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Abstract

Pneumonia is an infection of the lungs that is caused heiimcviruses, fungi, or parasites. For a Igng
time to the best of our knowledge there have not been Ielimbathematical model for childhogd
pneumonia in Kenya. This research study developed a detstiminiodel based on the Susceptihle-
Vaccinated-Infected-Treated-Recovered-Susceptible comgarticlasses. The study used the patitial
differentiation of control reproduction numb@k,) toinvestigate effects of; environment, efficacy |of
vaccination drug and treatment. Model analysis indicates gteraylie in feasible region, it is bounded,
has no backward bifurcation and there exists unique endemudibeium point when contro
reproduction number is greater than unity. Local and gldbaillgy of the equilibrium points indicated
that control reproduction has to be maintained at less thap 10 eradicate the disease. Sensitivity
analysis of the control reproduction number indicatesithgroved vaccination drug’s efficacy, attaining
herd immunity, higher treatment rates and lower effects nofirenment are the best intervention
strategies to lower impact of the pneumonia of the childrenruhdeage of five years in Kenya.

Keywords: Control reproduction number; herd immunity; sevisjtianalysis; disease free equilibrium point
(DFE); endemic equilibrium point (EEP); local and globalsiity.

*Corresponding author: Emailcyrus_ngari@yahoo.com;



Ngari et al.; BJMCS, 12(2): 1-28, 2016; Article BOMCS.20180

1 Introduction

Pneumonia is an infection of the lungs that is causedabteba, viruses, fungi, or parasites. Pneumonia is
characterized primarily by inflammation of the alveolitire lungs or by alveoli that are filled with fluid.
When a person breathes pneumonia-causing pathogens intomgisdnd body’s immune system cannot
prevent entry, the organisms settle in small air satled alveoli and continue multiplying. The host body
sends white blood cells to attack the infection causingstos to be filed with fluid and pus - causing
pneumonia [1].

Pneumonia is most dangerous for older adults, babies, and petplether diseases or impaired immune
systems. Pneumonia symptoms include cough, crusty or greemsrnaaghed up from lungs, fever, fast
breathing and shortness of breath, shaking chills, chesthst usually worsens when taking a deep breath,
fast heartbeat, fatigue and feeling very weak, nausea andinvg, diarrhea, sweating, headache, muscle
pain, confusion or delirium and dusky or purplish skin c@yanosis) from poorly oxygenated blood [1].

Childhood pneumonia can be spread through inhaling viruses andidabtt are commonly found in a
child's nose or throat; they may also spread via air-btroglets from a cough or sneeze, direct contact or
through blood contact, especially during and shortly after Hijth [

Pneumonia can be prevented by immunization, adequate owitid by addressing environmental factors;
it is also treatable. The following environmental factds® @éncrease a child's susceptibility to pneumonia:
indoor air pollution caused by cooking and heating wittiiziss fuels (such as wood or dung), living in
crowded homes and parental smoking. Streptococcus pneursatfia most common cause of bacterial
pneumonia and remains a substantial source of morbidityremthlity in both developing and developed
countries, despite a century of study and the developmenmttibiotics and vaccination. Viral pneumonias is
caused by adenoviruses, rhinovirus, and influenza virdgparainfluenza virus. Viral pneumonia is treated
with rest and plenty of fluids. Fungal pneumonia is not comnbaom,it may occur in individuals with
weakened immune systems due to AIDS immunosuppressive drugtey medical problems. Fungal
pneumonias are usually treated with antifungal medicationsmbisé common parasites causing pneumonia
are Toxoplasma gondiiStrongyloides stercoraliand ascariasis. These parasites typically enter the body
through the skin or the mouth and travel to the lungs, ustmithygh the blood [1].

Bacteria and viruses are the primary causes of pneumdriia fungi and parasitic pneumonia can also
occur to children under the age of five years with keead immune system due to malnutrition, AIDS and
other medical problems. Fungi and parasitic pneumonia car thfese children under the age of five years
mildly or chronically and may lead to death [1].

In 2011, pneumonia was the leading killer of children underaties of five worldwide, responsible for
nearly one in every five global child deaths annually. Mibr@n 99 percent of deaths from pneumonia
occurred in the developing world, where access to headthiaeilities and treatment is often out of reach for
many children [2].

Globally, reducing the mortality rate for the children unithe age of five years by two thirds between 1990
and 2015 is one of the millennium development goals and requizemsplex mix of interventions in health
and other sectors. UNICEF indicated that Kenya is laggiminein East Africa in attaining Millennium
Development Goals (MDGs) on reducing child mortality rd8sGlobally, the mortality rate for children
under the age of five years dropped by almost 50 perfcent,90 deaths per 1,000 live births in 1990 to 48
in 2012, the under-five years of age deaths was maaged by preventable diseases; most of the 6.6
million deaths in children under the age of five years in22@&re from leading infectious diseases such as
pneumonia, diarrhea and malaria. Sub-Saharan Africa conttouesnfront a tremendous challenge of
having the highest mortality rate in the world for creld under the age of five years which is more than 16
times the average for developed regions [4].
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The Kenya Vision 2030, recognized research as one opillaes to accelerate development. Ministry of
Health (MoH) was tasked to formulate policy which wouldu® on the preventive care as opposed to
curative care [5]. Kenya is one of the countries in &dnivhich is not on target for the attainment of MDG
because it requires to reduce the mortality rate underyéars to 33 deaths per 1,000 live births by 2015
[4]. According to UNICEF, many children in Kenya continuedie unnecessarily due to poor accessibility
to recommended treatments. This is particularly the fmasdiarrhea and pneumonia, which still account for
an estimated 20% and 16% of annual child deaths respectif@yGovernment of Kenya (GoK) has also
initiated additional efforts to reduce child mortalitycluding the introducing of new vaccines to prevent
diarrhea and pneumonia, but poor access to recommended treasrstitite. challenge (Ministry of public
health, 2011). By 2009, pneumococcal vaccines (PCV 7, RCYQV 13 and PCV 6A) were introduced in
Kenya [6]. After introduction of vaccine it was assumé@ative treatment could avert the remainder of
those deaths.

Surveillance data on Childhood Pneumonia in East African Regiphasized existence of different strains
but it does not involve mathematical modeling [6]. Existewmfedifferent types of pneumonia and
vulnerability of the children under the age of five yeamsnune system makes pneumonia a complex
disease. Furthermore, many signs and symptoms of funfgations are similar to those caused by bacteria
and/or viruses. Most bacteria pneumonia would require culturinglatésthem which require a lot time [7].
In Kenya, to the best of our knowledge isolation of pneumismiat carried out in the health facilities.

A case-control study of pneumonia etiology among childgada—-59 months in rural Kenya and generally
classified pneumonia into two broad categories that isrelgvmfected and very severely infected [8]. The
Kenya Health information system (DHIS2), which is avdéabnline record age structured data of treated
pneumonia in Kenya into two categories that is outpatient apatient classes. Vaccination of
pneumococcal and haemophilus type b is already in place wehamministered in three doses; 6 weeks, 10
weeks and 14 weeks after birth. The objective of thiearch study is to develop a deterministic model with
Kenya attributes that is taking into account severelgcit®d class (assumed to be mild infected in this
study), very severely infected class (chronically itddcin this study), inpatient class (assumed to be
chronically treated in this study), outpatient (assumeuktmild treated in this study) and vaccinated class
among others.

This research study involved mathematical modeling approaehevthe children under five years old will
be subdivided into seven classes and the rate change from sséocknother was formulated in nonlinear
ordinary differential equations and analytical model asialyvas carried out. The study also determined
partial derivative of the control reproduction numb@&g)to consider the effects of the environmental
factors, critical treatment threshold and efficacywa€cination drugs. The basic reproduction numBgy (
was determined from control reproduction number and will be tesedtermine the herd immunity. Model
analysis was evaluated to ascertain qualitative behafibie system.

2 Model Development

The research study [9], developed a general pneumonia madeld@lts and children based on four
compartmental classes (Vaccinated, Susceptible, Infacigd reated). The research study [10], developed a
general model based on three compartmental classes (Shiscepifected and Treated classes). The
research studies [9,10], determined control reproduction eumbalyzed their model similarly like this
research study. This study uses population based model vgogrglation was divided into seven
compartments classes (Susceptible, Vaccinated, Mildlgctafl, Chronically Infected, Mildly Treated,
Chronically Treated and Recovered) based on infection cheasticiand status of infection. The summary
of the definition of terms, description of the variablad parameters are also available in appendix section.
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2.1 Model Description

Let N (t) be the total population of the under five years childsarch is divided into seven sub-classes:
Susceptible to pneumonia claSg), vaccinated against pneumonia class V(t), mildly ifégdneumonia
classiy(t),chronically infected pneumonia clakgt), chronically treated with pneumonia (in patient) class
Tc(t), mild treated with pneumonia (outpatient) cl@sgt) and recovered from pneumonia R(t) after
treatment.

The rates at which,(t) and I.(t)seek treatmentis given kyand r, respectively, the recruitment rate
(birth rate) is given byr, pneumonia induced death occur at a fatends, in I(t) and T, (t)respectively,

w is the constant natural death rate in all the sevbolassesf infection rate @ is the proportion of born
children vaccinated with available pneumonia vaccines (estineptococcus vaccines or haemophilus type b
vaccine or both)p is the rate of waning of treatment drugs after recovift), is the force of infectiorg is

the drug efficacyd = 1 when the drug is 100% efficiert= 0 when the drug is uselesg),is the rate at
which the under five yearts, (t) with pneumonia progressesiidt), &, is the rate which under five years
Tc(t)are discharged t®,,(t) and the recovery rates after treatment ygemdy, for Ty (t) and T¢(t)
respectively.

2.2 Model Assumptions
The following assumptions were made when formulating theeinod

* Homogeneous mixing children population in Kenya,

* The recovery from natural immunity not significant.

* Through the literature search, to the best of our knowledgeabserved that no study has been
carried out in Kenya to establish the type of childhoodipr@ia in the population.

« It is not likely for less than five years of age to ibéected with pneumonia immediately after
treatment.

» Reinfection with pneumonia of different types and/or strainndutreatment is assumed to be not
significant in this study.

» The decreasing order of infectivity is; mildly infected, atically infected, mildly treated and
chronically treated.

» Constant natural death rate/progression rate to subsedagnt c

» Disease induced death is assumed to be higher in chrgriidaitted than chronically treated class
i.e.(6, > §,). Treatment reduces likelihood of dying significantly.

* Modification parameter k is such that> 1, implying that the environmental factors increases
force of infection.

* Once vaccinated child contract pneumonia, the vaccination dasggisned to be useless.

» The effects of vertical transmission to pneumonia ofuthder five years from age brackets at least
five years is assumed to be insignificant in this study

* The pneumonia is assumed to be transmitted after effectintact between susceptible child under
five years and infectious classes (mild and chronic) and/atetleclasses (mild and chronic).

* The weak nature of child’s immune system was assumed tailberable to different types of
pneumonia as long as they exist in population.

2.3 Model Equations

We obtain the following systems of equations representindythamics;

B = ¢n+pR — (Kh+ WS (2.3.1)

dac
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T =(1-¢mn—(1 -k -V (2.3.2)
ZM = PIAS + (1 — KAV — oy Iy (23.3)
“lf = (1 - P)KAS + 0,1y — I, (2.3.4)
S = 11y + 0,T; — 03Ty (2.3.5)
T = 1yl — 0,T¢ (2.3.6)
O = 4, T + 1, Tc — O5R (2.3.7)

where,

N@®) =S+ V(@) + 1) + 1:(t) + Ty () + Tc(t) + R(t),

o, =0 +pu+1,

®; = U+ + 1y,

o3 =7, +1

0y =7, + L+ 0, + 5y,

os =Q+p)and 0 < P, k,e,¢ < 1.
The initial conditions of the systemi@.3.1) — (2.3.7)] are represented by;

$(0) = S, V(0) = Vo, 1y (0) = (o, 1c(0) = (U)o, Tu(0) = (Ta)o, Tc(0) = (T¢)o and R(0) = R,.

The force of infection denoted Byt) is given by:

At =By + & 1c +E,Ty +E,T¢)
Where0 < ¢, <§, <§, <1
Adding equations of systefi2.3.1) — (2.3.7)], the rate of change of total population is given by,

dN
E =T — “.N - 611C - 62Tc.

3 Model Analysis

The model is analyzed by proving various theorems and aligebomputation dealing with different
attributes.

3.1 Positivity and Boundedness of the Solutions

We prove positivity and boundedness by stating and prokimtheorem below.
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Theorem 1. The regionQ isgiven by
Q= {S(t),V(t),IM, (), 1c(8), Ty (£), Tc (£), R(E) (O)ERT, N SE}

is positively invariant and attracting with respect to mogeteni(2.3.1) — (2.3.7)],

Pr oof.

Let{ S(t),V(¢t), Iy (t), Ic(t), Ty (t), Tc(t) and R(t)} be any solutions of the system with non-negative initial
conditions

{S(0) = 0,V(0) = 0,1,,(0) = 0, > 0,Ty = 0,T. > 0,R(0) > 0}.

Since, % =o¢on+pR—(kr+ S , it follows that % > —(kA+ S . On integration, we obtain

t t
%[S(t)efo‘(k““)ds] > 0. Clearly,S(t)elo ~0+ds j5 3 non-negative function of t, thus S (t) stays positive

The positivity ofV (t), I, (t), I, (t), Ty (t), Tc(t) and R(t) is proved along the same lines as follows:

dv
i (1=¢)nS —[(1 — Ok + p]V

dv

I > —[(1 —kh+ plV

dv
%4

> —[(1 — kr + pldt
V() = Cle‘[(l“)k“”]f
Where(; is a constant of integration, applying initial conditairs = 0,
¢, =V(0),
V(t) > V(0)e[(A-okitult,
V(t) > V(0)e [(A-dki+le > g
Similarly,
Iy () > Iy (0)e™@1t > 0,
Ic(t) > 1:(0)e 2t > 0,
Ty (®) > Ty (0)e @3t > 0,
Te(t) > Te(0)e @+t > 0,
R(t) > R(0)e~®st > 0.

Taking the time derivative of our total population alorsgsolution path gives:
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dN _dS dV dly dlc  dTy  dT;  dR

dt o dt Tdar T ar Tae Tar Tar T
dN

EZ”_HN_511C_52TC

Therefore,

dN+ N <
ac THY=ET

This implies that
T
N(t) < E{l + c ey,

Wherec, is the constant of integration.

Hence,

T
lim N(t) < —
u

t—ow

This proves the bounded of the solutions inside Q. This implias all the solutions of our system
[(2.3.1) — (2.3.7)], starting in Q and remains in Q for alt 0. Thus Q is positively invariant and attracting,
and hence it is sufficient to consider the dynamics ofsgastem in Q. This completes the proof.

3.2 Disease-free Equilibrium Point (DFE)

The disease-free equilibrium point (DFE) of the systéh8.1) — (2.3.7)], is obtained by setting all the
infectious classes, recovered class and treatment classe®. We get

dn—pS°=0; 1—¢)m—pV® =0,
which yields,

om A

.V():
u

s =

The DFE point for our system is given by,

T (1 —d)n
E® = (SO, VO, 12,15, Ty, TS, R%) = (—¢ ,—( L
u n

, 0,0,0,0,0).

The DFE poin(E®) is the infection free equilibrium point of the systfi®.3.1) — (2.3.7)], which indicates
that in absence of pneumonia the system will consist of teropartment classes (susceptible and
vaccinated).

3.3 The Basic Reproduction Number (R,) and Control Reproduction Number (Rc)

We use the next-generation matrix method to determine the coepm@duction number Rf the model
[11]. Using the notation f for a matrix of new infectidgeems ands for the matrix of the remaining transfer
of infection terms in our system, we get,
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PKAS + (1 — KAV o1y
f= (1 - P)KAS o= =01y + oyl
0 ’ —nly — 6,Tc + 3Ty
0 e + 0,T¢

Let
F,=PRAS + (1 — KAV, F,=(1—P)K\S, Fi=0,F, =0,
FS = o)llM, F6 = _ellM + 0)21(:, F7 = _TllM - ezTC + 0)3TM, F4, = _TZIC + 0)4,TC

We obtain the matrices F and V by finding the Jacobianieestof f andsevaluated at DFE respectively to
obtain,
Rl §1R1 §2R1 §3R1
F = Bk RZ §1R2 §2R2 §3R2
0 0 0 0
0 0 0 0

where,R; = PS® + (1 —€)V°, R, = (1 — P)S® and,

o, O 0 0

_ _01 0)2 0 0
V= -0 0 w3 — 92
0 - 0 o

We now compute the inverse of V to obt&in' as below,

1
— 0
O 0 0
6 1 0 0
V-1 = ®10z  ©2
I 91 (4] 92 + (1)2 (1)4 (21 92 (4] i 62
07102030y 00304 W3 403
61 (4] Tp 0 i
07 0Dy [Qr1an [an

Multiplying the matrices” andV ~! to obtain,

Fv—t= (Tl TZ)

I; T,
Where,
& n R191§1 " R1§2(919272 + T10;0,) n R161§312 R1§1 n R192§2T2 n R1§3T2
! &_I_ R291§1 n R2§2(919212 + T, 0,04) n R291§3T2 Rzél n Rzezézfz n Rzgg‘fzj'
RS, R.6,E, + R1§3]|
3 0304 [
T, = Bk |
MRg R0s R
o 30, My J
0 0
T3 = T4 = [O O:I.
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Using Mathematica software to obtain the eigenvafqés, i = 1(1)4} of the matrix(FV 1) we get,
q(1) =q(2) =q@3) =0,

Bk
q(4) = W{lez(’%(’h + & (R10,0304 + Ry, 030,)

+ éz(Rleleztz + R292T2@1 + R1T10)20)4) + §3(R191‘L'2(D3 + R2T20)10)3)}.

The control reproduction numb@R) is given by the spectral radids(the dominant eigenvalue) of the
matrix FV ™, denoted by (FV 1) is;

Bk
Re = W{Rl(’)z@ﬂ% &1 (R18,0304 + Ry 01 03004)

+ éZ(Rleleztz + R292T2@1 + R1T10)20)4) + 53(R191‘L'2(D3 + R2T20)10)3)}.

The control reproduction numb@&R.) is the average number of susceptible children under thefdge o
years, one infectious child (mildly infected or chronicafifected or mildly treated or chronically treated)
can infect when combined interventions of vaccination anthtesa are already in place.

The reproduction numbé€R.-,) when the vaccination drug efficacy is 100%, that4s1 is given by;

pks°®
Re.q = W{Pw2m3w4 + &, (PO 0304 + (1 — P)o,0304)

+ &, (P010,1; + (1 = P)0,1,0; + Pri0,04) + &, (PO 7,03 + (1 — P)1o0,03))-

The reproduction numbégR._,) is average number susceptible children under the age ofdaes, one
infectious child (mildly infected or chronically infected oildty treated or chronically treated) can infect
when intervention of treatment are already in place aigdriot possible for vaccinated children to contract
pneumonia.

The reproduction numbéRt) when the rate at which mildly and chronically infected dreih(t, and t,)
are zero is given by;

Bk

R =
T (07 —1)(0 =1

D {R1(032 -1)+ §1(R161 + Ry(0; — T1))}-

The reproduction numbéRy) is average number susceptible children under the age of diaes,yone
infectious child (mildly infected or chronically infected moildly treated or chronically treated) can infect in
absence of intervention of treatment.

The basic reproduction numbgg,) in absence of interventions is given by;

R = BSO(P(u+38;) + (u(1 = P) +6,)&)
o (n+d)(@+6y) '

The basic reproduction numbg,) is average number susceptible children under the ageeofdars, one
infectious child (mildly infected or chronically infected moildly treated or chronically treated) can infect in
absence of interventions of treatment and vaccination.b@ls& reproduction numbéR,) will be used to
determine herd immunitgg.) as below,

Qc = R,
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3.4 Existence of Endemic Equilibrium Point for the Model (EEP)

We state and prove the following theorem
Theorem 2

A positive endemic equilibrium exist wheneRgr> 1.
Pr oof

The dynamic systems of the equatifpf&3.1) — (2.3.7)], is seven dimensional and analyzing it may not be
tractable mathematically. After obtaining reprodoctinumbers of the full system, the goal of the model
analysis is to understand qualitative behavior as oppdeecexact solution of the system. The
system[(2.3.1) — (2.3.7)], is highly nonlinear and may be difficult to solve mathticadly. The study
proposed to reduce the system to four dimensions by combinithge ahfectious classes (mildly infected or
chronically infected or mildly treated or chronicallgated) into one compartment class (A). Kt) =

Iy(®) + (1) + Ty () + Tc(t),the time derivative of A is given b%; = ‘E—‘:‘ + dstC ‘f—:" ddltc = Z—T— % —
dv

dt’
The system of equatiofi§2.3.1) — (2.3.7)], reduces to,

as

— = 0n+pR — (Kh + p+ ¢m)S (3.4.2)
av
o= @ =0n—k(l -, —nuV (3.4.2)
z—[: = -+ DA =8,1c =3, Tc + KNS+ k(1 — AV — 1 T, — 1, Tc (3.4.3)
dR
E = 71Tm + 72TC - (DSR (344)

Since the following paramete{’fsl,yz,Bl,Sz,p, €, &, and §3} are less or equal to one or greater or equal to
zero, it follows by closure property the members belowbeaaxpressed as subsets of Albr

o {8,188, T £, TE A,

o {1 T 1, Te, 8116, 85T, A € I, €, T, £, T A,
o (I +EIE+E, T + &, TE A,

. (81Ic +8,T¢c + v, Ty + yZTC)gA,

©  (v,Tm +7,Tc + HA)CA,

o (Iu+&Ic+E,Ty+E&T)cA

Let us introduce these subsets as parameters oAas indicated below,

* Y1Tm + YZTC + }’LA = QZA:

* 51[(: + 62Tc + 'Yle + 'YZTC = QlA,
® IM + E_,llc + E_,ZTM + E_,STC = QSA,

© I+ & e+ 8Ty +8;Te = Q347

Where,2,, 2, and (2 is less or equal to one. It is clear from the syqi@m.1) — (3.4.4)],42, = 2, =
£2,. After the change of variables the system of equati@4.1) — (3.4.4)] becomes,

10
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= = gn+ pR — (KA + p)S (3.4.5)
= (1-¢m—k(1— W —pV (3.4.6)
‘jj—‘: =kAS + k(1 — AV — 2A (3.4.7)
R = 2,A— osR (3.4.8)

dat

The control reproduction numbgR;) of the systenii(3.4.5) — (3.4.8)] using the second generation matrix
is given by,

Pk H,

Re=———

C -(21 ’
where,H, = S° + (1 — e)V°.

After the change of variables, the force of infectionrattegnic equilibrium pointK*™ = (§*,V **, A", R™)
of the systen{(3.4.5) — (3.4.8)]will be given by."* = B2,A*.The endemic equilibrium poin;* =
(™, V ¥, A*, R*of the systeni(3.4.5) — (3.4.8)]], is obtained by equating the system to zero to obtain;

o + pR*™ — (kA" 4+ w)S** = 0 0]
A=-P)r—1 -\ V™=V *=0 (i)
KAS™ + k(1 — OL™V ™ — QA™ =0 (iii)
QA" —0sR™ =0 (iv)

Solving the system of equation abdy® - (iv)] in terms ofA** using Mathematica software we obtain;

G d)ﬂ: + P *%
- k}\** + },I, ’
b (=
V"1 —e) +
A = k™" (=1 4+ RV + p) — epd)os
k(14 ) — (A" + Pos2; — kA" p2,)
R . _ QZA**
w5

Substitutingd** using Mathematica software to solve the equation belowhisn two cases
A= B2 AT =0,

Case 1)™ =0, which correspond to the disease free equilibrium pdift) of the systenj(3.4.5) —
(3.4.8)] given by ;

EOO — (500 VOO AOO ROO) — (

gr A =07 6oy
n

n

11
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Case 2; the value(s) af* obtained by the quadratic equations below correspond to endguilibrum
point.

a(M™)2+ b\ +c =0,
Using Mathematica software a, b and c are obtained asvi&ll

a=k*(—1+ e)(0s£2, — p2,) <0,

~1+OR;
b=k((=2+pn— <”(H—€)C> 052 + upe2,,
2
14 e(~1+ §)R:
Cc = u{—p + TE( €(H ¢)) C} 0)5.(21.
2

For real positive.™, b? > 4ac .Since a < 0,A"" > 0if and only if ¢ >0,i.e

s n(1+e(—1+ ¢))R¢ >0,

H,

After algebraic manipulation it follows that the conditionscessary and sufficient fér™ > 0 are
R¢ > 1 which completes the proof.

3.5 Bifurcation Analysis

Mathematical models with vaccination often undergo bifurcatiorthvhiakes the control of the infectious
diseases difficulf12]. This bifurcation will be explored, using the Centre Maliftheory [13]. The
change of variables are made first for simplicity. $ety,,V=y,, A=y;andR =y,,So thaN = y; +
y2 + y3 + y..Further, by using vector notatipn= (yy,y2 V3, v4) . the pneumonia mod¢(3.4.5) —

(3.4.8)]can be written in the forr%f— = F(y), with F = (91, p2,P3,P4)", as follows:

Y1 =p1 = ¢n — (kB2y; + Wy + pyy, (3.5.1)
Y2 =p2 =1 —¢)n— (1 - kB2ysy, — ny, (3.5.2)
Y3 = P3 = kBLXysy; + k(1 — )BLhysy, — Q3 (3.5.3)
Vo = D4 = (Y3 — OsY, (3.5.4)

W|th, A*** = ‘BQ3Y3.

The method entails evaluating the Jacobian of the sy{tef1) — (3.5.4)] at the disease free equilibrium
point, E2 = (S2,V°,4%, R?) = ("’f% 0,0), denoted by(E?). This gives:

-u 0 —kpB*2,S° P
JED.=| 0 TR —k(A-op 2V 0

0 0 kﬂ*Q3H2 _Ql 0 ’
0 0 £, —0s

Where,H, = S°+ (1 —¢)V°.

12
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Consider the case, wheR@ = 1. Suppose, further, thgt= £*is chosen as a bifurcation parameter. Solving

forg* fromR; = 1 give3* = %Using Mathematica software the Jacobiar%’o& F(y) at the disease
302

free equilibrium point, withg = g*, denoted by(E?), has eigenvalueG-u, —u, —os and 0). We obtain
one zero eigenvalue and three negative eigenvalues héec&€entre Manifold theory can be used to
analyze the dynamics of the model (13). The theoremdstetiow will be used to analyze the dynamics of
the mode[14].

Theorem 3.

Castillo-Chavez and Song. Consider the following gengrgtem of ordinary differential equations with a
parameteg”

d
= ,),f+ R" x R = R"andf € C2(R" X R),

where 0 is an equilibrium point of the system (thaf(is,8*) = 0 for all 8*) and

1. A = D,f(0,0) = (% (0,0)), is the linearization matrix of the system around theildégium O

with g* evaluated at O;
2. Zerois a simple eigenvalue of A and all other eigenvaluéstafve negative real parts;
3. Matrix A has a right eigenvector u and a left eigenveetoorresponding to the zero eigenvalue.

Let pbe the kth component of p and
0°pr

a= z vu;u; ——— (0,0),
K a)’ia)’j

a%p
b= z Vkui_ay'a;*(o;o);
L

kij=1

then the local dynamics of the system around the equitibpiaint (0,0) is totally determined by the signs of
aand b.

Particularly when:

i. a>0andb >0, wheng” < 0 with |8*| « 1,(0,0), is locally asymptotically stable and there
exists a positive unstable equilibrium; wher< g* « 1,(0,0) is unstable and there exists a
negative and locally asymptotically stable equilibrium.

ii. a<0andb <0, whenp* < 0 with |f*| « 1,(0,0) is unstable; wherd < g* « 1,(0,0) is
asymptotically stable and there exists a positive unstablal@guih.

iii. a<0andb >0, whenB* < 0 with |B*| « 1,(0,0)is unstable, and there exists a negative and
locally asymptotically stable equilibrium; wheéh< * « 1,(0,0) is stable and there exists a
positive unstable equilibrium.

iv. a> 0 and b < 0, whenf3*changes from negative to positi®,0) changes its stability from stable
to unstable. Correspondingly a negative equilibrium bexo positive and locally asymptotically
stable.

If a>0and b > 0, then a backward bifurcation occufs at 0 [14].

13
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Eigenvectors offg-: For the case wheR; = 1, it can be shown that the JacobipifE?)] at
B = B (denoted by,-) has a right eigenvector given by= [ug, uz, uz,u,]” , where,

_ —kB2;S%uz + puy,  —kosBe2S°us + pyu, <o

u = f
! u Hos

—k(1 — €)B2,Vu
u, = ( )B L2 3<0'

u

U3=U3>0,

u
Uy = 23 50.

®s

FurtherJz+ has a left eigenvecto(s = [vy, v,,v3,v,4]"), where,

v; =0,
v, =0,
vz =v3 >0,
v, =0

Since(v, = v, =v, = 0), we only need to compute the partial derivativegp-ofat the disease free

equilibrium point). For the systeff4.5.1) — (4.5.4)] the associated non-zero partial derivativg;ofat the
disease free equilibrium) is given by

0°p3 0%p3 0°p3 0%p3
= :kﬁ*g' = =(1_8)kﬁ*.(2
dy,0y;  0p30y, : 0y,0y; 0y30y, :
It implies,
: 0px
a=vg Z uiu]- —aXi axj,

ij=1

0°p3 0%p3

=2 _— —_—
¢ V3 {ulus 0y,0y3 2l GYZaJ@}

Sinceu, and u, are less than zero, it follows that,

a = 2vs{uuzkB* 2y + uyus (1 — )k 25} < 0.

Also,
62P3
=KkB25° + k(1 — €)B2LV°,
08 B2 7 B
R A
= v u———+v Uu; X
: ‘oy;0pr "0y 0B

i=1 i=1

14
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Sincev; and u; are greater than zero it follows that,
b = vaus{kB2;S° + k(1 — €)p2,V} > 0.
Hence, it follows (from Theorem 3 above) that wigén< 0 with |B*| « 1,(0,0) is unstable, and there

exists a negative and locally asymptotically stable equilibyiwhen0 < g* « 1,(0,0) is stable and there
exists a positive unstable equilibrium.

3.6 Local Stability of the Disease free Equilibrium Point (DFE)

To determine the local stability of the disease free duiilin point we state and prove the following
theorem.

Theorem 4.
The DFE of the systefi3.4.5) — (3.4.8)]is locally asymptotically stablR; < 1 and unstable otherwise.
Pr oof
To establish the local stability of the systfi®.4.5) — (3.4.8)], we use the Jacobian of the model evaluated
atE?. Stability of this steady state is then determined baseth@reigenvalues of the corresponding
Jacobianwhich are functions of the model parameters. We let
P, =o¢n—(kA+p)S +pR,
P,=1—-¢)n— (1 -k —py,
Py =KAS + k(1 — €AV — A,
P, = 2,A — wsR.
The Jacobian matrix evaluated at disease free equilibraim ° is obtained as
/—u 0 —KkB.2,S° p\
0 - _ _ 0
JEY=| Yy kﬁl}giHZ e)—ﬁgfv 0 |
00 £, —g
Where,
H,=S"+(1—-¢eV°
Solving the equation
V(E®) —q()H| =0,

where H is the identity matrix and = 1(1)4 are eigenvalues Using the Mathematica software werpbtai
the following eigenvalues

q(3) = —aw;,
q(4) = =2, + kBA%H,.

15
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Clearly three eigenvalues are negative but the conditiecessary and sufficient fqf4) is
_Ql + kBQ3H2 < 0,
kB H, < €2,

kf2;H
332<
)

1,
R{ < 1.
This completes the proof.

3.7 Global Stability of the Disease free Point

To prove the global stability we state and prove theietig theorem
Theorem 5

The DFE is globally stable whenew§ < 1 unstable otherwise.

Pr oof

We propose the following Lyapunov function for the sys{€m.5) — (3.4.8)]
L(S,V,A,R) =S —S°—S°L > X, (Vv-vo-voL v X,A+ X3R
(S,V,ALR) =S — - n§+ 1 — — TLW + XA + X5

L(S,V, A, R) is positive definite satisfies the conditions;
L(SO,VO,AO,RO) =0andL(S,V,A,R) > 0.

For w to be negative definite, it must satisfies

dL(S°,V?, 4° R?) dL(S,V,A,R)
— . Z—0and ————2<0.

dt dt

whereX;, X, and X, are positive constants to be determined. At DFE i&fint (S° V°, A% R?) the system
[(3.4.5) — (3.4.8)] satisfies,

¢m = pus°,
(1 — ¢)m = pvo.

The time derivative of the lyapunov function is obtained as,

at 5@ Viateatsaw

dL(S,V,A,R) %\ dS VO\dv dA _ dR
—= 1) g a1

Substituting';—f,‘;—‘t/, Z—’: and ';—E: to obtain;

16
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0

dL(S,V, A R) S0 v
— = (1—?){¢n— (A + S +pR}+X1<1—7>{(1 — ) — k(1 — AV — uv}

Substitutinggm and (1 — ¢)m to obtain;

dL(S,V,A.R) _ 0

0
it = (1 - %) {uS® — (kBXBA+ 1W)S + pR}I+ X, (1 - VV> {uv° — k(1 — €)B2RAV — uv}

+ X, {k2;AS + k(1 — €)4%ZAV — 2 A} + X3{2,A — 0sR},
dL(S,V,A,R) _ (S — 59?2 (V-V9)2
dt ST T
SO
+ {X, — 1}JKB2AS + {X, — X;}kB(1 — €)4%AV + {p— X305 — p—}R.

+ {_ngl + X3Qz + kﬂQ3SO + Xlkﬂ(l - E)Q3VO}A

S
SettingAS, AV and Ato zero we obtain the following equation,
X,—1=0,
X, — X, =0,
—X, 1 + X302, + KBS + X, kB (1 — €) 2,V = 0.
Solving the above equation to obtain;
X, =X,=1,

2 kﬂ-Qst_-Ql(l )
i =11 -RY),

X, =
T 9 2,

Where,
Hy,=5%+(1-¢V°.
The derivative of lyapunov reduces to;

dL(SV,AR)  (S—S9?  (V—VO)?
dt - Th TS Ty

+pl1 SOR '01(1 “)osR
P S Q, c)Os

0
Since(l - S?) < 0, the conditions necessary and sufficient—%ﬂi‘/—m < 0is(1 —Rg) > 0. This implies

that disease free equilibrium point is globally stable if anly dnRi < 1 and unstable otherwise. This
completes the proof.

3.8 Local Stability and Global Stability of the Endemic Equilibrium Point (EEP)

At endemic equilibrium point (EEP), the global stabilityplies the local stability. To determine local and
global stability we state and prove the following theorem.

Theorem 6

Hy (V***=1)2 .
2( ) _unstable otherwise.

The DFE is globally whenev® < )

17
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Pr oof

For the systeni(3.4.5) — (3.4.8)] to be tractable mathematically consider a special casee\ife wanning
due to drugs is zero i@= 0 to obtain [13],

as

i o — (kA 4+ p)S (3.8.1)
‘;—‘: =(1-)n—k(1— AV — v (3.8.2)
‘j‘j—‘t‘ =KAS + k(1 — AV — Q2,A (3.8.3)
Z_’: = Q2,A—uR (3.8.4)

The controlled reproduction numb@y"), the force of infectioil™"), disease free equilibrium poifif® =
(500,17 00 400 R00Y — (4’—;,%,0,0) and endemic equilibrium poif*™** = (§***,V ***, A***, R***) of the
system[(3.8.1) — (3.8.4)] is given by

o PRH,
c = _(2 ,}\, = ‘BQ3A and
1
TC
Srer — (b :
k}\*** + H
(1 —e)+
-1+ A" (-1+¢)  kmA™"¢
o k(—14+e)A***—pn KA +p
AT = )
_Ql
QA
R ** = 2 ]
98

where,H,, = S + (1 — )V %0,

We propose the following Lyapunov function,

S \' A
K, V,AR)=8§—-5" — S***Ln§ +Y (V -V — V***LnF) +Y (A — A" - A*LnE)

R
+Ys <R —R™ — R*Lan),

wherd,, Y, and Y; are positive constants to be determined. The lyapunotidari(S, V, A, R) satisfies the
conditions, K (§***, V***, A**,R**) = 0 and K(S,V, A, R) > 0, henceit is positive definite. chx(sgl%m to
be negative definite, it must satisfies,

dK(S*,V*, A", R") dK(S,V,A,R)
=77 20 and ——22 <0,
dt dt

18
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The endemic equilibrium poift;, = (§**,V*, A*,R*) for the system satisfies,
1 = (KBQA™ + p)S™,
(1= p)m = k(1 — ©BRA™V* + uv*,
QA" = uR™,
KBOA™ (S™ + (1 — V™) = QA"

Determining the time derivative of the lyapunov equatiorob&in,

dK(S,V,A,R)_ L §7"\ dS ¥ (1 V= dV x. (1 A"\ dA x. (1 R*™\ dR
BELAD. o) - ) e (- 1)

dt dt dt "R /) dt’
. . dS dv dA dR
Substituting ford—t,I,E and e
dK(S,V, A R) g
s (1 =2 )b - B2+ S T+ X, (1 - ){(1 — ) — k(1 — B2AV — uV)
+ X, (1 — ) (BLAS + k(1 — OBLAV — A} + X, (1 - T) {,A — uR},
dK(S,V,AR) S* e "
o = (1S (0BT + 108 = (kB + 108 )
+x (1 - ){k(l COBATVT 4 W — k(1 — ©)BAV — V)
+ X, (1 -= ){kﬁ.QSAS + k(1 — OBRAV — QA} + X, (1 - T) (2,4~ uR),
dK(S,V, A R) (S—=5")2  (V-V)? .
= e e (60 - X+ Xy k(1 - OBV + KBS A
+ (X, — 1IKBAS + (X, — X, JKB(1 — €)Q25AV + —XauR + (— T) (KB,A™S™)
e (— = ){k(l — OBAVY

kK Hkok

+ X, (— i ){kﬁ.QSAS +k(1 — ©)B2AV — A} + X, (_T) (2,4 — X;uR}
+KBA'ST + X, {k(1 — €)BA™V ),

SettingAS, AV and Ato zero we obtain the following equation,
X,—1=0,
X, =X, =0,
X302, — X102, + X, k(1 — €)BV™ + kB2,S™ = 0.

Solving the above equations to obtain,

Where, H, = S°° + (1 — )V %0,
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dK(S,V,A R (S—S™)2  (V—V*)? | RBOLA G (2 S s)
dt -Th T Ty B = 7S
+ k(1 — €)BQ, AV (2 ooy )
€ B 3 V V*** 4

dK(S,V,AR) (S —5*)? (V—=vr)? S S
=— - +kpQ A***S***(Z————)
dt s " B2 s s
+ .04 (2 Ve v ) kB A S (2 Ve v )
1 V V*** ﬁ 3 V V*** 4
dKESVAR) (S-S V=V A***S***( s s v v )
a " s Ty P2 s s TV Ty
+ 024" <2 Ve v )
1 V V*** 4
dK(S,V,A,R) (S=S5")2  (V—-V*)? RE/ S  S™
= — — — Q A***S*** _( + _)
dt S Ty 1 Hy \s* " S
P S LA YA A
1 HZ VvV AVAss VvV \VAss )

Since all the other terms éjf% are less than zero, the condition necessary and suffickent f
dL(S,V,AR)

& <0 is given by,

g RE* <V*** N 174 )+ (2 \ade 174 ) -0
HZ V V*** V V*** ’

R:*
grxx H_C(V***Z + VZ) < V***Z + VZ _ ZVV***,
2

HZ (V*** _ V)Z

R <————.
c <S***(V***2+VZ)

Thenj—‘:: 0 holds only whegS = S*™*,V =V, A = 4" andR = R"™): So the maximal compact
invariant set in{(S; E; I) € I'I:Z—Z= 0} is the singleton £;*} using Lasalle's invariance principle

dLSLAR) _ 0,1ff
dt

Hz (V*** _ V)Z

Rt <——F——=
C <S***(V***Z+V2)

4 Analytical Results of the Model

We shall determine epidemiological thresholds and catryensitivity analysis of the control reproduction
number(R.) using partial derivatives.

4.1 Epidemiological Thresholds

We shall determine treatment thresholds, herd immunityirapdct of treatment using control reproduction
number and basic reproduction number.
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4.1.1 Treatment thresholds

We shall determine treatments for mildly infeci@gg) and chronically infectedlc) using the control
reproduction number.

4.1.1.1 Mildly treatment threshold; ©).

According to[10], the mildly treatment threshold is determined wRgnis equated to one and solving for
(rlc) critical treatment for mildly infected childrét,) to obtain,

c_ ®103

T = BRER, {Ri0,0;0, + & (R10,0304 + Ry01030,) + &£,(R10,0,7, + R,0,7,0,)
2

+ §3(R191T2(D3 + Rz‘fz(l)10)3)}.

4.1.1.2 Chronically treatment threshdld, ).

The chronically treatment threshold is determined whefs Rquated to one and solving figf critical
treatment for chronically infected childréf) to obtain,

1 M2 M3My

Bk
— {Ryo050, + & (R16,0304 + Rym;0304) + §Z(R1T1@z@4)})-

¢ = {fz(R19192 + R20,0,) + 53(R191033 + R2031033)}<

4.1.1.3 Measure of treatment imp#&).

[15], defined measure of treatment impact based oreffreduction numbers can be defined as

=1-K
W) =1-%

W) =1+ ((k+8)(+0y) <(1 —P)S°(n+6; + 1) (9152172 +o3(&T, + 51034))
+((PS°+ (1 -V ((u +6; + 12)(5211 + @3) 0,

+ 6, (9252172 + o3 (éfg‘fz + 51034)))))
/(50(_13(11 +6;) + ((_1 +Pu— 91)51)01 +0; + 1)+ 8 + 1)mz0,.

4.1.2 Herd immunity

The herd immunity threshold is determined by,
qc=1- Ri, where(q.) is the critical vaccination threshold [16].
0

Substituting for basic reproduction numlgBg), we obtain,

(n+8)(+6,)
BkSO(P(u+8,) + (u(1 —P) +6,)¢)

qQc=1-
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4.2 Sensitivity Analysis of the Effective Control Number (R¢)

Impact of intervention strategies are vital in lomgrburden of pneumonia It is important to investigate the
sensitivity ofR. to: the rate at which mild and chronic infected childseek treatmergt, and t,), with
respect to vaccination drug efficagyand effects of environmental factors (k). Determiniraytipl
derivatives ofR. with respect to;

i. Effect of environment (k)

dR; B
dk M0, M30,
+ éZ(Rleleztz + R292T2@1 + R1T10)20)4) + 53(R191‘L'2(D3 + R2T20)10)3)} > 0,

{Ri0,050, + & (R16,0304 + Rym1m30,)

ii. Rate at which mild infected children seek treatrment

dRe _ —L{R + & (R0 +R )
dr, = 120,030, 1020304 51( 1910304 201030y
+ &, (R1010,7, + Ry0,1,01 + Ryt 0,04) + &, (R1011,05 + RyT,01003)}
Bk
m{§1R2@3w4 + &£,(R20,1, + Riwy004) + §3R2T2033} <0,

iii. Rate at which mild infected children seek treatmgnt

dR¢ Bk
a, = —W{lezw3w4 + & (R10,030,4 + R0, 030,)
+ fz(R1e1esz + R;0,7,01 + Ri110,04) + 53(R191T2033 + R1,0,03)}
Bk
——— 1R + & (R16,6, + R,0 +R
0)10)20)30)4{ 103 My sgz( 19193 2U204 1T104)

+ & (R10,05 + R0, 03)} < 0.
iv. With respect to vaccinate®f ) drug efficacye).

dR¢ BKVO
4= —m{m2w3m4 + &,010304 + £,(016,7; + 110,04) + 536112c03} <0

5 Biological Interpretation of the Analytical Results

We shall interpret the stabilities of equilibrium poidétermine thresholds and determine partial derivate of
control reproduction numbér,.).

5.1 Local and Global Stability of Equilibrium Points

An equilibrium point is said to be locally asymptotlgastable if all points in the neighborhood of the
equilibrium point move towards it over time. An equilibriygoint is globally asymptotically stable if all
points move towards it over time. Disease free point of pnewmnordel was locally and globally
asymptotically stable when the control reproduction nurRgy is maintained less than one; this means
interventions should maintain control reproduction number less tharinobeder to avoid pneumonia
persistence. The system did not exhibit backward bifisrcdtence it is feasible to control pneumonia in
Kenya. Interpretation of local and global stability of emic equilibrium point will be part of future
research.
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5.2 Epidemiological Thresholds

The number of children under five years who can be inflegith pneumonia by one infectious child when
interventions such as vaccination, proper control of environméaxttors and treatment are observed is
referred to as control reproduction numpRg) while the number of children under five years who can be
infected with pneumonia by one infectious child without intenesst referred to as control reproduction
number(R¢). The control reproduction numbéR¢) and basic reproduction numb@,)of the system
[(3.3.1) — (3.3.7)] are given hy;

Bk
RC = —{R1@20)3(D4 + él (R1910)3(D4 + R2@10)30)4) + §2 (Rlelez‘fz + R292T2@1 + Rl‘fl(ﬂzﬁ)‘l)
01 0203W4

+ §3(R1611:20)3 + Ry1,01003)},

R BKSO(P(u+8,) + (u(1 = P) +0,)&)
o (n+6)Mm+6y) '

5.2.1 Treatment thresholds

When actual treatmengs, and t,) are greater than critical treatmeqt and 1, respectively it can ensure
total eradication of pneumonia. Also, treatment withisigfifit coverage can succeed in eliminating infection
whenR, is below unity. Because .Rneasures the intensity of the epidemic, treatment, bgriogR., can
have significant public health impact even if it fadseliminate infection in a specific population. When,

) =1+ ((r+8)(n+61) ((1 —P)S°(u+6; + 1) (91§ZTZ +o3(&T, + §1@4))
+((PS°+ (1 —-e)V? ((u +6;, + tz)(éztl + 03)0,
+ 0, (ezfzfz + o3 (§3T2 + fﬁ%)))))
/(SO(_P(H +6,) + ((_1 +P)u— 91)@)(“ +6; + 1)U+ 8; + 1)mz0,) > 0.

Thus, population-level impact of treatment is always tp@siprovided. This condition is likely to be
satisfied for treatment with effective drugs.

5.2.2 Herd immunity

Vaccination is a voluntary process and it is not possiblatcinate all individuals in the population. When
actual vaccination(I — Q) is greater than critical treatme(d.) it can ensure total eradication of
pneumonia.

5.3 Sensitivity Analysis of the Effective Control Number (R;).

Clearly,R¢ was directly proportional tk but inversely proportional te;, t; and t,. Higher vaccination
efficacy (¢) and higher rates rate of mildly and chronically infeatbddren seeking treatme(t; and t,)
would decrease the control reproduction number and the interfigitg pneumonia endemic. Lower effect
environmental factors (k) would decrease the control demtion numberKc).

6 Discussion and Conclusion

Most of the developed mathematical models concentrate aertz pneumonia, antibiotic resistance, and
vaccinations. These models assume that pneumonia is @solgbepulation, during treatment and in death.
Further, viral, fungi and parasitic pneumonia are magtigred.
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The research studil7], considered an in host model concentrating on bactegamonia $treptococcus
pneumoniq They considered issue of coexistence of pneumonia peoty a population. The study model
assumes isolation is carried out in hospitals. Theirfgslstressed correctly modeling the possibility of a
host being able to become simultaneously invaded with rharedne strain, taking into account difficulties
in obtaining a second strain if already colonized and corisgl@cquired immunity of new strains. Our
research study developed general model pneumonia dsds@dpulation of the under five years.

The research study [18], considered a pneumococcal tissiemin host model which takes into account the
risk of higher rates of transmission for children whierad child-care centers or who are often forced to
spend time with children who attend these centers. The residss the importance of child-care centers in
transmission. The study model assumes isolation isedaout in hospitals and closed community. Our
research study developed a general model of open cortymuitti births and deaths.

The research study [19], formulated four compartmentasek in their model involving Susceptible,
Carriers, Infected and Recovered. They assumed pneumonialdtedsin health facilities and studied
bacterial pneumonia. The findings stressed importanceeafnient and quarantine where possible. Our
research study developed a general model and assumeddbafiva years cannot have carriers due to the
weak nature of their immune systems.

The research study [10], formulated three compartmelatsses involving Susceptible, Infected and treated
in their model. The study did not consider vaccinated clalssir findings stressed importance of natural
immunity and treatment in lowering burden of pneumonia. @search study included vaccinated class and
subdivided infected and treated classes into mild and chréuithermore recovered class was also
introduced.

The research study], formulated four compartmental classes involving \aated, Susceptible, Infected
and Treated in their model. They assumed treated cldss non-infective and the adults and children have
same infection rates. The results stressed importdrdreig efficacy in lowering burden of pneumonia. Our
research study assumed treated classes to be infeatioualso subdivided infected and treated classes into
mild and chronic. Furthermore recovered class was also irdeod

The research stud0], developed a deterministic co-infection model of mialand pneumonia under five
years of age. The study analyzed the reproduction numbgaibial derivatives.The result stressed the
importance of increase in treatment rates to lower disease incidences.

The research study [8], conducted a case-control stfiggmeumonia etiology among children aged 1-59
months in rural Kenya. They classified pneumonia in two guaies (severe and very severe
pneumonia).The result obtained indicated that very severe pmiaumrases constituted twenty nine percent
of the 810 case patients. Our research study used matihemodel approach to describe dynamics of
pneumonia.

The research study emphasized on the importance ofmgetin lowering the burden of pneumonia, this
was in agreement with research findings of [9,10,19,20leM8ure eradication of pneumonia this research
study detemined the minimum critical treatment thrieshavhich was not taken into account in previous
pneumonia studies. In concurrent with (Laura L. Hamreittal. [8]) this research study also classified
pneumonia in to broad categories but used mathematical approa

Although[9], also studied effect vaccination, their paper did narieine the herd immunity and also failed
to consider the effects enviromental factors and the tomion of the treated classes to the dynamics of
childhood pneumonia and, these have been taken into considémdtiepaper.

The system of the full model was highly non lineawrds very difficult to determine qualiatative behaviour

of the full system, that is the reason as to why theesystad to be reduced to four dimension system.
Constructing an effective Lyapunov function to determine local and global stability of the endemic
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equilibrium point of the reduced system was also a ntdjallenge. Future research will estimate numerical
values of the reproduction numbers for the pneumonia ofider five years in the Kenya and carry out
grapical numerical sensitivity of the reproduction numbBredicting the dynamic of the under five years
pneumonia in Kenya is also part of future research once iufitient, valid and reliable five years
phenomenological secondary data and/or parameters trend.

7 Recommendations

In order to reduce the burden of childhood pneumonia, it is suggesteithé Government of Kenya should
invest in;

» Creating public awareness to parents on; symptoms of pneumonia

« Environmental factors which increase children susceptikidifgneumonia( like indoor air
pollution, living in crowded homes and parental smoking),

» Creating awareness on the need to visit hospitals fatmtent,

» Improving vaccination drug’s efficacy,

* Achieving herd immunity.

The study analyzed a reduced system of equafi®4.5) — (3.4.8)]and[(3.8.1) — (3.8.4)] instead of
[(2.4.1) — (2.4.7)] Model analysis of full systerf(2.4.1) — (2.4.7)] can be part future research.
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Appendix

Table 1. The model variables and parameters

Variable Description

N(t) Total population of less or equal to five year's Chaldin Kenya

S(t) Population of less or equal to five year’s children epi$icle to pneumonia in Kenya.

V(1) Population of less or equal to five year’s children vzated in Kenya.

Im(t) Population of less or equal to five year’s children hildfected with pneumonia in
Kenya.

Ic(t) Population of less or equal to five year’s children chrally infected with pneumonia in
Kenya.

Tu(t) Population of less or equal to five year’s children typitdeated with pneumonia in Kenya
(outpatient).

Tc(t) Population of less or equal to five year’s children chronidalated with pneumon
children in Kenya (inpatient).

R(t) Population of less or equal to five year’s children recové@d pneumonia in Keny

Parameters Description

B Pneumonia infection rate of less or equal to five yeahnildren in Kenya

T Recruitment rate of less or equal to five year’s chibdn Kenya (birth rate).

Vi Recovery rate of less or equal to five year's mildgated children due to treatment
Kenya.

Y2 Recovery rate of less or equal to five year’s chronydaflated children due to treatment in
Kenya.

61 Pneumonia induced death due to less or equal to five yeradsically infected children
in Kenya.

I Pneumonia induced death due to less or equal to fivesyetaronically treated children in
Kenya.

u Constant natural death rate in Kenya.

£ Percentage of pneumonia vaccination drug’s efficacy adtensid to less or equal to five
year’s children in Kenya.

el Waning rate of treatment drug after recovery of less oaleg five year's children in
Kenya.

& Rate at which less or equal to five year’s mildly atél children progresses to chronic
infected class in Kenya.

&, Rate at which less or equal to five year’s chronica#gted children (inpatient) a
discharged as mildly treated class (outpatient) in Kenya

T Rate at which less or equal to five year’s mildly atézl children seek treatment in Kenya.

T Rate at which less or equal to five year’s chronicallgcted children seek treatment in
Kenya.

K Coefficient at which force of infection is acceleratem do environmental facto

27



Ngari et al.; BJMCS, 12(2): 1-28, 2016; Article BOMCS.20180

Table 2. Definition of terms

"Endemic It is long term infection which stays in the population astelO to 20 yeal

Susceptible Proportion of the children population who are free of infectiohat risk of

population contracting the infection

Vaccinatec Proportion of the children populations who are free of iidacand vaccinated wit

population pneumonia but are at a lower risk of contracting the infiectio

Mild Infected Proportion of the children population with the disezausing pathogen and capa

population of transmitting the infection to other children on cahtaut are non-severely
infected.

Chronically Proportion of the children population with the disease caysittgpgen and capable

Infected of transmitting the infection to other children on cantaut are severely infected.

population

Mild treated Proportion of the children population with the disease caysitigpgen under

population treatment and capable of transmitting the infection terathildren on contact.

Chronic treated

Mostly treated as outpatient in our health facilities
Proportion of the children population with the disease caysitigpgen under

population treatment and capable of transmitting the infection terathildren on contact.
Mostly treated as inpatient in our health facilities

Recoverec Proportion of the children population who are free of infecéifter treatment. Th

population effect of treatment drugs is still in their body and they highly unlikely to contract

Infectious diseas

the infection.
Diseases where individuals are infected by pathogen -organisms, for instanc
viruses, bacteria, fungi or other micro parasites.

Alveoli Microscopic sacs in the lungs that absorb oxy

Morbidity Impairments as a result of a disease

Mortality Susceptibility to death

Virulence The degree of pathogenicity of a microorganisindisated by the severity of
disease produced and the ability to invade the tissuég dfast.

Efficacy A measure of how efficient is the drug. If the efficiems 0% then it is useless but
it is 100% then it is perfect.

MATLAB Mathematical software.

Etiology The investigation of attribution of the causeeason for something
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