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Abstract

This paper is devoted to the cocycle of solutions of the non-autonomous stochastic damped wave
equations with multiplicative white noises defined on unbounded domains. And we obtain the
existence of a pullback absorbing set of the cocycle in a certain parameter region.
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1 Introduction

In this paper, we study the asymptotic behavior of solutions for the following non-autonomous
stochastic damped wave equation with multiplicative white noises defined on the unbounded domain
Rn:

dut + αdu+ (βu+ f(u)−∆u)dt = g(x, t)dt+ εu ◦ dω, (1.1)

with initial conditions

u(x, τ) = uτ (x), ut(x, τ) = uτ (x), (1.2)
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where x ∈ Rn with 1 ≤ n ≤ 3, t > τ, τ ∈ R, x ∈ Rn, α and β are positive constants, ε is a constant,
g is a time-dependent driving force and g ∈ L2

loc(R, L2(Rn)), and ω is a two-sided real-valued
Wiener process on a probability space. The stochastic equation (1.1) is understood in the sense of
Stratonovich’s integration.

Stochastic damped wave equations have been used as models to study the phenomena of a stochastic
resonance in physics, where g is a time-dependent input signal and ω is a Wiener process that is
used to test the impact of stochastic fluctuations on g ([1]-[3]). Especially, if ε = 0, Eq. (1.1)
is a deterministic wave equation, whose longtime behaviors have been studied by many experts,
including global attractors, uniform attractors and pullback attractors, see e.g., [4]-[5] and the
references therein. And when the function g does not depend on time, then equation (1.1) becomes
an autonomous stochastic wave equation.

The equation (1.1) is a non-autonomous equation that the external force term g is time-dependent,
and assuming that the external force term g(x, t) satisfies:∫ 0

−∞
eδs∥g(·, τ + s)∥2ds < ∞, ∀τ ∈ R. (1.3)

We remark that the technical hypothesis (1.3) is mainly for the existence of a pullback absorbing
set.

In comparison with the results recently published in [6]-[7], the novelty of this work are in two
aspects: (i) An Ornstein-Uhlenbeck (O-U) process is introduced to convert the system to a determin-
istic one with random parameters. (ii) The weakened assumptions (3.2) on the nonlinear term f(u).
(iii) The meaningful non-autonomous external force term g(x, t).

This paper is organized as follows. In Section 2 we recall some basic concepts and results related
to non-autonomous random dynamical systems. In Section 3 we formulate the problem and make
assumptions to define a continuous cocycle generated by the stochastic wave equation (1.1). In
Section 4, we conduct uniform estimate to prove the pullback absorbing property for the cocycle.

2 Preliminaries

Let (Ω,F , P ) be a probability space, and (X, ∥ · ∥X) be a separable Banach space whose Borel
σ-algebra is denoted by B(X).

Defintion 2.1 Let a mapping θt : R × Ω → Ω be (B(R) × F ,F)-measurable such that θ0 is the
identity on Ω, θt+s = θt◦θs for all t, s ∈ R, and Pθt = P for all t ∈ R. A mapping Φ : R+×Ω×X →
X is called a random dynamical system on X over (Ω,F , P, {θt}t∈R), if for all ω ∈ Ω and t, s ∈ R+

the following conditions are satisfied:

(i) Φ(t, ω, ·) : R+ × Ω×X → X is a (B(R+)×F ×B(X), B(X))-measurable mapping;
(ii) Φ(0, ω, ·) is the identity on X;
(iii) Φ(t+ s, ω, ·) = Φ(t, θsω, ·) ◦ Φ(s, ω, ·);
(iv) Φ(t, ω, ·) : X → X is continuous.

Defintion 2.2 Let Φ be a random dynamical system on a Banach space X over (Ω,F , P, {θt}t∈R).

(1) A random bounded set {B(ω)}ω∈Ω of X is called tempered with respect to {θt}t∈R if for P -a.e.
ω ∈ Ω,

lim
t→∞

e−ζtd(B(θ−tω)) = 0 for all ζ > 0,

where d(B) = supx∈B ∥x∥X .

2



Li; JAMCS, 33(1): 1-8, 2019; Article no.JAMCS.49802

(2) Let D be a collection of random subsets of X. The parametric dynamical system Φ is said to
be D-pullback asymptotically compact in X, if for any P -a.e. ω ∈ Ω and any sequences tn → ∞,
xn ∈ B(θ−tnω) with B = {B(ω)}ω∈Ω ∈ D, the sequence {Φ(tn, θ−tnω, xn)} has a convergent
subsequence in X.

(3) Let D be a collection of random subsets of X and K = {K(ω)}ω∈Ω ∈ D. Then K is called a
random absorbing set for Φ in D if for every B ∈ D and P -a.e. ω ∈ Ω, there exists tB(ω) > 0 such
that

Φ(t, θ−tω,B(θ−tω)) ⊂ K(ω), for all t ≥ tB(ω).

In this paper, we will take D to be the universe of all tempered random subsets of the product Hilbert
space H1(Rn)×L2(Rn) and prove that the cocycle generated by the stochastic wave equation (1.1)
on Rn has a pullback absorbing set.

3 The Cocycle for the Stochastic Damped Wave
Equation

In this section, we define a continous cocycle for problem (1.1)-(1.2). Let ξ = ut + δu, where δ is a
positive number to be determined, then (1.1)-(1.2) can be rewritten as the equivalent system

ut + δu = ξ,

ξt + (α− δ)ξ + (δ2 − αδ)u−∆u+ f(u) = g(x, t) + εu ◦ dω
dt
,

u(x, τ) = u0(x), ξ(x, τ) = ξ0 = u1(x) + δu0(x).

(3.1)

There exists a non-negative constant c1 ≥ 0 such that

|f(u1)− f(u2)| ≤ c1|u1 − u2|, f(0) = 0, ∀u1, u2 ∈ R. (3.2)

Let (Ω,F ,P) be a probability space as in Section 2. Define {θt}t∈R on Ω by θtω(·) = ω(·+ t)−ω(t)
for all ω ∈ Ω and t ∈ R, then (Ω,F ,P, {θt}t∈R) is a parametric dynamical system defined by [8].

To define a cocycle for problem (3.1), we need to convert the system to a deterministic one with
random parameters. Now we introduce an Ornstein-Uhlenbeck process given by the Brownian
motion. Put

z(θtω) := −α

∫ 0

−∞
eαs(θtω)(s)ds, ω ∈ Ω, t ∈ R, (3.3)

and solves the Itô equation

dz + αzdt = dω(t). (3.4)

From [1], it is known that the random variable |z(ω)| is tempered, and there is a θt-invariant set

Ω̃ ⊆ Ω of P measure such that |z(θtω)| is continuous in t for every ω ∈ Ω̃. For convenience, we write

Ω̃ as Ω.

Let v be a new variable given by v(x, t) = ξ(x, t)− εu(x, t)z(θtω). By (3.1), we have
ut = v + εuz(θtω)− δu,

vt + (α− δ)v + (δ2 − αδ +A)u+ ε(v − 2δu+ εuz(θtω))z(θtω) + f(u) = g(x, t),

u(x, τ) = u0(x), v(x, τ) = v0(x),

(3.5)
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where A = −∆, v0 = u1 + δu0 − εz(θτω)u0.

Let E = H1(Rn)× L2(Rn), endowed with the usual norm

∥Y ∥H1×L2 = (∥v∥2 + ∥u∥2 + ∥∇u∥2)
1
2 , for Y = (u, v)T ∈ E, (3.6)

where ∥ · ∥ denotes the usual norm in L2(Rn) and T stands for the transposition.

The well-posedness of the deterministic problem (3.5) in E = H1(Rn)×L2(Rn) can be established by
standard methods as in [8], [9]. One may show that under conditions (3.2), for every ω ∈ Ω, τ ∈ R
and (u0, v0) ∈ E, problem (3.5) has a unique solution (u(·, τ, ω, u0), v(·, τ, ω, v0)) ∈ C([τ,∞), E)
with (u(τ, τ, ω, u0), v(τ, τ, ω, v0)) = (u0, v0). In addition, for t ≥ τ, (u(t, τ, ω, u0), v(t, τ, ω, v0)) is
(F ,B(H1(Rn))×B(L2(Rn)))-measurable and continuous in (u0, v0) with respect to the norm of E.

Hence, the solution mapping can define a continuous cocycle for (3.1). Let Φ be a mapping,
Φ : R+ × R× Ω× E → E given by

Φ(t, τ, ω, (u0, v0)) = (u(t+ τ, τ, θ−τω, u0), v(t+ τ, τ, θ−τω, v0)) (3.7)

for every (t, τ, ω, (u0, v0)) ∈ R+ × R × Ω × E, where v(t + τ, τ, θ−τω, v0) = ξ(t + τ, τ, θ−τω, ξ0) −
εz(θtω)u(t+ τ, τ, θ−τω, u0) with v0 = ξ0 − εz(ω)u0. Then Φ is a continuous cocycle over
(Ω,F ,P, {θt}t∈R) on E. And ∀t ∈ R+, τ ∈ R, ω ∈ Ω, we have

Φ(t, τ − t, θ−tω, (u0, v0)) = (u(τ, τ − t, θ−τω, u0), v(τ, τ − t, θ−τω, v0))

= (u(τ, τ − t, θ−τω, u0), ξ(τ, τ − t, θ−τω, ξ0)− εz(ω)u(τ, τ − t, θ−τω, u0)). (3.8)

When deriving uniform estimates on solutions, we need the following condition on g in (1.1):∫ 0

−∞
eδs∥g(·, τ + s)∥2ds < ∞, ∀τ ∈ R, (3.9)

and

lim
k→∞

∫ 0

−∞
eδs

∫
|x|≥k

∥g(x, τ + s)∥2dxds = 0. (3.10)

The condition (3.9) shows that g(·, t) is not bounded in L2(R) when t → ±∞.

Let B be a bounded nonempty subset of E, and denote by ∥B∥ = supφ∈B ∥φ∥E . Suppose D =
{D(τ, ω) : τ ∈ R, ω ∈ Ω} be a family of bounded nonempty subsets of E satisfying, for every τ ∈ R
and ω ∈ Ω,

lim
s→−∞

eδs∥D(τ + s, θsω)∥2 = 0. (3.11)

Denote by D the collection of all families of bounded nonempty subsets of E,

D = {D = {D(τ, ω) : τ ∈ R, ω ∈ Ω} : D satisfies (3.11)}. (3.12)

It is evident that D is neighborhood-closed.

4 Pullback Absorbing Set

In this section, we derive uniform estimates on the solutions of the stochastic damped wave equations
(3.1) defined on Rn when t → ∞. These estimates are necessary for proving the existence of pullback
absorbing sets of the system.
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We define a new norm ∥ · ∥E by

∥Y ∥E = (∥v∥2 + (δ2 − αδ)∥u∥2 + ∥∇u∥2)
1
2 , (4.1)

for Y = (u, v)T ∈ E. It is easy to check that ∥ · ∥E is equivalent to the usual norm ∥ · ∥H1×L2 in
(3.6).

Lemma 4.1 Assume that α − 3δ > 0, (3.2) and (3.9) hold. Let τ ∈ R, ω ∈ Ω, D = {D(τ, ω), τ ∈
R, ω ∈ Ω} ∈ D. Then there exists T = T (τ, ω,D) > 0, for all t ≥ T , the solution of problem (3.5)
satisfies

Y (τ, τ − t, θ−τω,D(τ − t, θ−tω)) ≤ R(τ, ω),

and R(τ, ω) is given by

R(τ, ω) = M

∫ 0

−∞
exp{2

∫ s

0

[δ − |ε||z(θrω)| − β1(
1

2
ε2|z(θrω)|2

+β2|ε||z(θrω)|)]dr}∥g(·, s+ τ)∥2ds, (4.2)

where M is a positive constant independent of τ, ω,D and ε.

Proof. Taking the inner product of the second equation of (3.5) with v in L2(Rn), we find that

1

2

d

dt
∥v∥2 = (δ − α− εz(θtω))∥v∥2 − (δ2 − αδ)(u, v)− (Au, v)

+
(
εz(θtω)(2δ − εz(θtω))u, v

)
+ (g(x, t), v)− (f(u), v). (4.3)

By the first equation of (3.5), we have

v = ut − εuz(θtω) + δu, (4.4)

then substituting the above v into the second and third terms on the right-hand side of (4.1), we
find that

(u, v) = (u, ut + δu− εz(θtω)u)

=
1

2

d

dt
∥u∥2 + δ∥u∥2 − εz(θtω)∥u∥2

≥ 1

2

d

dt
∥u∥2 + δ∥u∥2 − |ε| · |z(θtω)| · ∥u∥2, (4.5)

and

−(Au, v) = −(∇u,∇v)

= −(∇u,∇ut + δ∇u− εz(θtω)∇u)

= −1

2

d

dt
∥∇u∥2 − δ∥∇u∥2 + εz(θtω)∥∇u∥2

≤ −1

2

d

dt
∥∇u∥2 − δ∥∇u∥2 + |ε| · |z(θtω)| · ∥∇u∥2. (4.6)

Using Cauchy-Schwartz inequality and Young inequality, we have(
εz(θtω)(2δ − εz(θtω))u, v

)
= (2δεz(θtω)− ε2z2(θtω))(u, v)

≤ (2δ|ε| · |z(θtω)|+ ε2 · |z(θtω)|2)∥u∥ · ∥v∥

≤ (δ|ε| · |z(θtω)|+
1

2
ε2 · |z(θtω)|2)(∥u∥2 + ∥v∥2), (4.7)
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and

(g, v) ≤ ∥g∥ · ∥v∥ ≤ ∥g∥2

2(α− δ)
+

α− δ

2
∥v∥2, (4.8)

and by (3.2),

−(f(u), v) ≤ c1(u, ut + δu− εz(θtω)u)

≤ c1
d

dt
∥u∥2 + c1δ|u|2 + |ε| · |z(θtω)||u|2. (4.9)

By (4.5)-(4.9), it follows from (4.3) that

1

2

d

dt
∥v∥2 − (δ − α− εz(θtω))∥v∥2 +

1

2
(c1 + δ2 − αδ)

d

dt
∥u∥2 + δ(c1 + δ2 − αδ)∥u∥2

−|ε||z(θtω)|(c1 + δ2 − αδ)∥u∥2 + 1

2

d

dt
∥∇u∥2 − (−δ + |ε||z(θtω)|)∥∇u∥2

≤ (δ|ε| · |z(θtω)|+
1

2
ε2 · |z(θtω)|2)(∥u∥2 + ∥v∥2) + α− δ

2
∥v∥2 + ∥g∥2

2(α− δ)
. (4.10)

Then

1

2

d

dt
(∥v∥2 + (c1 + δ2 − αδ)∥u∥2 + ∥∇u∥2) + δ(∥v∥2 + (c1 + δ2 − αδ)∥u∥2 + ∥∇u∥2)

≤ (δ|ε| · |z(θtω)|+
1

2
ε2 · |z(θtω)|2)(∥u∥2 + ∥v∥2) + 3δ − α

2
∥v∥2 + ∥g∥2

2(α− δ)

+|ε||z(θtω)|(∥v∥2 + (c1 + δ2 − αδ)∥u∥2 + ∥∇u∥2). (4.11)

From (4.11), we have

1

2

d

dt
(∥v∥2 + (c1 + δ2 − αδ)∥u∥2 + ∥∇u∥2)

≤ −[δ − |ε| · |z(θtω)| − β1(
1

2
ε2 · |z(θtω)|2 + β2|ε||z(θtω)|)](∥v∥2 + (c1 + δ2 − αδ)∥u∥2 + ∥∇u∥2)

+
∥g∥2

2(α− δ)
, (4.12)

where β1 = 1 + 1
c1+δ2−αδ

, β2 = 3δ+α
2

.

Denote

Γ(t, ω) = δ − |ε| · |z(θtω)| − β1(
1

2
ε2 · |z(θtω)|2 + β2|ε||z(θtω)|). (4.13)

Using Gronwall inequality to integrate (4.12) over (τ − t, τ) with t ≥ 0, we get

∥v(τ, τ − t, ω, v0)∥2 + (c1 + δ2 − αδ)∥u(τ, τ − t, ω, u0)∥2 + ∥∇u(τ, τ − t, ω, u0)∥2

≤ (∥v0∥2 + (c1 + δ2 − αδ)∥u0∥2 + ∥∇u0∥2)e2
∫ τ−t
τ Γ(s,ω)ds

+c

∫ τ−t

τ

e2
∫ s
τ Γ(r,ω)dr∥g(·, s)∥2ds. (4.14)

Replacing ω by θ−τω in (4.14), we obtain, for every t ∈ R+, τ ∈ R, ω ∈ Ω,

∥v(τ, τ − t, θ−τω, v0)∥2 + (c1 + δ2 − αδ)∥u(τ, τ − t, θ−τω, u0)∥2 + ∥∇u(τ, τ − t, θ−τω, u0)∥2

≤ (∥v0∥2 + (c1 + δ2 − αδ)∥u0∥2 + ∥∇u0∥2)e2
∫ τ−t
τ Γ(s−τ,ω)ds

+c

∫ τ−t

τ

e2
∫ s
τ Γ(r−τ,ω)dr∥g(·, s)∥2ds. (4.15)

6



Li; JAMCS, 33(1): 1-8, 2019; Article no.JAMCS.49802

then

∥v(τ, τ − t, θ−τω, v0)∥2 + (c1 + δ2 − αδ)∥u(τ, τ − t, θ−τω, u0)∥2 + ∥∇u(τ, τ − t, θ−τω, u0)∥2

≤ (∥v0∥2 + (c1 + δ2 − αδ)∥u0∥2 + ∥∇u0∥2)e2
∫−t
0 Γ(s,ω)ds

+c

∫ 0

−t

e2
∫ s
0 Γ(r,ω)dr∥g(·, s+ τ)∥2ds. (4.16)

Since |z(θtω)| is stationary and ergodic (see [10]), we get from (3.3) and the ergodic theorem that

lim
t→∞

1

t

∫ 0

−t

|z(θrω)|dr = E(|z(θrω)|) =
1√
πδ

,

lim
t→∞

1

t

∫ 0

−t

|z(θrω)|2dr = E(|z(θrω)|2) =
1

2δ
. (4.17)

By (4.16), there exists T1(ω) > 0 such that for all t ≥ T1(ω),∫ 0

−t

|z(θrω)|dr =
2√
πδ

t,∫ 0

−t

|z(θrω)|2dr =
1

δ
t. (4.18)

Let ε satisfy

|ε| <
2
√
δ(β1β2 + 1) +

√
4δ(β1β2 + 1)2 + πβ1δ2

β1
√
π

, (4.19)

We have

e2
∫ s
0 Γ(r,ω)dr ≤ e2(

δ
2
)s = eδs, ∀s ≤ −T1. (4.20)

Since |z(θsω)| is tempered, by (3.9) and (4.17), we have the following integral is convergent,

R2
1(τ, ω) = 2c

∫ 0

−∞
e2

∫ s
0 Γ(r,ω)dr(∥g(·, s+ τ)∥2)ds. (4.21)

Since D ∈ D and (u0, v0) ∈ D(τ − t, θ−tω), for all t ≥ T1, we get from (4.18)-(4.20),

(∥v0∥2 + (c1 + δ2 − αδ)∥u0∥2 + ∥∇u0)∥2e2
∫−t
0 Γ(s,ω)ds

≤ ce−δt(∥v0∥2 + ∥u0∥2 + ∥∇u0∥)
≤ ce−δt(∥D(τ − t, θ−tω∥2) → 0, as t → +∞. (4.22)

From (4.1), (4.16), (4.21) and (4.22), there exists T2 = T2(τ, ω,D) ≥ T1 such that for all t ≥ T2,

∥Y (τ, τ − t, θ−τω, Y0(θ−τω))∥2E ≤ R2
1(τ, ω). (4.23)

So, the proof is completed. 2

Moreover, under all the previous assumptions for the cocycle Φ governed by (3.7), we have the
following corollary.

Corollary 4.1. Suppose that the external force term g : R → L2(R) is γ − periodic, then the
cocycle Φ governed by (3.7) has a pullback absorbing set in E.
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