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Abstract 
 

Pneumonia is an infection of the lungs that is caused by bacteria, viruses, fungi, or parasites. For a long 
time to the best of our knowledge there have not been reliable mathematical model for childhood 
pneumonia in Kenya. This research study developed a deterministic model based on the Susceptible-
Vaccinated-Infected-Treated-Recovered-Susceptible compartment classes. The study used the partial 
differentiation of control reproduction number ���� toinvestigate effects of; environment, efficacy of 
vaccination drug and treatment. Model analysis indicates the system lie in feasible region, it is bounded, 
has no backward bifurcation and there exists unique endemic equilibrium point when control 
reproduction number is greater than unity. Local and global stability of the equilibrium points indicated 
that control reproduction has to be maintained at less than unity to eradicate the disease. Sensitivity 
analysis of the control reproduction number indicates that improved vaccination drug’s efficacy, attaining 
herd immunity, higher treatment rates and lower effects of environment are the best intervention 
strategies to lower impact of the pneumonia of the children under the age of five years in Kenya. 
 

 

Keywords: Control reproduction number; herd immunity; sensitivity analysis; disease free equilibrium point 
(DFE); endemic equilibrium point (EEP); local and global stability. 
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1 Introduction 
 
Pneumonia is an infection of the lungs that is caused by bacteria, viruses, fungi, or parasites. Pneumonia is 
characterized primarily by inflammation of the alveoli in the lungs or by alveoli that are filled with fluid. 
When a person breathes pneumonia-causing pathogens into his lungs and body’s immune system cannot 
prevent entry, the organisms settle in small air sacs called alveoli and continue multiplying. The host body 
sends white blood cells to attack the infection causing the sacs to be filed with fluid and pus - causing 
pneumonia [1]. 
 
Pneumonia is most dangerous for older adults, babies, and people with other diseases or impaired immune 
systems. Pneumonia symptoms include cough, crusty or green mucus coughed up from lungs, fever, fast 
breathing and shortness of breath, shaking chills, chest pain that usually worsens when taking a deep breath, 
fast heartbeat, fatigue and feeling very weak, nausea and vomiting, diarrhea, sweating, headache, muscle 
pain, confusion or delirium and dusky or purplish skin color (cyanosis) from poorly oxygenated blood [1]. 
 
Childhood pneumonia can be spread through inhaling viruses and bacteria that are commonly found in a 
child's nose or throat; they may also spread via air-borne droplets from a cough or sneeze, direct contact or 
through blood contact, especially during and shortly after birth [1]. 
 
Pneumonia can be prevented by immunization, adequate nutrition and by addressing environmental factors; 
it is also treatable. The following environmental factors also increase a child's susceptibility to pneumonia: 
indoor air pollution caused by cooking and heating with biomass fuels (such as wood or dung), living in 
crowded homes and parental smoking. Streptococcus pneumonia is the most common cause of bacterial 
pneumonia and remains a substantial source of morbidity and mortality in both developing and developed 
countries, despite a century of study and the development of antibiotics and vaccination. Viral pneumonias is 
caused by adenoviruses, rhinovirus, and influenza virus and parainfluenza virus. Viral pneumonia is treated 
with rest and plenty of fluids. Fungal pneumonia is not common, but it may occur in individuals with 
weakened immune systems due to AIDS immunosuppressive drugs or other medical problems. Fungal 
pneumonias are usually treated with antifungal medications. The most common parasites causing pneumonia 
are Toxoplasma gondii, Strongyloides stercoralis and ascariasis. These parasites typically enter the body 
through the skin or the mouth and travel to the lungs, usually through the blood [1]. 
 
Bacteria and viruses are the primary causes of pneumonia while fungi and parasitic pneumonia can also 
occur to children under the age of five years with weakened immune system due to malnutrition, AIDS and 
other medical problems. Fungi and parasitic pneumonia can infect those children under the age of five years 
mildly or chronically and may lead to death [1]. 
 
In 2011, pneumonia was the leading killer of children under the age of five worldwide, responsible for 
nearly one in every five global child deaths annually. More than 99 percent of deaths from pneumonia 
occurred in the developing world, where access to healthcare facilities and treatment is often out of reach for 
many children [2]. 
 
Globally, reducing the mortality rate for the children under the age of five years by two thirds between 1990 
and 2015 is one of the millennium development goals and requires a complex mix of interventions in health 
and other sectors. UNICEF indicated that Kenya is lagging behind in East Africa in attaining Millennium 
Development Goals (MDGs) on reducing child mortality rates [3]. Globally, the mortality rate for children 
under the age of five years dropped by almost 50 per cent, from 90 deaths per 1,000 live births in 1990 to 48 
in 2012, the under-five years of age deaths was mainly caused by preventable diseases; most of the 6.6 
million deaths in children under the age of five years in 2012 were from leading infectious diseases such as 
pneumonia, diarrhea and malaria. Sub-Saharan Africa continues to confront a tremendous challenge of 
having the highest mortality rate in the world for children under the age of five years which is more than 16 
times the average for developed regions [4]. 
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The Kenya Vision 2030, recognized research as one of the pillars to accelerate development. Ministry of 
Health (MoH) was tasked to formulate policy which would focus on the preventive care as opposed to 
curative care [5]. Kenya is one of the countries in Africa which is not on target for the attainment of MDG 
because it requires to  reduce the mortality rate under five years to 33 deaths per 1,000 live births by 2015 
[4]. According to UNICEF, many children in Kenya continue to die unnecessarily due to poor accessibility 
to recommended treatments. This is particularly the case for diarrhea and pneumonia, which still account for 
an estimated 20% and 16% of annual child deaths respectively. The Government of Kenya (GoK) has also 
initiated additional efforts to reduce child mortality, including the introducing of new vaccines to prevent 
diarrhea and pneumonia, but poor access to recommended treatments is still a challenge (Ministry of public 
health, 2011). By 2009, pneumococcal vaccines (PCV 7, PCV 10, PCV 13 and PCV 6A) were introduced in 
Kenya [6]. After introduction of vaccine it was assumed effective treatment could avert the remainder of 
those deaths.  
 
Surveillance data on Childhood Pneumonia in East African Region emphasized existence of different strains 
but it does not involve mathematical modeling [6]. Existence of different types of pneumonia and 
vulnerability of the children under the age of five years immune system makes pneumonia a complex 
disease. Furthermore, many signs and symptoms of fungal infections are similar to those caused by bacteria 
and/or viruses. Most bacteria pneumonia would require culturing to isolate them which require a lot time [7]. 
In Kenya, to the best of our knowledge isolation of pneumonia is not carried out in the health facilities. 
 
A case-control study of pneumonia etiology among children aged 1–59 months in rural Kenya and generally 
classified pneumonia into two broad categories that is severely infected and very severely infected [8]. The 
Kenya Health information system (DHIS2), which is available online record age structured data of treated 
pneumonia in Kenya into two categories that is outpatient and inpatient classes. Vaccination of 
pneumococcal and haemophilus type b is already in place which is administered in three doses; 6 weeks, 10 
weeks and 14 weeks after birth. The objective of this research study is to develop a deterministic model with 
Kenya attributes that is taking into account severely infected class (assumed to be mild infected in this 
study), very severely infected class (chronically infected in this study), inpatient class (assumed to be 
chronically treated in this study), outpatient (assumed to be mild treated in this study) and vaccinated class 
among others.  
 
This research study involved mathematical modeling approach where the children under five years old will 
be subdivided into seven classes and the rate change from one class to another was formulated in nonlinear 
ordinary differential equations and analytical model analysis was carried out. The study also determined 
partial derivative of the control reproduction number (��� to consider the effects of the environmental 
factors, critical treatment threshold and efficacy of vaccination drugs. The basic reproduction number (��� 
was determined from control reproduction number and will be used to determine the herd immunity. Model 
analysis was evaluated to ascertain qualitative behavior of the system. 
 

2 Model Development 
 
The research study [9], developed a general pneumonia model for adults and children based on four 
compartmental classes (Vaccinated, Susceptible, Infected and Treated). The research study [10], developed a 
general model based on three compartmental classes (Susceptible, Infected and Treated classes). The 
research studies [9,10], determined control reproduction number analyzed their model similarly like this 
research study. This study uses population based model where population was divided into seven 
compartments classes (Susceptible, Vaccinated, Mildly Infected, Chronically Infected, Mildly Treated, 
Chronically Treated and Recovered) based on infection characteristics and status of infection. The summary 
of the definition of terms, description of the variables and parameters are also available in appendix section. 
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2.1 Model Description 
 
Let N (t) be the total population of the under five years children which is divided into seven sub-classes: 
Susceptible to pneumonia class S(t), vaccinated against pneumonia class V(t), mildly infected pneumonia 
class ��(t),chronically infected pneumonia class ���	�, chronically treated with pneumonia (in patient) class 
��	�, mild treated with pneumonia (outpatient) class 
� (t)  and recovered from pneumonia R(t) after 
treatment. 
 
The rates at which ���	� �
� ���	�seek treatmentis given by τ��
� τ�  respectively, the recruitment rate 
(birth rate) is given by �, pneumonia induced death occur at a rate �� and �� in ���	� �
� 
��	�respectively, 
µ is the constant natural death rate in all the seven subclasses,  � infection rate , φ is the proportion of born 
children vaccinated with available pneumonia vaccines (either streptococcus vaccines or haemophilus type b 
vaccine or both), ρ is the rate of waning of treatment drugs after recovery,  λ�t� is the force of infection, ϵ is 
the drug efficacy (� = 1 when the drug is 100% efficient  � = 0 when the drug is useless),θ� is the rate at 
which the under five years ���	� with pneumonia progresses to ���	�, θ� is the rate which under five years 
��	� are discharged to 
��	�  and the recovery rates after treatment are γ�andγ�  for 
��	� �
� 
��	� 
respectively. 
 
2.2 Model Assumptions 
 
The following assumptions were made when formulating the model; 

 
• Homogeneous mixing children population in Kenya, 
• The recovery from natural immunity not significant.  
• Through the literature search, to the best of our knowledge it is observed that no study has been 

carried out in Kenya to establish the type of childhood pneumonia in the population.  
• It is not likely for less than five years of age to be infected with pneumonia immediately after 

treatment.  
• Reinfection with pneumonia of different types and/or strain during treatment is assumed to be not 

significant in this study.  
• The decreasing order of infectivity is; mildly infected, chronically infected, mildly treated and 

chronically treated. 
• Constant natural death rate/progression rate to subsequent class  
• Disease induced death is assumed to be higher in chronically infected than chronically treated class 

i.e.��� > ���. Treatment reduces likelihood of dying significantly. 
• Modification parameter k is such that � ≥ 1, implying that the environmental factors increases 

force of infection. 
• Once vaccinated child contract pneumonia, the vaccination drug is assumed to be useless. 
• The effects of vertical transmission to pneumonia of the under five years from age brackets at least 

five years is assumed to be insignificant in this study. 
• The pneumonia is assumed to be transmitted after effective contact between susceptible child under 

five years and infectious classes (mild and chronic) and/or treated classes (mild and chronic). 
• The weak nature of child’s immune system was assumed to be vulnerable to different types of 

pneumonia as long as they exist in population. 
 

2.3 Model Equations 
 
We obtain the following systems of equations representing the dynamics; 
 � �! = ϕπ + ρ� − �kλ+ µ�%                                                                                                               (2.3.1) 
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�&�! = �1 − ϕ�π − �1 − ϵ�kλ' − µV                                                                                                (2.3.2) 

 �)*�! = +�λS + �1 − ϵ�kλV − ω���                                                                                                (2.3.3) 

 �)-�! = �1 − +�kλS + θ��� − ω���                                                                                                    (2.3.4) 

 �.*�! = τ��� + θ�
� − ω/
�                                                                                                               (2.3.5) 

 �.-�! = τ��� − ω0
�                                                                                                                               (2.3.6) 

 �1�! = γ�
� + γ�
� − ω2�                                                                                                                  (2.3.7) 

 
where, 
 3�	� = %�	� + '�	� + ���	� + ���	� + 
��	� + 
��	� + ��	�, 
 

ω� = θ� + µ+ τ�,  
 

ω� = µ + δ� + τ�, 
 

ω/ = γ� + µ, 
 

ω0 = γ� + µ + θ� + δ�, 
 

ω2 = �µ + ρ� �
� 0 < +, �, ϵ, ϕ < 1. 
 
The initial conditions of the systems [�2.3.1� − �2.3.7�] are represented by; 

 S�0� =  %�, V�0� =  '�, ���0� = �����,  ���0� = �����, 
��0� = �
���, 
��0� = �
��� �
� ��0� = ��. 
 
The force of infection denoted by λ�	� is given by: 

 
λ�	� = ���� + ξ��� + ξ�
� + ξ/
�� 
 

Where, 0 < ξ/ < ξ� < ξ� < 1. 
 
Adding equations of system [�2.3.1� − �2.3.7�], the rate of change of total population is given by, 
 �3�	 = π − µN − δ��� − δ�
� . 
 

3 Model Analysis 
 
The model is analyzed by proving various theorems and algebraic computation dealing with different 
attributes. 
 
3.1 Positivity and Boundedness of the Solutions 
 
We prove positivity and boundedness by stating and proving the theorem below. 
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Theorem 1. The region Q is given by 
 = = >%�	�, '�	�, �� , �	�, ���	�, 
��	�, 
��	�, ��	��	�Є�? @ , 3 ≤ πBC 
 
is positively invariant and attracting with respect to model system[�2.3.1� − �2.3.7�], 
 
Proof. 
 
Let { %�	�, '�	�, ���	�, ���	�, 
��	�, 
��	� �
� ��	�} be any solutions of the system with non-negative initial 
conditions  
 

 {S�0� ≥  0, V�0� ≥ 0, ���0� ≥ 0, �� ≥ 0, 
� ≥ 0, 
� ≥ 0, ��0� ≥ 0}. 
 

Since,
� �! = ϕπ + ρ� − �kλ+ µ�% , it follows that 

� �! ≥ −�kλ + µ�S . On integration, we obtain FFG [S�t�eI J�Kλ?µ�FLMN ] ≥ 0. Clearly, S�t�eI J�Kλ?µ�FLMN  is a non-negative function of t, thus S (t) stays positive. 

 
The positivity of '�	�, ���	�, �� , �	�, 
��	�, 
��	� �
� ��	�  is proved along the same lines as follows: 
 �'�	 = �1 − ϕ�πS − [�1 − ϵ�kλ + µ]' 

 �'�	 > −[�1 − ϵ�kλ+ µ]' 

 �'' > −[�1 − ϵ�kλ+ µ]�	 

 '�	� = O�PJ[��Jϵ�Kλ?µ]! 
 

Where O� is a constant of integration, applying initial condition at 	 = 0, 
 O� = '�0�, 

 '�	� > '�0�PJ[��Jϵ�Kλ?µ]! , 
 '�	� > '�0�PJ[��Jϵ�Kλ?µ]! ≥ 0 

 
Similarly,  IR�t� > IR�0�eJωSG ≥ 0,  

 IT�t� > IT�0�eJωUG ≥ 0, 
 TR�t� > TR�0�eJωWG ≥ 0, 
 TT�t� > TT�0�eJωXG ≥ 0, 
 R�t� > ��0�eJωZG ≥ 0. 
 

Taking the time derivative of our total population along its solution path gives: 
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dNdt = dSdt + dVdt + dIRdt + dITdt + dTRdt + dTTdt + dRdt  

 �3�	 = π − µN − δ��� − δ�
�  

 
Therefore, 
 �3�	 + µN ≤ π, 

 
This implies that 
 N�t� ≤ π

µ
{1 + c�eJµG}, 

 
Where \� is the constant of integration. 
 
Hence, 
 limG→∞N�t� ≤ π

µ
 

 
This proves the bounded of the solutions inside Q. This implies that all the solutions of our system [�2.3.1� − �2.3.7�], starting in Q and remains in Q for all t ≥ 0. Thus Q is positively invariant and attracting, 
and hence it is sufficient to consider the dynamics of our system in Q. This completes the proof. 
 
3.2 Disease-free Equilibrium Point (DFE) 
 
The disease-free equilibrium point (DFE) of the system [�2.3.1� − �2.3.7�], is obtained by setting all the 
infectious classes, recovered class and treatment classes to zero. We get 
 

ϕπ − µ%� = 0; �1 − ϕ�π − µ'� = 0, 
 

which yields, 
 %� =  ϕ�

µ
;  '� =  �1 − ϕ�π

µ
 

 
The DFE point for our system is given by, 
 E� = �S�, V�, IT�, IR� , TR� , TT�, R�� = cϕπ

µ
, �1 − ϕ�π

µ
, 0,0,0,0,0d. 
 

The DFE point �E�� is the infection free equilibrium point of the system [�2.3.1� − �2.3.7�], which indicates 
that in absence of pneumonia the system will consist of two compartment classes (susceptible and 
vaccinated). 
 
3.3 The Basic Reproduction Number (Ro) and Control Reproduction Number (RC) 
 
We use the next-generation matrix method to determine the control reproduction number Rc of the model 
[11]. Using the notation ƒ for a matrix of new infections terms andϖ for the matrix of the remaining transfer 
of infection terms in our system, we get, 
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ƒ = e+�λS + �1 − ϵ�kλV �1 − +�kλS00 f ,ϖ = e ω���−θ��� + ω���−τ��� − θ�
� + ω/
�−τ��� + ω0
�
f. 

 
Let 
 g� = +�λS + �1 − ϵ�kλV , g� = �1 − +�kλS, g/ = 0,  g0 = 0, 
 F2 = ω�IR, Fi = −θ�IR + ω�IT, F@ = −τ�IR − θ�TT + ω/TR,  F0 = −τ�IT + ω0TT 
 
We obtain the matrices F and V by finding the Jacobian matrices of ƒ and ϖevaluated at DFE respectively to 
obtain, 
 

g = βk e�� ξ����� ξ���
ξ��� ξ/��
ξ��� ξ/��0 00 0 0 00 0 f, 

 jℎPlP, �� = PS� + �1 − ϵ�V�, �� = �1 − P�S� �
�, 
 

' = e ω� 0−θ� ω� 0 00 0−τ� 00 −τ� ω/ −θ�0 ω0
f. 

 
We now compute the inverse of V to obtain 'J� as below, 
 

'J� =
n
ooo
oo
p 1

ω� 0
θ�

ω�ω�
1
ω�

0 00 0
θ�τ�θ� + ω�ω0τ�

ω�ω�ω/ω0
θ�τ�

ω�ω/ω0
θ�τ�

ω�ω�ω0
τ�

ω�ω0

1
ω/

θ�
ω0ω/0 1
ω0 q

rrr
rr
s

. 

 
Multiplying the matrices g and 'J� to obtain, 
 g'J� = t
� 
�
/ 
0u, 
 

Where, 
 

T� = βk vww
wxR�
ω� + R�θ�ξ�

ω�ω� + R�ξ��θ�θ�τ� + τ�ω�ω0�
ω�ω�ω/ω0 + R�θ�ξ/τ�

ω�ω�ω0
R�ξ�
ω� + R�θ�ξ�τ�

ω�ω/ω0 + R�ξ/τ�
ω�ω0R�

ω� + R�θ�ξ�
ω�ω� + R�ξ��θ�θ�τ� + τ�ω�ω0�

ω�ω�ω/ω0 + R�θ�ξ/τ�
ω�ω�ω0

R�ξ�
ω� + R�θ�ξ�τ�

ω�ω/ω0 + R�ξ/τ�
ω�ω0 yzz

z{, 
 


� = βk vww
wx��ξ�
ω/

��θ�ξ�
ω/ω0 + ��ξ/

ω0��ξ�
ω/

��θ�ξ�
ω/ω0 + ��ξ/

ω0 yzz
z{, 

 
/ = 
0 = |0 00 0}. 
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Using Mathematica software to obtain the eigenvalues {q�i�, i = 1�1�4} of the matrix �g'J�� we get, 
 q�1� = q�2� = q�3� = 0, 

 q�4� = βk
ω�ω�ω/ω0 ���ω�ω/ω0 + ξ����θ�ω/ω0 + ��ω�ω/ω0�+ ξ����θ�θ�τ� + ��θ�τ�ω� + ��τ�ω�ω0� + ξ/���θ�τ�ω/ + ��τ�ω�ω/�}. 

 
The control reproduction number �RT� is given by the spectral radius ζ (the dominant eigenvalue) of the 
matrix FV −1, denoted by ζ�F'J�� is; 
 RT = βk

ω�ω�ω/ω0 ���ω�ω/ω0 + ξ����θ�ω/ω0 + ��ω�ω/ω0�+ ξ����θ�θ�τ� + ��θ�τ�ω� + ��τ�ω�ω0� + ξ/���θ�τ�ω/ + ��τ�ω�ω/�}. 
 
The control reproduction number �RT� is the average number of susceptible children under the age of five 
years, one infectious child (mildly infected or chronically infected or mildly treated or chronically treated) 
can infect when combined interventions of vaccination and treatment are already in place. 
 
The reproduction number �Rϵ��� when the vaccination drug efficacy is 100%, that is ϵ = 1 is given by; 
 Rϵ�� = βk%�

ω�ω�ω/ω0 �Pω�ω/ω0 + ξ��Pθ�ω/ω0 + �1 − P�ω�ω/ω0�+ ξ��Pθ�θ�τ� + �1 − P�θ�τ�ω� + Pτ�ω�ω0� + ξ/�Pθ�τ�ω/ + �1 − P�τ�ω�ω/�}. 
 
The reproduction number �Rϵ��� is average number susceptible children under the age of five years, one 
infectious child (mildly infected or chronically infected or mildly treated or chronically treated) can infect 
when intervention of treatment are already in place and it is not possible for vaccinated children to contract 
pneumonia.  
 
The reproduction number �R�� when the rate at which mildly and chronically infected children �τ� �
� τ�� 
are zero is given by; 
 R� = βk�ω� − τ���ω� − τ�� ����ω� − τ�� + ξ�〈��θ� + ���ω� − τ��〉�. 
 
The reproduction number �R�� is average number susceptible children under the age of five years, one 
infectious child (mildly infected or chronically infected or mildly treated or chronically treated) can infect in 
absence of intervention of treatment.  
 
The basic reproduction number �R�� in absence of interventions is given by; 
 R� = βk%��+�µ + δ�� + �µ�1 − P� + θ��ξ���µ+ δ���µ + θ�� . 

 
The basic reproduction number �R�� is average number susceptible children under the age of five years, one 
infectious child (mildly infected or chronically infected or mildly treated or chronically treated) can infect in 
absence of interventions of treatment and vaccination. The basic reproduction number �R�� will be used to 
determine herd immunity ���� as below, 
 q� = 1 − 1R�. 
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3.4 Existence of Endemic Equilibrium Point for the Model (EEP) 
 
We state and prove the following theorem 
 
Theorem 2 
 
A positive endemic equilibrium exist whenever ��∗ > 1. 
 
Proof 
 
The dynamic systems of the equations [�2.3.1� − �2.3.7�], is seven dimensional and analyzing it may not be 
tractable mathematically. After obtaining reproduction numbers of the full system, the goal of the model 
analysis is to understand qualitative behavior as opposed to exact solution of the system. The 
system [�2.3.1� − �2.3.7�], is highly nonlinear and may be difficult to solve mathematically. The study 
proposed to reduce the system to four dimensions by combining all the infectious classes (mildly infected or 
chronically infected or mildly treated or chronically treated) into one compartment class (A). Let, ��t� =IR�t� + IT�t� + TR�t� + TT�t�,the time derivative of A is given by. F�FG = F��FG + F��FG + F��FG + F��FG = F�FG − F�FG −F�FG . 
 
The system of equations [�2.3.1� − �2.3.7�], reduces to, 
 � �! = ϕπ + ρ� − �kλ + µ+ ϕπ�%                                                                                                          (3.4.1) 

 �&�! = �1 − ϕ�π − ��1 − ϵ�λ' − µV                                                                                                      (3.4.2) 

 F�FG = −�µ + Ω�A − δ�IT − δ�TT + kλS + k�1 − ϵ�λV − γ�
� − γ�
�                                        (3.4.3) 

 �1�! = γ�
� + γ�
� − ω2�                                                                                                                       (3.4.4) 

 
Since the following parameters �γ�, γ�, δ�, δ� , µ, ξ�, ξ� and ξ/� are less or equal to one or greater or equal to 
zero, it follows by closure property the members below can be expressed as subsets of A or A∗ 
 

• �IR∗ , ξ�IT∗ , ξ�TR∗ , ξ/TT∗�⊆A∗, 
• �γ�T�, γ�TT, δ�IT, δ�TT, µA, ξ�IT, ξ�TR, ξ/TT�⊆A , 
• �IR∗ + ξ�IT∗ + ξ�TR∗ + ξ/TT∗�⊆A∗, 
• �δ�IT + δ�TT + γ�T� + γ�TT�⊆A, 
• �γ�T� + γ�TT + µA�⊆A, 
• �IR + ξ�IT + ξ�TR + ξ/TT�⊆A. 

 
Let us introduce these subsets as parameters of A or A∗ as indicated below, 
 

• γ�T� + γ�TT + µA = Ω�A, 
• δ�IT + δ�TT + γ�T� + γ�TT = Ω�A, 
• IR + ξ�IT + ξ�TR + ξ/TT = Ω/A, 
• IR∗ + ξ�IT∗ + ξ�TR∗ + ξ/TT∗ = Ω/A∗, 

 
Where, Ω�,Ω� �
� Ω/ is less or equal to one. It is clear from the system [�3.4.1� − �3.4.4�],Ω/ ≥ Ω� ≥
Ω�. After the change of variables the system of equations [�3.4.1� − �3.4.4�] becomes, 
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� �! = ϕπ + ρ� − �kλ + µ�%                                                                                                             (3.4.5) 

 �&�! = �1 − ϕ�π − ��1 − ϵ�λ' − µV                                                                                               (3.4.6) 

 F�FG = kλS + k�1 − ϵ�λV  − Ω�A                                                                                                    (3.4.7) 

 �1�! = Ω�� − ω2�                                                                                                                               (3.4.8) 

 
The control reproduction number ���∗ � of the system [�3.4.5� − �3.4.8�] using the second generation matrix 
is given by, 
 RT∗ = βkΩ/��

Ω� , 
 

where, �� = %� + �1 − ϵ�'�. 
 
After the change of variables, the force of infection at endemic equilibrium point (�∗∗ = �%∗∗, ' ∗∗, �∗∗, �∗∗) 
of the system [�3.4.5� − �3.4.8�] will be given byλ∗∗ = �Ω/�∗∗. The endemic equilibrium point,�∗∗ =�%∗∗, ' ∗∗, �∗∗, �∗∗of the system [�3.4.5� − �3.4.8�]], is obtained by equating the system to zero to obtain; 
 

ϕπ + ρ�∗∗ − �kλ∗∗ + µ�%∗∗ = 0                                                                                                           (i) 
 �1 − ϕ�π − �1 − ϵ�kλ∗∗' ∗∗ − µ' ∗∗ = 0                                                                                         (ii) 
 kλ∗∗%∗∗ + k�1 − ϵ�λ∗∗' ∗∗ − Ω�A∗∗ = 0                                                                                          (iii) 
 

Ω��∗∗ − ω2�∗∗ = 0                                                                                                                               (iv) 
  

Solving the system of equation above [�i� – �iv�] in terms of λ∗∗ using Mathematica software we obtain; 
 S∗∗ = ϕπ + ρ�∗∗kλ∗∗ + µ , 

 ' ∗∗ = �1 − ϕ�π�λ∗∗�1 − ϵ� + µ, 
 �∗∗ = �πλ∗∗��−1 + ϵ��kλ∗∗ + µ� − ϵµϕ�ω2���−1 + ϵ� − µ���kλ∗∗ + µ�ω2Ω� − kλ∗∗ρΩ��, 
 � ∗ = Ω��∗∗

ω2 . 
 

Substituting �∗∗ using Mathematica software to solve the equation below we obtain two cases 
 

λ
∗∗ − �Ω/�∗∗ = 0, 

 
Case 1; λ∗∗ = 0, which correspond to the disease free equilibrium point ����� of the system [�3.4.5� −�3.4.8�] given by ; 
 ��� = �%��, '��, ���, ���� = �ϕπ

µ
, �1 − ϕ�π

µ
, 0,0� 
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Case 2; the value(s) of λ∗∗ obtained by the quadratic equations below correspond to endemic equilibrium 
point. 
 ��λ∗∗�� + �λ∗∗ + \ = 0, 

 
Using Mathematica software a, b and c are obtained as follows,  
 � = ���−1 + ϵ��ω2Ω� − ρΩ�� < 0, 

 � = ���−2 + ϵ�µ− cπ�−1 + ϵ���∗�� dω2Ω� + µρΩ�, 
 \ = µ �−µ+ π�1 + ϵ�−1 + ϕ����∗�� �ω2Ω�. 
 

For real positive λ∗∗, b� > 4�\ . % 
\P � < 0, λ∗∗ > 0  ¡ �
� ¢
£¤  ¡   \ > 0,  . P 
 −µ + π�1 + ϵ�−1 + ϕ����∗�� > 0, 

 
After algebraic manipulation it follows that the conditions necessary and sufficient for λ∗∗ > 0  are          RT∗ > 1 which completes the proof.  
 

3.5 Bifurcation Analysis 
 
Mathematical models with vaccination often undergo bifurcation which makes the control of the infectious 
diseases difficult [12]. This bifurcation will be explored, using the Centre Manifold theory [13]. The 
change of variables are made first for simplicity. Let S = y� , V = y�, A = y/ and R = y0,So thatN =  y�  + y�  +  y/ + y0 .Further, by using vector notationy =  � y�, y� , y/, y0�� , the pneumonia model [�3.4.5� −�3.4.8�]can be written in the form 

�¦�! = g�¤�, j 	ℎ g = �§�, §�, §/, §0�., as follows: 

 ¤�̈ = §� = ϕπ − �k�Ω/y/ + µ�y� + ρy@,                                                                                       (3.5.1) 
 ¤�̈ = §� = �1 − ϕ�π − �1 − ϵ�k�Ω/y/y� − µy�                                                                          (3.5.2) 

 ¤/̈ = §/ = k�Ω/y/y� + k�1 − ϵ��Ω/y/y�   − Ω�y/                                                                  (3.5.3) 
 ¤0̈ = §0 = Ω�y/ − ω2y0                                                                                                                     (3.5.4) 
 

with, ©∗∗∗ = �Ω/y/. 
 
The method entails evaluating the Jacobian of the system [�3.5.1� − �3.5.4�] at the disease free equilibrium 

point, �∗� = �%∗�, '∗�, �∗�, �∗�� = �ϕπ
µ

, ��Jϕ�π
µ

, 0,0�, denoted by ª��∗��. This gives: 
 

ª��∗��. = n
p−µ 00 −µ −k�∗Ω/S� ρ−k�1 − ϵ��∗Ω/V� 00 00 0 k�∗Ω/��   − Ω� 0

Ω� −ω2q
s, 

 
Where, ��  = %� + �1 − ϵ�'�. 
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Consider the case, where RT∗ = 1. Suppose, further, that � = �∗is chosen as a bifurcation parameter. Solving 

for�∗ from RT∗ = 1 gives�∗ = ΩSKΩW«UUsing Mathematica software the Jacobian of 
�¦�! = g�¤� at the disease 

free equilibrium point, with � = �∗, denoted by ª��∗��, has eigenvalues �−μ, −μ, −ω2 �
� 0�. We obtain 
one zero eigenvalue and three negative eigenvalues hence, the Centre Manifold theory can be used to 
analyze the dynamics of the model (13). The theorem stated below will be used to analyze the dynamics of 
the model [14]. 
 
Theorem 3. 
 
Castillo-Chavez and Song. Consider the following general system of ordinary differential equations with a 
parameter �∗ 
 �¤�	 = f�y, �∗�, f ∶  �¯ ×  R → �¯  and f ∈ O���¯ ×  R�, 

 
where 0 is an equilibrium point of the system (that is, f�y, �∗� ≡ 0 for all �∗) and 
 

1. A =  µ¦f�0, 0�  = c¶·¸¶¦¹ �0,0�d, is the linearization matrix of the system around the equilibrium 0 

with �∗ evaluated at 0; 
2. Zero is a simple eigenvalue of A and all other eigenvalues of A have negative real parts; 
3. Matrix A has a right eigenvector u and a left eigenvector v corresponding to the zero eigenvalue.  

 
Let §ºbe the kth component of p and 
 

� = » ¼º½¾½¿ À�§ºÀ¤¾À¤¿ �0,0�¯
º,¾¿�� , 

 

� = » ¼º½¾ À�§ºÀ¤¾À�∗ �0,0�¯
º,¾¿�� , 

 
then the local dynamics of the system around the equilibrium point (0,0) is totally determined by the signs of 
a and b. 
 
Particularly when: 
 

i. � > 0 �
� � > 0, when �∗ <  0 with  |�∗| ≪ 1, �0,0�, is locally asymptotically stable and there 
exists a positive unstable equilibrium; when 0 < �∗ ≪ 1, �0,0�  is unstable and there exists a 
negative and locally asymptotically stable equilibrium.  

ii.  � < 0 �
� � < 0 , when �∗ <  0  with |�∗| ≪ 1, �0,0�  is unstable; when 0 < �∗ ≪ 1, �0,0�  is 
asymptotically stable and there exists a positive unstable equilibrium. 

iii.  a < 0 �
� � > 0, when β∗ <  0  with |β∗| ≪ 1, �0,0�is unstable, and there exists a negative and 
locally asymptotically stable equilibrium; when 0 < β∗ ≪ 1, �0,0�  is stable and there exists a 
positive unstable equilibrium. 

iv. a > 0 �
� � < 0, when β∗changes from negative to positive, �0,0� changes its stability from stable 
to unstable. Correspondingly a negative equilibrium becomes positive and locally asymptotically 
stable. 
 

If a > 0 and b > 0, then a backward bifurcation occurs at �∗ = 0 [14]. 
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Eigenvectors of ªÄ∗ : For the case when ��∗  =  1 , it can be shown that the Jacobian [ª��∗��] at                       
β = �∗ (denoted by ªÄ∗) has a right eigenvector given by u = [u�, u�, u/, u0]. , where, 
 u� = −k�Ω/S�u/ + ρu0B = −kω2�Ω/S�u/ + ρΩ�u/Bω2 < 0, 

 u� = −k�1 − ϵ��Ω/V�u/B < 0, 
 u/ = u/ > 0, 
 u0 = Ω�u/

ω2 > 0. 
 

Further, ªÄ∗ has a left eigenvectors �v = [v�, v�, v/, v0].�, where, 
 v� = 0, v� = 0, v/ = v/ > 0, v0 = 0. 
 
Since �¼� =  ¼� = v0 =  0� , we only need to compute the partial derivatives of §/  (at the disease free 
equilibrium point). For the system [�4.5.1� − �4.5.4�] the associated non-zero partial derivative of ¡/ (at the 
disease free equilibrium) is given by 
 À�§/À¤�À¤/ = À�§/À§/À¤� = ��∗Ω/, À�§/À¤�À¤/ = À�§/À¤/À¤� = �1 − ε���∗Ω/.   

 
It implies, 
 

a = v/ » uÇuÈ ∂�pK∂xÇ ∂xÈ
0

Ç,È�� , 
 � = 2v/ �u�u/ À�§/À¤�À¤/ + u�u/ À�§/À¤�À¤/�. 
 

Since u� �
� u� are less than zero, it follows that, 
 � = 2v/{u�u/��∗Ω/ + u�u/�1 − ε���∗Ω/} < 0. 
 
Also, 
 À�§/À¤/À�∗ = k�Ω/%� + k�1 − ϵ��Ω/'�, 

� = ¼/ » ½¾ À�§ºÀ¤¾À�∗ +@i
¾�� ¼0 » ½¾ À�§ºÀ¤¾À�∗

@
¾�� , 

 � = ¼/ �½/ À�§/À¤/À�∗�. 
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Since v/ and u/ are greater than zero it follows that, 
 � = ¼/½/{k�Ω/%� + k�1 − ϵ��Ω/'�} > 0. 
 
Hence, it follows (from Theorem 3 above) that when β∗ <  0  with |β∗| ≪ 1, �0,0� is unstable, and there 
exists a negative and locally asymptotically stable equilibrium; when 0 < β∗ ≪ 1, �0,0� is stable and there 
exists a positive unstable equilibrium. 
 
3.6 Local Stability of the Disease free Equilibrium Point (DFE) 
 
To determine the local stability of the disease free equilibrium point we state and prove the following 
theorem. 
 
Theorem 4. 
 
The DFE of the system [�3.4.5� − �3.4.8�]is locally asymptotically stable RT∗ < 1 and unstable otherwise. 
 
Proof 
 
To establish the local stability of the system [�3.4.5� − �3.4.8�], we use the Jacobian of the model evaluated 
at �∗� . Stability of this steady state is then determined based on the eigenvalues of the corresponding 
Jacobianwhich are functions of the model parameters. We let 
 +� = ϕπ − �kλ + μ�%   + ρ�, 

 +� = �1 − ϕ�π − �1 − ϵ�kλ' − μV, 
 +/ = kλS + k�1 − ϵ�λV  − Ω�A, 
 +0 = Ω�� − ω2�.  

 
The Jacobian matrix evaluated at disease free equilibrium point �∗� is obtained as 
 

ª���� = n
p−μ 00 −μ −k�Ω/S� ρ−k�1 − ϵ��Ω/V� 00 00 0 k�Ω/��   − Ω� 0

Ω� −ω2q
s ′ 

 
Where, 
 �� = S� + �1 − ϵ�V� 
 
Solving the equation 
 |ª���� − �� ��| = 0, 

 
where H is the identity matrix and ,   = 1�1�4 are eigenvalues Using the Mathematica software we obtain 
the following eigenvalues 
 ��1� = ��2� = −μ, 

 ��3� = −ω2, 
 q�4� = −Ω� + k�Ω/��. 
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Clearly three eigenvalues are negative but the conditions necessary and sufficient for q�4� is 
 −Ω� + k�Ω/�� < 0, 

 k�Ω/�� < Ω�, 
 k�Ω/��
Ω� < 1, 

 ��∗ < 1. 
 
This completes the proof. 
 
3.7 Global Stability of the Disease free Point 
 
To prove the global stability we state and prove the following theorem 
 
Theorem 5 
 
The DFE is globally stable whenever RT∗ < 1 unstable otherwise. 
 
Proof 
 
We propose the following Lyapunov function for the system [�3.4.5� − �3.4.8�] 
 L�S, V, A, �� = % − %� − %�Ñ
 S%� + Ò� t' − '� − '�Ñ
 V'�u + Ò�A + Ò/� 

 L�S, V, A, �� is positive definite satisfies  the conditions; 
 Ñ�%�, '�, ��, ��� = 0 �
� L�S, V, A, �� >  0. 
 

For  
FÓ��,�,�,1�FG   to be negative definite, it must satisfies 

 dL�%�, '�, ��, ���dt = 0 and dL�S, V, A, ��dt < 0. 
 
where Ò�, Ò� �
� Ò/ are positive constants to be determined. At DFE point E∗� = �%�, '�, ��, ��� the system [�3.4.5� − �3.4.8�] satisfies, 
 ϕπ = μS�, 
 �1 − ϕ�π = μV�. 
 
The time derivative of the lyapunov function is obtained as, 
 dL�S, V, A, ��dt = c1 − S�S d dSdt + Ò� c1 − V�V d dVdt + Ò� dAdt + Ò/ dRdt , 
 

Substituting 
F�FG , F�FG , F�FG  and FÔFG  to obtain; 
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dL�S, V, A, ��dt = c1 − S�S d {ϕπ − �kλ + μ�%  + ρ� } + Ò� c1 − V�V d {�1 − ϕ�π − ��1 − ϵ�λ' − μV}+ Ò�{kλS + k�1 − ϵ�λV  − Ω�A} + Ò/{Ω�� − ω2�}. 
 
Substituting ϕπ and �1 − ϕ�π to obtain; 
 dL�S, V, A, ��dt = c1 − S�S d {μS� − �k�Ω/A + μ�%  + ρ� } + Ò� c1 − V�V d {μV� − ��1 − ϵ��Ω/A' − μV}+ Ò�{kΩ/AS + k�1 − ϵ�Ω/AV  − Ω�A} + Ò/{Ω�� − ω2�}, 
 dL�S, V, A, ��dt = −μ �S − S���S − μ �V − V���V + {−Ò�Ω� + Ò/Ω� + k�Ω/S� + Ò����1 − ϵ�Ω/V�}A   

+ {Ò� − 1}k�Ω/AS + {Ò� − Ò�}k��1 − ϵ�Ω/AV + �ρ − Ò/ω2 − ρ
S�S � �. 

 
Setting AS, A' and �to zero we obtain the following equation, 
 Ò� − 1 = 0, 

 Ò� − Ò� = 0, 
 −Ò�Ω� + Ò/Ω� + k�Ω/S� + Ò����1 − ϵ�Ω/V� = 0. 

 
Solving the above equation to obtain; 
 Ò� = Ò� = 1, 

 Ò/ = Ω�
Ω� − k�Ω/��

Ω� = Ω�
Ω� �1 − RT∗ �, 

 
Where, 
 �� = %� + �1 − ϵ�'�. 
 
The derivative of lyapunov reduces to; 
 dL�S, V, A, ��dt = −μ �S − S���S − μ �V − V���V + ρc1 − S�S d � − Ω�

Ω� �1 − RT∗ �ω2� 

 

Since Õ1 − �Ö� × ≤ 0, the conditions necessary and sufficient for 
 FÓ��,�,��FG < 0 is �1 − RT∗ � > 0. This implies 

that disease free equilibrium point is globally stable if and only if RT∗ < 1 and unstable otherwise. This 
completes the proof.  
 
3.8 Local Stability and Global Stability of the Endemic Equilibrium Point (EEP) 
 
At endemic equilibrium point (EEP), the global stability implies the local stability. To determine local and 
global stability we state and prove the following theorem. 
 
Theorem 6 
 

The DFE is globally whenever RT∗∗ < ØU��∗∗∗J&�U�∗∗∗��∗∗∗U?&U� unstable otherwise. 
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Proof 
 
For the system [�3.4.5� − �3.4.8�] to be tractable mathematically consider a special case where the wanning 
due to drugs is zero i.e ρ = 0 to obtain [13], 
 � �! = ϕπ − �kλ + μ�%                                                                                                                        (3.8.1) 

 �&�! = �1 − ϕ�π − ��1 − ϵ�λ' − μV                                                                                              (3.8.2) 

 F�FG = kλS + k�1 − ϵ�λV  − Ω�A                                                                                                    (3.8.3) 

 �1�! = Ω�� − μ�                                                                                                                                  (3.8.4) 

 
 
The controlled reproduction number �RT∗∗�, the force of infection �λ∗∗∗�, disease free equilibrium point ��� =�%��, ' ��, ���, ���� = ÕÙÚÛ , ��JÙ�ÚÛ , 0,0× and endemic equilibrium point �∗∗∗ = �%∗∗∗, ' ∗∗∗, �∗∗∗, �∗∗∗� of the 

system [�3.8.1� − �3.8.4�] is given by 
 RT∗∗ = βkΩ/��

Ω� , λ∗∗∗ = �Ω/�∗∗∗ �
� 

 S∗∗∗ = ϕπkλ∗∗∗ + μ, 
 ' ∗∗∗ = �1 − ϕ�π�λ∗∗∗�1 − ϵ� + μ, 
 

�∗∗∗ = Ú�J�?Ü�Ý∗∗∗�J�?Ù�º�J�?Ü�Ý∗∗∗JÛ − ºÚÝ∗∗∗ÙºÝ∗∗∗?Û−Ω� , 
 � ∗∗∗ = Ω��∗∗∗μ . 
 

where, ��� = %�� + �1 − ϵ�'��. 
 
We propose the following Lyapunov function, 
 K�S, V, A, �� = % − %∗∗∗ − %∗∗∗Ñ
 S%∗ + ß� t' − '∗∗∗ − '∗∗∗Ñ
 V'∗∗u + ß� t� − �∗ − �∗Ñ
 A�∗u

+ ß/ t� − �∗∗∗ − �∗Ñ
 R�∗∗∗u, 
 

whereß�, ß� �
� ß/ are positive constants to be determined. The lyapunov function K�S, V, A, �� satisfies the 

conditions, à�%∗∗∗, '∗∗∗, �∗∗∗, �∗∗∗� = 0 �
� K�S, V, A, �� >  0, henceit is positive definite. For  
Fá��,�,�,1�FG   to 

be negative definite, it must satisfies, 
 dK�%∗, '∗, �∗, �∗�dt = 0       and dK�S, V, A, ��dt < 0. 
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The endemic equilibrium point E∗∗∗ = �%∗∗∗, '∗, �∗, �∗�   for the system satisfies, 
 ϕπ = �kβΩ/A∗∗∗ + μ�S∗∗∗, 

 �1 − ϕ�π = ��1 − ϵ��Ω/�∗∗∗'∗ + μ'∗∗∗, 
 
Ω��∗∗∗ = μ�∗∗∗, 
 k�Ω/�∗∗∗�%∗∗∗ + �1 − ϵ�'∗∗∗�  = Ω��∗∗∗. 

 
Determining the time derivative of the lyapunov equation we obtain, 
 dK�S, V, A, ��dt = t1 − %∗∗∗S u dSdt + Ò� t1 − '∗∗∗V u dVdt + Ò� t1 − �∗∗∗A u dAdt + Ò/ t1 − �∗∗∗R u dRdt , 
 

Substituting for 
F�FG , F�FG , F�FG  and FÔFG . 

 dK�S, V, A, ��dt = t1 − %∗∗∗S u {ϕπ − �k�Ω/� + μ�%  } + Ò� t1 − '∗∗∗V u {�1 − ϕ�π − ��1 − ϵ��Ω/�' − μV}
+ Ò� t1 − �∗∗∗A u {k�Ω/�S + k�1 − ϵ��Ω/�V  − Ω�A} + Ò/ t1 − �∗∗∗R u {Ω�� − μ�}, 

 dK�S, V, A, ��dt = t1 − S∗S u {�kβΩ/A∗∗∗ + μ�S∗∗∗  − �kβΩ/A + μ�S  }
+ Ò� t1 − '∗∗∗V u {��1 − ϵ��Ω/�∗∗∗'∗∗∗ + μ'∗∗∗ − ��1 − ϵ��Ω/�' − μV}
+ Ò� t1 − �∗∗∗A u {k�Ω/�S + k�1 − ϵ��Ω/�V  − Ω�A} + Ò/ t1 − �∗∗∗R u {Ω�� − μ�}, 

 dK�S, V, A, ��dt = −μ �S − %∗∗∗��S − μ �V − '∗∗∗��V + {Ò/Ω� − Ò�Ω� + Ò���1 − ϵ��Ω/'∗ + k�Ω/%∗∗∗}A   
+ {Ò� − 1}k�Ω/AS + {Ò� − Ò�}k��1 − ϵ�Ω/AV + −Ò/μ� + t− %∗∗∗S u {k�Ω/�∗∗∗%∗∗∗}
+ Ò� t− '∗∗∗V u {��1 − ϵ��Ω/�∗∗∗'∗∗∗}
+ Ò� t− �∗∗∗A u {k�Ω/�S + k�1 − ϵ��Ω/�V  − Ω�A} + Ò/ t− �∗∗∗R u {Ω�� − Ò/μ�}+ k�Ω/�∗%∗    + Ò�{��1 − ϵ��Ω/�∗∗∗'∗∗∗}. 

 
Setting AS, A' and �to zero we obtain the following equation, 
 Ò� − 1 = 0, 
 Ò� − Ò� = 0, 
 Ò/Ω� − Ò�Ω� + Ò���1 − ϵ��Ω/'∗∗∗ + k�Ω/%∗∗∗ = 0. 

 
Solving the above equations to obtain, 
 Ò� = Ò� = 1, 

 Ò/ = 0. 
 
Where,  �� = %�� + �1 − ϵ�'��. 
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dK�S, V, A, ��dt = −μ �S − S∗∗∗��S − μ �V − V∗∗∗��V + kβΩ/A∗∗∗S∗∗∗ t2 − %S∗∗∗ − S∗∗∗S u    
+ k�1 − ϵ�βΩ/A∗∗∗V∗∗∗ t2 − V∗∗∗V − 'V∗∗∗u, 

 dK�S, V, A, ��dt = −μ �S − S∗∗∗��S − μ �V − V∗∗∗��V + kβΩ/A∗∗∗S∗∗∗ t2 − %S∗∗∗ − S∗∗∗S u
+ Ω��∗∗∗ t2 − V∗∗∗V − 'V∗∗∗u − k�Ω/�∗∗∗%∗∗∗ t2 − V∗∗∗V − 'V∗∗∗u, 

 dK�S, V, A, ��dt = −μ �S − S∗∗∗��S − μ �V − V∗∗∗��V + kβΩ/A∗∗∗S∗∗∗ t− %S∗∗∗ − S∗∗∗S + V∗∗∗V + 'V∗∗∗u
+ Ω��∗∗∗ t2 − V∗∗∗V − 'V∗∗∗u, 

 dK�S, V, A, ��dt = −μ �S − S∗∗∗��S − μ �V − V∗∗∗��V − Ω�A∗∗∗S∗∗∗ RT∗∗�� t %S∗∗∗ + S∗∗∗S u
+ Ω�A∗∗∗ >S∗∗∗ RT∗∗�� tV∗∗∗V + 'V∗∗∗u + t2 − V∗∗∗V − 'V∗∗∗uC. 

 

Since all the other terms of 
FÓ��,�,�,1�FG  are less than zero, the condition necessary and sufficient for FÓ��,�,�,1�FG < 0 is given by, 

 S∗∗∗ RT∗∗�� tV∗∗∗V + 'V∗∗∗u + t2 − V∗∗∗V − 'V∗∗∗u < 0, 
 S∗∗∗ RT∗∗H� �V∗∗∗� + '�� < V∗∗∗� + '� − 2VV∗∗∗, 
 RT∗∗ < H��V∗∗∗ − '��S∗∗∗�V∗∗∗� + '��. 

 

Then 
F�FG = 0 holds only when�S =  S∗∗∗, V = V∗∗∗, A = �∗∗∗ and R = �∗∗∗� : So the maximal compact 

invariant set in {�S;  E;  I�  ∈  ⨅: F�FG =  0}  is the singleton {�∗∗∗ } using Lasalle's invariance principle FÓ��,�,�,Ô�FG <  0,Iff 
 RT∗∗ < H��V∗∗∗ − '��S∗∗∗�V∗∗∗� + '��. 
 

4 Analytical Results of the Model 
 
We shall determine epidemiological thresholds and carryout sensitivity analysis of the control reproduction 
number ���� using partial derivatives. 
 
4.1 Epidemiological Thresholds 
 
We shall determine treatment thresholds, herd immunity and impact of treatment using control reproduction 
number and basic reproduction number. 
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4.1.1 Treatment thresholds 
 
We shall determine treatments for mildly infected �IR�  and chronically infected �IT�  using the control 
reproduction number. 
 
4.1.1.1 Mildly treatment threshold �τ���. 
 
According to [10], the mildly treatment threshold is determined when RC is equated to one and solving for �τ��) critical treatment for mildly infected children ���) to obtain, 

  

τ�� = ω�ω/
βkξ��� − ���ω�ω/ω0 + ξ����θ�ω/ω0 + ��ω�ω/ω0� + ξ����θ�θ�τ� + ��θ�τ�ω��+ ξ/���θ�τ�ω/ + ��τ�ω�ω/�}. 

 
 
4.1.1.2 Chronically treatment threshold �τ���. 
 
The chronically treatment threshold is determined when RC is equated to one and solving for τ��  critical 
treatment for chronically infected children ���) to obtain,  

 

τ�� = �ξ����θ�θ� + ��θ�ω�� + ξ/���θ�ω/ + ��ω�ω/�� 〈ω�ω�ω/ω0
βk− ���ω�ω/ω0 + ξ����θ�ω/ω0 + ��ω�ω/ω0� + ξ����τ�ω�ω0��〉. 

 
4.1.1.3 Measure of treatment impact �å�. 
 
[15], defined measure of treatment impact based on the reproduction numbers can be defined as 
 �å� = 1 − 1-1Ö, 

 �å� = 1 + ��μ + δ���μ + θ�� c�1 − +�%��μ + θ� + τ�� Õθ�ξ�τ� + ω/�ξ/τ� + ξ�ω0�×
+ �+%� + �1 − ϵ�'�� t�μ + δ� + τ���ξ�τ� + ω/�ω0
+ θ� Õθ�ξ�τ� + ω/�ξ/τ� + ξ�ω0�×ud�/�%��−+�μ + δ�� + ��−1 + +�μ − θ��ξ���μ + θ� + τ���μ + δ� + τ��ω/ω0 . 

 
4.1.2 Herd immunity 
 
The herd immunity threshold is determined by,  
 q� = 1 − �ÔÖ, where �q�� is the critical vaccination threshold [16]. 

 
Substituting for basic reproduction number �R��, we obtain,  
 q� = 1 − �μ + δ���μ + θ��

βk%��+�μ + δ�� + �μ�1 − P� + θ��ξ��. 
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4.2 Sensitivity Analysis of the Effective Control Number �èé� 
 
Impact of intervention strategies are vital in lowering burden of pneumonia It is important to investigate the 
sensitivity of �� to: the rate at which mild and chronic infected  children seek treatment �τ� �
� τ��, with 
respect to vaccination drug efficacy ε  and effects of environmental factors (k). Determining partial 
derivatives of �� with respect to; 
 

i. Effect of environment (k) . 
 ����k = β

ω�ω�ω/ω0 ���ω�ω/ω0 + ξ����θ�ω/ω0 + ��ω�ω/ω0�+ ξ����θ�θ�τ� + ��θ�τ�ω� + ��τ�ω�ω0� + ξ/���θ�τ�ω/ + ��τ�ω�ω/�} > 0, 
 

ii.  Rate at which mild infected children seek treatmentτ�.. 
 dRTdτ� = − βk

ω��ω�ω/ω0 ���ω�ω/ω0 + ξ����θ�ω/ω0 + ��ω�ω/ω0�+ ξ����θ�θ�τ� + ��θ�τ�ω� + ��τ�ω�ω0� + ξ/���θ�τ�ω/ + ��τ�ω�ω/�}+ βk
ω�ω�ω/ω0 �ξ���ω/ω0 + ξ����θ�τ� + ��ω�ω0� + ξ/��τ�ω/� < 0, 

 
iii.  Rate at which mild infected children seek treatment τ�. 

 dRTdτ� = − βk
ω�ω��ω/ω0 ���ω�ω/ω0 + ξ����θ�ω/ω0 + ��ω�ω/ω0�+ ξ����θ�θ�τ� + ��θ�τ�ω� + ��τ�ω�ω0� + ξ/���θ�τ�ω/ + ��τ�ω�ω/�}+ βk

ω�ω�ω/ω0 ���ω/ω0 + ξ����θ�θ� + ��θ�ω� + ��τ�ω0�+ ξ/���θ�ω/ + ��ω�ω/�} < 0. 
 

iv. With respect to vaccinated ('� drug efficacy�ε�. 
 dRTd ε = − βk'�

ω�ω�ω/ω0 �ω�ω/ω0 + ξ�θ�ω/ω0 + ξ��θ�θ�τ� + τ�ω�ω0� + ξ/θ�τ�ω/� < 0 

 

5 Biological Interpretation of the Analytical Results 
 
We shall interpret the stabilities of equilibrium point, determine thresholds and determine partial derivate of 
control reproduction number ����. 
 
5.1 Local and Global Stability of Equilibrium Points 
 
An equilibrium point is said to be locally asymptotically stable if all points in the neighborhood of the 
equilibrium point move towards it over time. An equilibrium point is globally asymptotically stable if all 
points move towards it over time. Disease free point of pneumonia model was locally and globally 
asymptotically stable when the control reproduction number ���∗ � is maintained less than one; this means 
interventions should maintain control reproduction number less than one in order to avoid pneumonia 
persistence. The system did not exhibit backward bifurcation hence it is feasible to control pneumonia in 
Kenya. Interpretation of local and global stability of endemic equilibrium point will be part of future 
research. 
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5.2 Epidemiological Thresholds 
 
The number of children under five years who can be infected with pneumonia by one infectious child when 
interventions such as vaccination, proper control of environmental factors and treatment are observed is 
referred to as control reproduction number �RT� while the number of children under five years who can be 
infected with pneumonia by one infectious child without interventions referred to as control reproduction 
number �RT�. The control reproduction number �RT� and basic reproduction number �R��of the system [�3.3.1� − �3.3.7�] are given by; 
 RT = βk

ω�ω�ω/ω0 ���ω�ω/ω0 + ξ����θ�ω/ω0 + ��ω�ω/ω0� + ξ����θ�θ�τ� + ��θ�τ�ω� + ��τ�ω�ω0�+ ξ/���θ�τ�ω/ + ��τ�ω�ω/�}, 
 R� = βk%��+�μ + δ�� + �μ�1 − P� + θ��ξ���μ + δ���μ + θ�� . 

 
5.2.1 Treatment thresholds 
 
When actual treatments �τ��
� τ�� are greater than critical treatment τ��  �
� τ�� respectively it can ensure 
total eradication of pneumonia. Also, treatment with sufficient coverage can succeed in eliminating infection 
when �� is below unity. Because Rc measures the intensity of the epidemic, treatment, by lowering ��, can 
have significant public health impact even if it fails to eliminate infection in a specific population. When, 
 �å� = 1 + ��μ + δ���μ + θ�� c�1 − +�%��μ + θ� + τ�� Õθ�ξ�τ� + ω/�ξ/τ� + ξ�ω0�×

+ �+%� + �1 − ϵ�'�� t�μ + δ� + τ���ξ�τ� + ω/�ω0
+ θ� Õθ�ξ�τ� + ω/�ξ/τ� + ξ�ω0�×ud�/�%��−+�μ + δ�� + ��−1 + +�μ − θ��ξ���μ + θ� + τ���μ + δ� + τ��ω/ω0� > 0. 

 
Thus, population-level impact of treatment is always positive provided. This condition is likely to be 
satisfied for treatment with effective drugs. 
 
5.2.2 Herd immunity 
 
Vaccination is a voluntary process and it is not possible to vaccinate all individuals in the population. When 
actual vaccination �I − Ω��  is greater than critical treatment �q��  it can ensure total eradication of 
pneumonia. 
 

5.3 Sensitivity Analysis of the Effective Control Number�èé�. 
 
Clearly, RT  was directly proportional to k but inversely proportional to; ε, τ� and τ� . Higher vaccination 
efficacy �ε� and higher rates rate of mildly and chronically infected children seeking treatment �τ� and τ�� 
would decrease the control reproduction number and the intensity of the pneumonia endemic. Lower effect 
environmental factors (k) would decrease the control reproduction number (RT�. 
 

6 Discussion and Conclusion 
 
Most of the developed mathematical models concentrate on bacterial pneumonia, antibiotic resistance, and 
vaccinations. These models assume that pneumonia is isolated in population, during treatment and in death. 
Further, viral, fungi and parasitic pneumonia are mostly ignored.  
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The research study [17], considered an in host model concentrating on bacteria pneumonia (Streptococcus 
pneumonia). They considered issue of coexistence of pneumonia serotypes in a population. The study model 
assumes isolation is carried out in hospitals. The findings stressed correctly modeling the possibility of a 
host being able to become simultaneously invaded with more than one strain, taking into account difficulties 
in obtaining a second strain if already colonized and considering acquired immunity of new strains. Our 
research study developed general model pneumonia as is affect population of the under five years. 
 
The research study [18], considered a pneumococcal transmission in host model which takes into account the 
risk of higher rates of transmission for children who attend child-care centers or who are often forced to 
spend time with children who attend these centers. The results stress the importance of child-care centers in 
transmission. The study model assumes isolation is carried out in hospitals and closed community. Our 
research study developed a general model of open community with births and deaths. 
 
The research study [19], formulated four compartmental classes in their model involving Susceptible, 
Carriers, Infected and Recovered. They assumed pneumonia is isolated in health facilities and studied 
bacterial pneumonia. The findings stressed importance of treatment and quarantine where possible. Our 
research study developed a general model and assumed that under five years cannot have carriers due to the 
weak nature of their immune systems. 
 
The research study [10], formulated three compartmental classes involving Susceptible, Infected and treated 
in their model. The study did not consider vaccinated class. Their findings stressed importance of natural 
immunity and treatment in lowering burden of pneumonia. Our research study included vaccinated class and 
subdivided infected and treated classes into mild and chronic. Furthermore recovered class was also 
introduced. 
 
The research study [9], formulated four compartmental classes involving Vaccinated, Susceptible, Infected 
and Treated in their model. They assumed treated class to be non-infective and the adults and children have 
same infection rates. The results stressed importance of drug efficacy in lowering burden of pneumonia. Our 
research study assumed treated classes to be infectious and also subdivided infected and treated classes into 
mild and chronic. Furthermore recovered class was also introduced. 
 
The research study [20], developed a deterministic co-infection model of malaria and pneumonia under five 
years of age. The study analyzed the reproduction number by partial derivatives.The result stressed the 
importance of increase in treatment rates to lower new disease incidences.  
 
The research study [8], conducted a case-control study of pneumonia etiology among children aged 1–59 
months in rural Kenya. They classified pneumonia in two categories (severe and very severe 
pneumonia).The result obtained indicated that very severe pneumonia cases constituted twenty nine percent 
of the 810 case patients. Our research study used mathematic model approach to describe dynamics of 
pneumonia. 
 
The research study emphasized on the importance of treatment in lowering the burden of pneumonia, this 
was in agreement with research findings of [9,10,19,20]. To ensure eradication of pneumonia this research 
study detemined the minimum  critical treatment thresholds which was not taken into account in previous 
pneumonia studies. In concurrent with (Laura L. Hammitt, et al. [8]) this research study also classified 
pneumonia in to broad categories but used mathematical approach. 
 
Although [9], also studied effect vaccination, their paper did not determine the herd immunity and also failed 
to consider the effects enviromental factors  and the contribution of the treated classes to the  dynamics of 
childhood pneumonia and, these have been  taken into consideration in this paper. 
 
The system of the full model was highly non linear it was very difficult to determine qualiatative behaviour 
of the full system, that is the reason as to why the system had to be reduced to four dimension system. 
Constructing an effective Lyapunov function to determine the local and global stability of the endemic 
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equilibrium point of the reduced system was also a major challenge. Future research will estimate numerical 
values of the reproduction numbers for the pneumonia of the under five years in the Kenya and carry out 
grapical numerical sensitivity of the reproduction numbers. Predicting the dynamic of the under five years 
pneumonia in Kenya is also part of future research once i get sufficient, valid and reliable five years 
phenomenological secondary data and/or parameters trend. 
 

7 Recommendations 
 
In order to reduce the burden of childhood pneumonia, it is suggested that the Government of Kenya should 
invest in; 
 

• Creating public awareness to parents on; symptoms of pneumonia, 
• Environmental factors which increase children susceptibility to pneumonia( like indoor air 

pollution, living in crowded homes and parental smoking), 
• Creating awareness on the need to visit hospitals for treatment, 
• Improving vaccination drug’s efficacy, 
• Achieving herd immunity.  

 
The study analyzed a reduced system of equations [�3.4.5� − �3.4.8�]and [�3.8.1� − �3.8.4�] instead of [�2.4.1� − �2.4.7�] Model analysis of full system [�2.4.1� − �2.4.7�] can be part future research. 
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Appendix 
 

Table 1. The model variables and parameters 
 

Variable Description 
N(t) Total population of less or equal to five year’s Children in Kenya 
S(t) Population of less or equal to five year’s children susceptible to pneumonia in Kenya. 
V(t) Population of less or equal to five year’s children vaccinated in Kenya. 
IM(t) Population of less or equal to five year’s children mildly infected with pneumonia in 

Kenya. 
IC(t) Population of less or equal to five year’s children chronically infected with pneumonia in 

Kenya. 
TM(t) Population of less or equal to five year’s children mildly treated with pneumonia in Kenya 

(outpatient). 
TC(t) Population of less or equal to five year’s children chronically treated with pneumonia 

children in Kenya (inpatient). 
R(t) Population of less or equal to five year’s children recovered from pneumonia in Kenya. 
Parameters Description 
β Pneumonia infection rate of less or equal to five year’s children in Kenya � Recruitment rate of less or equal to five year’s children in Kenya (birth rate). 
γ1 Recovery rate of less or equal to five year’s mildly treated children due to treatment in 

Kenya. 
γ2 Recovery rate of less or equal to five year’s chronically treated children due to treatment in 

Kenya. �� Pneumonia induced death due to less or equal to five year’s chronically infected children 
in Kenya. �� Pneumonia induced death due to less or equal to five year’s chronically treated children in 
Kenya. B Constant natural death rate in Kenya. 

ε Percentage of pneumonia vaccination drug’s efficacy administered to less or equal to five 
year’s children in Kenya. 

ρ Waning rate of treatment drug after recovery of less or equal to five year’s children in 
Kenya. 

θ� Rate at which less or equal to five year’s mildly infected children progresses to chronic 
infected class in Kenya.  

θ� Rate at which less or equal to five year’s chronically treated children (inpatient) are 
discharged as mildly treated class (outpatient) in Kenya. 

τ� Rate at which less or equal to five year’s mildly infected children seek treatment in Kenya.  
τ� Rate at which less or equal to five year’s chronically infected children seek treatment in 

Kenya. 
K Coefficient at which force of infection is accelerated due to environmental factors. 
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Table 2. Definition of terms 
 

`Endemic It is long term infection which stays in the population at least 10 to 20 years. 
Susceptible 
population 

Proportion of the children population who are free of infection but at risk of 
contracting the infection 

Vaccinated 
population 

Proportion of the children populations who are free of infection and vaccinated with 
pneumonia but are at a lower risk of contracting the infection. 

Mild Infected 
population 

Proportion of the children population with the disease causing pathogen and capable 
of transmitting the infection to other children on contact but are non-severely 
infected. 

Chronically 
Infected 
population 

Proportion of the children population with the disease causing pathogen and capable 
of transmitting the infection to other children on contact but are severely infected. 

Mild treated 
population 

Proportion of the children population with the disease causing pathogen under 
treatment and capable of transmitting the infection to other children on contact. 
Mostly treated as outpatient in our health facilities 

Chronic treated 
population 

Proportion of the children population with the disease causing pathogen under 
treatment and capable of transmitting the infection to other children on contact. 
Mostly treated as inpatient in our health facilities 

Recovered 
population 

Proportion of the children population who are free of infection after treatment. The 
effect of treatment drugs is still in their body and they are highly unlikely to contract 
the infection. 

Infectious disease Diseases where individuals are infected by pathogen micro-organisms, for instance 
viruses, bacteria, fungi or other micro parasites. 

Alveoli Microscopic sacs in the lungs that absorb oxygen. 
Morbidity Impairments as a result of a disease 
Mortality Susceptibility to death 
Virulence The degree of pathogenicity of a microorganism as indicated by the severity of 

disease produced and the ability to invade the tissues of the host. 
Efficacy A measure of how efficient is the drug. If the efficiency is 0% then it is useless but if 

it is 100% then it is perfect. 
MATLAB Mathematical software. 
Etiology The investigation of attribution of the cause or reason for something 
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