8
8.9137 e-8
4.0264 e-9
4.3421 e-9
0

Example (2): Consider the fuzzy Wave problem:
 �� p�� |� (x , t) −4

�� p�� {� (x , t) = 0, x , t ∈ �0 , 1�,

Hussian and Suhhiem; BJMCS, 12(2): 1-20, 2016; Article no.BJMCS.20504

16

with the following fuzzy boundary and initial conditions:
 U� (0 , t) = 0 , U� (1 , t) = 0 , 0 , U� (x , 0) = K� sin(°x) and ��9 U� (x , 0) = 0.

where K�(r) = �0.75 + 0.25 r , 1.25− 0.25 r� .

The fuzzy analytical solution for this problem is:
 �Uq(x , t)�C =�(0.75 + 0.25r) sin(πx) cos (2πt) , (1.25 − 0.25r) sin(πx) cos (2πt)�.

The fuzzy trial solution for this problem is:
 �U³(x , t)�C=�(0.75 + 0.25r)(1 − 2X) sin(πx) , (1.25 − 0.25r)(1 − 2X) sin(πx)� + x (1 − x)2X �N(x , t, p)�C.

Table 2. Numerical results for example (1), for x = § = 0.7

r �¨©(ª , §)�«¬ �¨©(ª , §)�«̈ �¨(ª , §)�«¬ �¨(ª , §)�«̈ �®««¯«�«¬ �®««¯«�«̈
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

1.057220171
1.092460844
1.127701516
1.162942189
1.198182861
1.233423533
1.268664206
1.303904878
1.339145550
1.374386223
1.409626895

1.762033619
1.726792947
1.691552274
1.656311602
1.621070930
1.585830257
1.550589585
1.515348912
1.480108240
1.444867568
1.409626895

1.057220173
1.092460840
1.127701508
1.162942196
1.198182810
1.233423539
1.268664248
1.303904925
1.339145556
1.374386230
1.409626903

1.762033614
1.726792941
1.691552268
1.656311611
1.621070921
1.585830346
1.550589588
1.515348894
1.480108230
1.444867571
1.409626898

2.1229 e-9
4.7724 e-9
8.3444 e-9
7.0643 e-9
5.1151 e-8
6.7012 e-9
4.2159 e-8
4.7441 e-8
6.2102 e-9
7.7177 e-9
8.0020 e-9

5.0107 e-9
6.7036 e-9
6.7939 e-9
9.4339 e-9
9.0052 e-9
8.9137 e-8
3.9211 e-9
1.8195 e-8
1.0122 e-8
3.9898 e-9
3.7220 e-9

In [17], Allahviranloo and Kermani solved this problem by using Finite Difference method for h=0.1 and
k=0.001. The max absolute error at the point (0.1,0.001), ∀ r ∈[0,1] is 7.6247 e−6 .

Analytical and trial solutions for this problem can be found in Tables 3 and 4.

The minimized error function is: E = ∑ �Eir

L + Eir
U�11

ii1 , where

Table 3. Numerical results for example (2), for x =0.1, t=0.001

r �¨©(ª , ´)�«¬ �¨©(ª , ´)�«̈ �¨(ª , ´)�«¬ �¨(ª , ´)�«̈ �®««¯«�«¬ �®««¯«�«̈
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0.231758171
0.239483443
0.247208715
0.254933988
0.262659260
0.270384532
0.278109805
0.285835077
0.293560349
0.301285622
0.309010894

0.386263618
0.378538345
0.370813073
0.363087801
0.355362528
0.347637256
0.339911984
0.332186711
0.324461439
0.316736167
0.309010894

0.231758196
0.239483480
0.247208676
0..254933954
0.262659284
0.270384547
0.278110262
0.285835487
0.293560292
0.301285692
0.309010824

0.386263624
0.378538333
0.370813168
0.363087888
0.355361709
0.347638049
0.339911194
0.332186630
0.324461524
0.316736258
0.309010990

2.5029e-8
3.7617e-8
3.9641e-8
3.4237e-8
2.4999e-8
1.5216e-8
4.5775e-7
4.1010e-7
5.7922e-8
7.0355e-8
7.0922e-8

0.6369e-8
1.2021e-8
9.5407e-8
8.7311e-8
8.1995e-7
7.9307e-7
7.9054e-7
8.1042e-8
8.5142e-8
9.1373e-8
9.6334e-8

Hussian and Suhhiem; BJMCS, 12(2): 1-20, 2016; Article no.BJMCS.20504

17

Table 4. Numerical results for example (2), for x =0.001, t=0.1

r �¨©(ª , ´)�«¬ �¨©(ª , ´)�«̈ �¨(ª , ´)�«¬ �¨(ª , ´)�«̈ �®««¯«�«¬ �®««¯«�«̈
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0.001906198
0.001969738
0.002033278
0.002096818
0.002160358
0.002223897
0.002287437
0.002350977
0.002414517
0.002478057
0.002541597

0.003176997
0.003113457
0.003049917
0.002986377
0.002922837
0.002859297
0.002795757
0.002732217
0.002668677
0.002605137
0.002541597

0.001906962
0.001969130
0.002033340
0.002096748
0.002160426
0.002223827
0.002287382
0.002351027
0.002414570
0.002478014
0.002541638

0.003177081
0.003113543
0.003049851
0.002987041
0.002923537
0.002859920
0.002795806
0.002732264
0.002668647
0.002605161
0002541570

7.6442e-7
6.0894e-7
6.2334e-8
7.0810e-8
6.8840e-8
7.0098e-8
5.5665e-8
5.0226e-8
5.3307e-8
4.3366e-8
4.1121e-8

8.4491e-8
8.6409e-8
6.6226e-8
6.6492e-7
7.0076e-7
6.2343e-7
4.9970e-8
4.7977e-8
3.0222e-8
2.4430e-8
2.7786e-8

EZCo =

��
��
��
��
��
��
��
�(−4tZX)

�
�

(xZ − xZX) ∑ mv̀ nCo w`1X s´´1&`i1 �Q(xZ) w`1+ Q(tZ) w`X+ b`�
+(2 − 4xZ) ∑ mv̀ nCow`1s´1&`i1 �Q(xZ) w`1+ Q(tZ) w`X+ b̀ �

− 2 ∑ mv̀ nCos1&`i1 �Q(xZ) w`1+ Q(yZ) w`X+ b̀ � ¤
¥¦

 +
(xZ − xZX)

�
�

(tZX) ∑ mv̀ nCo w`XX s´´1&`i1 �Q(xZ) w`1+ Q(tZ) w`X+ b̀ �
+(4tZ) ∑ mv̀ nCow`Xs´1&`i1 �Q(xZ) w`1+ Q(tZ) w`X+ b̀ �

+ 2 ∑ mv̀ nCos1&`i1 �Q(xZ) w`1+ Q(tZ) w`X+ b`� ¤
¥¦

.+ (4πX(1 − tZX) − 2)(0.75 + 0.25r)sinπxZ ��
��
��
��
��
��
��
�X

EZCp=

��
��
��
��
��
��
��
�(−4tZX)

�
�

(xZ − xZX) ∑ mv̀ nCp w`1X s´´1&`i1 �Q(xZ) w`1+ Q(tZ) w`X+ b̀ �
+(2 − 4xZ) ∑ mv̀ nCpw`1s´1&`i1 �Q(xZ) w`1+ Q(tZ) w`X+ b`�

− 2 ∑ mv̀ nCps1&`i1 �Q(xZ) w`1+ Q(yZ) w`X+ b`� ¤
¥¦

 +
(xZ − xZX)

�
�

(tZX) ∑ mv̀ nCp w`XX s´´1&`i1 �Q(xZ) w`1+ Q(tZ) w`X+ b`�
+(4tZ) ∑ mv̀ nCpw`Xs´1&`i1 �Q(xZ) w`1+ Q(tZ) w`X+ b`�

+ 2 ∑ mv̀ nCps1&`i1 �Q(xZ) w`1+ Q(tZ) w`X+ b`� ¤
¥¦

.+ (4πX(1 − tZX) − 2)(1.25 − 0.25r)sinπxZ ��
��
��
��
��
��
��
�X

13 Conclusions

In this paper, we presented a novel approach based on fuzzy neural networks for solving fuzzy partial
differential equations. We demonstrate the ability of fuzzy neural networks to approximate the solutions of
FPDEs. From the two examples it is clear that the modified fuzzy neural network method gives best results
and better accuracy comparison with usual fuzzy neural network. As well, we can conclude that the method
we proposed can handle effectively all types of FPDEs and provide accurate approximate solution

Hussian and Suhhiem; BJMCS, 12(2): 1-20, 2016; Article no.BJMCS.20504

18

throughout the whole domain and not only at the training set. Therefore, one can use the interpolation
techniques (such as curve fitting method) to find the approximate solution at points between the training
points or at points outside the training set. better results may be possible if one uses more neurons or more
training points. The main reason for using fuzzy neural networks was their applicability in function
approximation. Further research is in progress to apply and extend this method to solve three-dimensional
fuzzy partial differential equations.

Competing Interests

Authors have declared that no competing interests exist.

References

[1] Kaleva O. Fuzzy differential equations. Fuzzy Sets and Systems. 1987;24:301–317.

[2] Ouyang H, Wu Y. On fuzzy differential equations. Fuzzy Sets and Systems. 1989;32:321–325.

[3] Nieto JJ. The Cauchy problem for continuous fuzzy differential equations. Fuzzy Sets and Systems.

1999;102:259–262.

[4] Buckley JJ, Feuring T. Fuzzy differential equations. Fuzzy Sets and Systems. 2000;110:43–54.

[5] Bede B, Gal SG. Generalizations of the differentiability of fuzzy number- valued functions with

applications to fuzzy differential equations. Fuzzy Sets and Systems. 2005;151:581–599.

[6] Diamond P. Stability and periodicity in fuzzy differential equations. IEEE Trans Fuzzy Systems.

2000;8:583–590.

[7] Diamond P. Brief note on the variation of constants formula for fuzzy differential equations. Fuzzy

Sets and Systems. 2002;129:65–71.

[8] Georgiou DN, Nieto JJ, et al. Initial value problems for higher-order fuzzy differential equations.

Nonlinear Anal. 2005;63:587-600.

[9] Nieto JJ, Lopez R. Bounded solutions for fuzzy differential and integral equations. Chaos, Solitons

and Fractals. 2006;27:1376–1386.

[10] Abbasbandy S, Allahviranloo T. Numerical solution of fuzzy differential equations by Taylor method.

Journal of Computational Methods in Applied Mathematics. 2002;2:113-124.

[11] Abbasbandy S, Allahviranloo T. Numerical solution of fuzzy differential equations by Runge-Kutta

method. J. Sci. Teacher Training University. 2002:1:3.

[12] Allahviranloo T, Ahmady N, et al. Numerical solution of fuzzy differential equations by predictor-

corrector method. Information Sciences. 2007;177:1633-1647.

[13] Allahviranloo T, Ahmady E, et al. Nth- order fuzzy linear differential equations. Information

Sciences. 2008;178:1309-1324 .

[14] Allahviranloo T, Kiani NA, et al. Solving fuzzy differential equations by differential transformation

method. Information Sciences. 2009;179:956-966.

Hussian and Suhhiem; BJMCS, 12(2): 1-20, 2016; Article no.BJMCS.20504

19

[15] Ghazanfari B, Shakerami A. Numerical solution of fuzzy differential equations extended Runge –
Kutta- like formulae of order 4. Fuzzy Sets and Systems. 2011;189:74–91.

[16] Kastan A, Ivaz K. Numerical solution of fuzzy differential equations by Nystrom method. Chaos,

Solitons and Fractals. 2009;41:859–868.

[17] Allahviranloo T, Kermani MA. Numerical methods for fuzzy linear partial differential equations

under new definition for derivative. Iranian Journal of Fuzzy Systems. 2010;7(3):33-50.

[18] Dahalan AA, Muthuvalu MS, et al. Performance of HSAGE method with Seikkala derivative for 2-D

fuzzy Poisson equation. Applied Mathematical Sciences. 2014;8(18):885-899.

[19] Lee H, Kang IS. Neural algorithms for solving differential equations. Journal of Computational

Physics. 1990;91:110-131.

[20] Meade AJ, Fernandes AA. Solution of nonlinear ordinary differential equations by feed-forward

neural networks. Mathematical and Computer Modelling. 1994;20(9):19-44.

[21] Meade AJ, Fernandez AA. The numerical solution of linear ordinary differential equations by feed-

forward neural network. Mathematical and Computer Modelling. 1994;19(12):1–25.

[22] Lagaris IE, Likas A, et al. Artificial neural networks for solving ordinary and partial differential

equations. Comput. Phys. Commun. 1997;104:1-26.

[23] Lagaris IE, Likas A, et al. Artificial neural networks for solving ordinary and partial differential

equations. IEEE Transaction on Neural Networks. 1998;9(5):987-1000.

[24] Liu B, Jammes B. Solving ordinary differential equations by neural networks. Warsaw, Poland; 1999.

[25] Tawfiq LNM. On design and training of artificial neural network for solving differential equations.

Ph.D. Thesis, College of Education Ibn AL-Haitham, University of Baghdad, Iraq; 2004.

[26] Malek A, Shekari R. Numerical solution for high order differential equations by using a hybrid neural

network optimization method. Applied Mathematics and Computation. 2006;183:260-271.

[27] Pattanaik S, Mishra RK. Application of ANN for solution of PDE in RF engineering. International

Journal on Information Sciences and Computing. 2008;2(1):74-79.

[28] Oraibi YA. Design feed-forward neural networks for solving ordinary initial value problem. M.Sc.

Thesis, College of Education Ibn Al-Haitham, University of Baghdad, Iraq; 2011.

[29] Hussian EA, Suhhiem MH. Numerical solution of partial differential equations by using modified

artificial neural network. Network and Complex Systems. 2015;5(6):11-21.

[30] Effati S, Pakdaman M. Artificial neural network approach for solving fuzzy differential equations.

Information Sciences. 2010;180:1434-1457.

[31] Mosleh M, Otadi M. Fuzzy Fredholm integro-differential equations with artificial neural networks.

Communications in Numerical Analysis. 2012;Article ID cna-00128:1-13.

[32] Ezadi S, Parandin N, et al. Numerical solution of fuzzy differential equations based on semi-Taylor by

using neural network. Journal of Basic and Applied Scientific Research. 2013;3(1s):477-482.

Hussian and Suhhiem; BJMCS, 12(2): 1-20, 2016; Article no.BJMCS.20504

20

[33] Hussian EA, Suhhiem MH. Modified artificial neural networks for solving fuzzy differential
equations. Mathematical Theory and Modeling. 2015;5(6):176-192.

[34] Mosleh M, Otadi M. Simulation and evaluation of fuzzy differential equation by fuzzy neural

network. Applied soft computing. 2012;12:2817-2827.

[35] Mosleh M. Fuzzy neural network for solving a system of fuzzy differential equations. Applied Soft

Computing. 2013;13:3597-3607.

[36] Mosleh M, Otadi M. Solving the second order fuzzy differential equations by fuzzy neural network.

Journal of Mathematical Extension. 2014;81:11–27.

[37] Hussian EA, Suhhiem MH. Numerical solution of fuzzy differential equations by using modified

fuzzy neural network. International Journal of Mathematical Archive. 2015;6(6):84-94.

[38] Otadi M, Mosleh M, et al. Solving fuzzy linear system by neural network and applications in

Economics. Journal of Mathematics Extension. 2011;47-66.

[39] Hornick K, Stinchcombe M. Multi-layer feed forward networks are universal approximators. Neural

Networks 2. 1989;359-366.

[40] Ezadi S, Parandin N. An application of neural networks to solve ordinary differential equations.

International Journal of Mathematical Modelling and Computations. 2013;3(3):245-252.

[41] Blomgren P. Numerical optimization. Quasi-Newton Methods; Convergence Analysis, Computational

Sciences Research Center, San Diego State University, San Diego; 2014.

[42] Blomgren P. Numerical optimization. Quasi-Newton Methods; Convergence Analysis, Computational

Sciences Research Center, San Diego State University, San Diego; 2014.

© 2016 Hussian and Suhhiem; This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here (Please copy paste the total link in your
browser address bar)
http://sciencedomain.org/review-history/11685

