Journal of Advances in Mathematics and Computer Science

Journal of Advances in Mathematics and Computer Science

33(1): 1-8, 2019; Article no.JAMCS.49802 ISSN: 2456-9968 (Past name: British Journal of Mathematics & Computer Science, Past ISSN: 2231-0851)

The Cocycle for the Non-autonomous Stochastic Damped Wave Equations with White Noises

Hongyan Li^{1*}

¹College of Management, Shanghai University of Engineering Science, Shanghai 201620, P. R. China.

Author's contribution

The sole author designed, analyzed, interpreted and prepared the manuscript.

Article Information

Received: 18 April 2019 Accepted: 22 June 2019

Published: 06 July 2019

DOI: 10.9734/JAMCS/2019/v33i130165 <u>Editor(s)</u>: (1) Dr. Morteza Seddighin Professor, Indiana University East Richmond, USA. (1) Grienggrai Rajchakit, Maejo University, Thailand. (2) Aliyu bhar kisabo, National Space Research and Development Agency, Nigeria. Complete Peer review History: http://www.sdiarticle3.com/review-history/49802

Original Research Article

Abstract

This paper is devoted to the cocycle of solutions of the non-autonomous stochastic damped wave equations with multiplicative white noises defined on unbounded domains. And we obtain the existence of a pullback absorbing set of the cocycle in a certain parameter region.

Keywords: Stochastic damped wave equations; cocycle; pullback absorbing set.

1 Introduction

In this paper, we study the asymptotic behavior of solutions for the following non-autonomous stochastic damped wave equation with multiplicative white noises defined on the unbounded domain \mathbb{R}^n :

$$du_t + \alpha du + (\beta u + f(u) - \Delta u)dt = g(x, t)dt + \varepsilon u \circ d\omega, \qquad (1.1)$$

with initial conditions

$$u(x,\tau) = u_{\tau}(x), \quad u_t(x,\tau) = u_{\tau}(x),$$
(1.2)

*Corresponding author: E-mail: hongyanlishu@163.com;

where $x \in \mathbb{R}^n$ with $1 \le n \le 3$, $t > \tau, \tau \in \mathbb{R}$, $x \in \mathbb{R}^n$, α and β are positive constants, ε is a constant, g is a time-dependent driving force and $g \in L^2_{loc}(\mathbb{R}, L^2(\mathbb{R}^n))$, and ω is a two-sided real-valued Wiener process on a probability space. The stochastic equation (1.1) is understood in the sense of Stratonovich's integration.

Stochastic damped wave equations have been used as models to study the phenomena of a stochastic resonance in physics, where g is a time-dependent input signal and ω is a Wiener process that is used to test the impact of stochastic fluctuations on g ([1]-[3]). Especially, if $\varepsilon = 0$, Eq. (1.1) is a deterministic wave equation, whose longtime behaviors have been studied by many experts, including global attractors, uniform attractors and pullback attractors, see e.g., [4]-[5] and the references therein. And when the function g does not depend on time, then equation (1.1) becomes an autonomous stochastic wave equation.

The equation (1.1) is a non-autonomous equation that the external force term g is time-dependent, and assuming that the external force term g(x, t) satisfies:

$$\int_{-\infty}^{0} e^{\delta s} \|g(\cdot, \tau + s)\|^2 ds < \infty, \quad \forall \tau \in \mathbb{R}.$$
(1.3)

We remark that the technical hypothesis (1.3) is mainly for the existence of a pullback absorbing set.

In comparison with the results recently published in [6]-[7], the novelty of this work are in two aspects: (i) An Ornstein-Uhlenbeck (O-U) process is introduced to convert the system to a deterministic one with random parameters. (ii) The weakened assumptions (3.2) on the nonlinear term f(u). (iii) The meaningful non-autonomous external force term g(x, t).

This paper is organized as follows. In Section 2 we recall some basic concepts and results related to non-autonomous random dynamical systems. In Section 3 we formulate the problem and make assumptions to define a continuous cocycle generated by the stochastic wave equation (1.1). In Section 4, we conduct uniform estimate to prove the pullback absorbing property for the cocycle.

2 Preliminaries

Let (Ω, \mathcal{F}, P) be a probability space, and $(X, \|\cdot\|_X)$ be a separable Banach space whose Borel σ -algebra is denoted by B(X).

Definition 2.1 Let a mapping $\theta_t : \mathbb{R} \times \Omega \to \Omega$ be $(B(\mathbb{R}) \times \mathcal{F}, \mathcal{F})$ -measurable such that θ_0 is the identity on Ω , $\theta_{t+s} = \theta_t \circ \theta_s$ for all $t, s \in \mathbb{R}$, and $P\theta_t = P$ for all $t \in \mathbb{R}$. A mapping $\Phi : \mathbb{R}^+ \times \Omega \times X \to X$ is called a random dynamical system on X over $(\Omega, \mathcal{F}, P, \{\theta_t\}_{t \in \mathbb{R}})$, if for all $\omega \in \Omega$ and $t, s \in \mathbb{R}^+$ the following conditions are satisfied:

(i) $\Phi(t, \omega, \cdot) : \mathbb{R}^+ \times \Omega \times X \to X$ is a $(B(\mathbb{R}^+) \times \mathcal{F} \times B(X), B(X))$ -measurable mapping;

(ii) $\Phi(0, \omega, \cdot)$ is the identity on X;

(iii) $\Phi(t+s,\omega,\cdot) = \Phi(t,\theta_s\omega,\cdot) \circ \Phi(s,\omega,\cdot);$

(iv) $\Phi(t, \omega, \cdot) : X \to X$ is continuous.

Definition 2.2 Let Φ be a random dynamical system on a Banach space X over $(\Omega, \mathcal{F}, P, \{\theta_t\}_{t \in \mathbb{R}})$.

(1) A random bounded set $\{B(\omega)\}_{\omega\in\Omega}$ of X is called tempered with respect to $\{\theta_t\}_{t\in\mathbb{R}}$ if for P-a.e. $\omega\in\Omega$,

$$\lim_{t \to \infty} e^{-\zeta t} d(B(\theta_{-t}\omega)) = 0 \quad \text{for all } \zeta > 0,$$

where $d(B) = \sup_{x \in B} ||x||_X$.

(2) Let \mathcal{D} be a collection of random subsets of X. The parametric dynamical system Φ is said to be \mathcal{D} -pullback asymptotically compact in X, if for any P-a.e. $\omega \in \Omega$ and any sequences $t_n \to \infty$, $x_n \in B(\theta_{-t_n}\omega)$ with $B = \{B(\omega)\}_{\omega \in \Omega} \in \mathcal{D}$, the sequence $\{\Phi(t_n, \theta_{-t_n}\omega, x_n)\}$ has a convergent subsequence in X.

(3) Let \mathcal{D} be a collection of random subsets of X and $K = \{K(\omega)\}_{\omega \in \Omega} \in \mathcal{D}$. Then K is called a random absorbing set for Φ in \mathcal{D} if for every $B \in \mathcal{D}$ and P-a.e. $\omega \in \Omega$, there exists $t_B(\omega) > 0$ such that

$$\Phi(t, \theta_{-t}\omega, B(\theta_{-t}\omega)) \subset K(\omega), \quad \text{for all } t \ge t_B(\omega).$$

In this paper, we will take \mathcal{D} to be the universe of all tempered random subsets of the product Hilbert space $H^1(\mathbb{R}^n) \times L^2(\mathbb{R}^n)$ and prove that the cocycle generated by the stochastic wave equation (1.1) on \mathbb{R}^n has a pullback absorbing set.

3 The Cocycle for the Stochastic Damped Wave Equation

In this section, we define a continuus cocycle for problem (1.1)-(1.2). Let $\xi = u_t + \delta u$, where δ is a positive number to be determined, then (1.1)-(1.2) can be rewritten as the equivalent system

$$\begin{cases} u_t + \delta u = \xi, \\ \xi_t + (\alpha - \delta)\xi + (\delta^2 - \alpha\delta)u - \Delta u + f(u) = g(x, t) + \varepsilon u \circ \frac{d\omega}{dt}, \\ u(x, \tau) = u_0(x), \quad \xi(x, \tau) = \xi_0 = u_1(x) + \delta u_0(x). \end{cases}$$
(3.1)

There exists a non-negative constant $c_1 \ge 0$ such that

$$|f(u_1) - f(u_2)| \le c_1 |u_1 - u_2|, \quad f(0) = 0, \quad \forall u_1, u_2 \in \mathbb{R}.$$
(3.2)

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space as in Section 2. Define $\{\theta_t\}_{t\in\mathbb{R}}$ on Ω by $\theta_t \omega(\cdot) = \omega(\cdot + t) - \omega(t)$ for all $\omega \in \Omega$ and $t \in \mathbb{R}$, then $(\Omega, \mathcal{F}, \mathbb{P}, \{\theta_t\}_{t\in\mathbb{R}})$ is a parametric dynamical system defined by [8].

To define a cocycle for problem (3.1), we need to convert the system to a deterministic one with random parameters. Now we introduce an Ornstein-Uhlenbeck process given by the Brownian motion. Put

$$z(\theta_t \omega) := -\alpha \int_{-\infty}^0 e^{\alpha s}(\theta_t \omega)(s) ds, \quad \omega \in \Omega, \quad t \in \mathbb{R},$$
(3.3)

and solves the $\mathrm{It}\hat{o}$ equation

$$dz + \alpha z dt = d\omega(t). \tag{3.4}$$

From [1], it is known that the random variable $|z(\omega)|$ is tempered, and there is a θ_t -invariant set $\widetilde{\Omega} \subseteq \Omega$ of \mathbb{P} measure such that $|z(\theta_t \omega)|$ is continuous in t for every $\omega \in \widetilde{\Omega}$. For convenience, we write $\widetilde{\Omega}$ as Ω .

Let v be a new variable given by $v(x,t) = \xi(x,t) - \varepsilon u(x,t)z(\theta_t \omega)$. By (3.1), we have

$$\begin{cases} u_t = v + \varepsilon u z(\theta_t \omega) - \delta u, \\ v_t + (\alpha - \delta) v + (\delta^2 - \alpha \delta + A) u + \varepsilon (v - 2\delta u + \varepsilon u z(\theta_t \omega)) z(\theta_t \omega) + f(u) = g(x, t), \\ u(x, \tau) = u_0(x), \quad v(x, \tau) = v_0(x), \end{cases}$$
(3.5)

where $A = -\Delta, v_0 = u_1 + \delta u_0 - \varepsilon z(\theta_\tau \omega) u_0$.

Let $E = H^1(\mathbb{R}^n) \times L^2(\mathbb{R}^n)$, endowed with the usual norm

$$||Y||_{H^1 \times L^2} = (||v||^2 + ||u||^2 + ||\nabla u||^2)^{\frac{1}{2}}, \quad for \ Y = (u, v)^{\mathcal{T}} \in E,$$
(3.6)

where $\|\cdot\|$ denotes the usual norm in $L^2(\mathbb{R}^n)$ and \mathcal{T} stands for the transposition.

The well-posedness of the deterministic problem (3.5) in $E = H^1(\mathbb{R}^n) \times L^2(\mathbb{R}^n)$ can be established by standard methods as in [8], [9]. One may show that under conditions (3.2), for every $\omega \in \Omega, \tau \in \mathbb{R}$ and $(u_0, v_0) \in E$, problem (3.5) has a unique solution $(u(\cdot, \tau, \omega, u_0), v(\cdot, \tau, \omega, v_0)) \in C([\tau, \infty), E)$ with $(u(\tau, \tau, \omega, u_0), v(\tau, \tau, \omega, v_0)) = (u_0, v_0)$. In addition, for $t \geq \tau, (u(t, \tau, \omega, u_0), v(t, \tau, \omega, v_0))$ is $(\mathcal{F}, \mathcal{B}(H^1(\mathbb{R}^n)) \times \mathcal{B}(L^2(\mathbb{R}^n)))$ -measurable and continuous in (u_0, v_0) with respect to the norm of E.

Hence, the solution mapping can define a continuous cocycle for (3.1). Let Φ be a mapping, $\Phi: \mathbb{R}^+ \times \mathbb{R} \times \Omega \times E \to E$ given by

$$\Phi(t,\tau,\omega,(u_0,v_0)) = (u(t+\tau,\tau,\theta_{-\tau}\omega,u_0),v(t+\tau,\tau,\theta_{-\tau}\omega,v_0))$$
(3.7)

for every $(t, \tau, \omega, (u_0, v_0)) \in \mathbb{R}^+ \times \mathbb{R} \times \Omega \times E$, where $v(t + \tau, \tau, \theta_{-\tau}\omega, v_0) = \xi(t + \tau, \tau, \theta_{-\tau}\omega, \xi_0) - \varepsilon z(\theta_t \omega) u(t + \tau, \tau, \theta_{-\tau}\omega, u_0)$ with $v_0 = \xi_0 - \varepsilon z(\omega) u_0$. Then Φ is a continuous cocycle over $(\Omega, \mathcal{F}, \mathbb{P}, \{\theta_t\}_{t \in \mathbb{R}})$ on E. And $\forall t \in \mathbb{R}^+, \tau \in \mathbb{R}, \omega \in \Omega$, we have

$$\Phi(t,\tau-t,\theta_{-t}\omega,(u_0,v_0)) = (u(\tau,\tau-t,\theta_{-\tau}\omega,u_0),v(\tau,\tau-t,\theta_{-\tau}\omega,v_0))$$

= $(u(\tau,\tau-t,\theta_{-\tau}\omega,u_0),\xi(\tau,\tau-t,\theta_{-\tau}\omega,\xi_0) - \varepsilon z(\omega)u(\tau,\tau-t,\theta_{-\tau}\omega,u_0)).$ (3.8)

When deriving uniform estimates on solutions, we need the following condition on g in (1.1):

$$\int_{-\infty}^{0} e^{\delta s} \|g(\cdot, \tau + s)\|^2 ds < \infty, \quad \forall \tau \in \mathbb{R},$$
(3.9)

and

$$\lim_{k \to \infty} \int_{-\infty}^{0} e^{\delta s} \int_{|x| \ge k} \|g(x, \tau + s)\|^2 dx ds = 0.$$
(3.10)

The condition (3.9) shows that $g(\cdot, t)$ is not bounded in $L^2(\mathbb{R})$ when $t \to \pm \infty$.

Let B be a bounded nonempty subset of E, and denote by $||B|| = \sup_{\varphi \in B} ||\varphi||_E$. Suppose $D = \{D(\tau, \omega) : \tau \in \mathbb{R}, \omega \in \Omega\}$ be a family of bounded nonempty subsets of E satisfying, for every $\tau \in \mathbb{R}$ and $\omega \in \Omega$,

$$\lim_{s \to -\infty} e^{\delta s} \|D(\tau + s, \theta_s \omega)\|^2 = 0.$$
(3.11)

Denote by \mathcal{D} the collection of all families of bounded nonempty subsets of E,

$$\mathcal{D} = \{ D = \{ D(\tau, \omega) : \tau \in \mathbb{R}, \omega \in \Omega \} : D \text{ satisfies } (3.11) \}.$$
(3.12)

It is evident that \mathcal{D} is neighborhood-closed.

4 Pullback Absorbing Set

In this section, we derive uniform estimates on the solutions of the stochastic damped wave equations (3.1) defined on \mathbb{R}^n when $t \to \infty$. These estimates are necessary for proving the existence of pullback absorbing sets of the system.

We define a new norm $\|\cdot\|_E$ by

$$|Y||_{E} = (||v||^{2} + (\delta^{2} - \alpha\delta)||u||^{2} + ||\nabla u||^{2})^{\frac{1}{2}},$$
(4.1)

for $Y = (u, v)^{\mathcal{T}} \in E$. It is easy to check that $\|\cdot\|_E$ is equivalent to the usual norm $\|\cdot\|_{H^1 \times L^2}$ in (3.6).

Lemma 4.1 Assume that $\alpha - 3\delta > 0$, (3.2) and (3.9) hold. Let $\tau \in \mathbb{R}, \omega \in \Omega$, $D = \{D(\tau, \omega), \tau \in \mathbb{R}, \omega \in \Omega\} \in \mathcal{D}$. Then there exists $T = T(\tau, \omega, D) > 0$, for all $t \ge T$, the solution of problem (3.5) satisfies

$$Y(\tau, \tau - t, \theta_{-\tau}\omega, D(\tau - t, \theta_{-t}\omega)) \le R(\tau, \omega)$$

and $R(\tau, \omega)$ is given by

$$R(\tau,\omega) = M \int_{-\infty}^{0} \exp\{2\int_{0}^{s} [\delta - |\varepsilon| |z(\theta_{r}\omega)| - \beta_{1}(\frac{1}{2}\varepsilon^{2} |z(\theta_{r}\omega)|^{2} + \beta_{2}|\varepsilon| |z(\theta_{r}\omega)|)]dr\} \|g(\cdot,s+\tau)\|^{2} ds,$$

$$(4.2)$$

where M is a positive constant independent of τ, ω, D and ε .

Proof. Taking the inner product of the second equation of (3.5) with v in $L^2(\mathbb{R}^n)$, we find that

$$\frac{1}{2}\frac{d}{dt}\|v\|^2 = (\delta - \alpha - \varepsilon z(\theta_t \omega))\|v\|^2 - (\delta^2 - \alpha\delta)(u, v) - (Au, v) + (\varepsilon z(\theta_t \omega)(2\delta - \varepsilon z(\theta_t \omega))u, v) + (g(x, t), v) - (f(u), v).$$
(4.3)

By the first equation of (3.5), we have

$$v = u_t - \varepsilon u z(\theta_t \omega) + \delta u, \tag{4.4}$$

then substituting the above v into the second and third terms on the right-hand side of (4.1), we find that

$$(u, v) = (u, u_t + \delta u - \varepsilon z(\theta_t \omega)u)$$

= $\frac{1}{2} \frac{d}{dt} ||u||^2 + \delta ||u||^2 - \varepsilon z(\theta_t \omega) ||u||^2$
$$\geq \frac{1}{2} \frac{d}{dt} ||u||^2 + \delta ||u||^2 - |\varepsilon| \cdot |z(\theta_t \omega)| \cdot ||u||^2,$$
(4.5)

and

$$-(Au, v) = -(\nabla u, \nabla v)$$

$$= -(\nabla u, \nabla u_t + \delta \nabla u - \varepsilon z(\theta_t \omega) \nabla u)$$

$$= -\frac{1}{2} \frac{d}{dt} \|\nabla u\|^2 - \delta \|\nabla u\|^2 + \varepsilon z(\theta_t \omega) \|\nabla u\|^2$$

$$\leq -\frac{1}{2} \frac{d}{dt} \|\nabla u\|^2 - \delta \|\nabla u\|^2 + |\varepsilon| \cdot |z(\theta_t \omega)| \cdot \|\nabla u\|^2.$$
(4.6)

Using Cauchy-Schwartz inequality and Young inequality, we have

$$\begin{aligned} \left(\varepsilon z(\theta_t \omega) (2\delta - \varepsilon z(\theta_t \omega)) u, v \right) &= (2\delta \varepsilon z(\theta_t \omega) - \varepsilon^2 z^2(\theta_t \omega)) (u, v) \\ &\leq (2\delta |\varepsilon| \cdot |z(\theta_t \omega)| + \varepsilon^2 \cdot |z(\theta_t \omega)|^2) ||u|| \cdot ||v|| \\ &\leq (\delta |\varepsilon| \cdot |z(\theta_t \omega)| + \frac{1}{2} \varepsilon^2 \cdot |z(\theta_t \omega)|^2) (||u||^2 + ||v||^2), \end{aligned}$$

$$(4.7)$$

and

$$(g,v) \le ||g|| \cdot ||v|| \le \frac{||g||^2}{2(\alpha - \delta)} + \frac{\alpha - \delta}{2} ||v||^2,$$
(4.8)

and by (3.2),

$$-(f(u),v) \le c_1(u,u_t + \delta u - \varepsilon z(\theta_t \omega)u)$$

$$\le c_1 \frac{d}{dt} ||u||^2 + c_1 \delta |u|^2 + |\varepsilon| \cdot |z(\theta_t \omega)||u|^2.$$
(4.9)

By (4.5)-(4.9), it follows from (4.3) that

$$\frac{1}{2}\frac{d}{dt}\|v\|^{2} - (\delta - \alpha - \varepsilon z(\theta_{t}\omega))\|v\|^{2} + \frac{1}{2}(c_{1} + \delta^{2} - \alpha\delta)\frac{d}{dt}\|u\|^{2} + \delta(c_{1} + \delta^{2} - \alpha\delta)\|u\|^{2} - |\varepsilon||z(\theta_{t}\omega)|(c_{1} + \delta^{2} - \alpha\delta)\|u\|^{2} + \frac{1}{2}\frac{d}{dt}\|\nabla u\|^{2} - (-\delta + |\varepsilon||z(\theta_{t}\omega)|)\|\nabla u\|^{2} \leq (\delta|\varepsilon| \cdot |z(\theta_{t}\omega)| + \frac{1}{2}\varepsilon^{2} \cdot |z(\theta_{t}\omega)|^{2})(\|u\|^{2} + \|v\|^{2}) + \frac{\alpha - \delta}{2}\|v\|^{2} + \frac{\|g\|^{2}}{2(\alpha - \delta)}.$$
(4.10)

Then

$$\frac{1}{2}\frac{d}{dt}(\|v\|^{2} + (c_{1} + \delta^{2} - \alpha\delta)\|u\|^{2} + \|\nabla u\|^{2}) + \delta(\|v\|^{2} + (c_{1} + \delta^{2} - \alpha\delta)\|u\|^{2} + \|\nabla u\|^{2})$$

$$\leq (\delta|\varepsilon| \cdot |z(\theta_{t}\omega)| + \frac{1}{2}\varepsilon^{2} \cdot |z(\theta_{t}\omega)|^{2})(\|u\|^{2} + \|v\|^{2}) + \frac{3\delta - \alpha}{2}\|v\|^{2} + \frac{\|g\|^{2}}{2(\alpha - \delta)}$$

$$+ |\varepsilon||z(\theta_{t}\omega)|(\|v\|^{2} + (c_{1} + \delta^{2} - \alpha\delta)\|u\|^{2} + \|\nabla u\|^{2}).$$
(4.11)

From (4.11), we have

$$\frac{1}{2} \frac{d}{dt} (\|v\|^{2} + (c_{1} + \delta^{2} - \alpha\delta)\|u\|^{2} + \|\nabla u\|^{2}) \\
\leq -[\delta - |\varepsilon| \cdot |z(\theta_{t}\omega)| - \beta_{1}(\frac{1}{2}\varepsilon^{2} \cdot |z(\theta_{t}\omega)|^{2} + \beta_{2}|\varepsilon||z(\theta_{t}\omega)|)](\|v\|^{2} + (c_{1} + \delta^{2} - \alpha\delta)\|u\|^{2} + \|\nabla u\|^{2}) \\
+ \frac{\|g\|^{2}}{2(\alpha - \delta)},$$
(4.12)

where $\beta_1 = 1 + \frac{1}{c_1 + \delta^2 - \alpha \delta}$, $\beta_2 = \frac{3\delta + \alpha}{2}$.

Denote

$$\Gamma(t,\omega) = \delta - |\varepsilon| \cdot |z(\theta_t\omega)| - \beta_1 (\frac{1}{2}\varepsilon^2 \cdot |z(\theta_t\omega)|^2 + \beta_2 |\varepsilon| |z(\theta_t\omega)|).$$
(4.13)

Using Gronwall inequality to integrate (4.12) over $(\tau - t, \tau)$ with $t \ge 0$, we get

$$\|v(\tau, \tau - t, \omega, v_0)\|^2 + (c_1 + \delta^2 - \alpha \delta) \|u(\tau, \tau - t, \omega, u_0)\|^2 + \|\nabla u(\tau, \tau - t, \omega, u_0)\|^2$$

$$\leq (\|v_0\|^2 + (c_1 + \delta^2 - \alpha \delta) \|u_0\|^2 + \|\nabla u_0\|^2) e^{2\int_{\tau}^{\tau - t} \Gamma(s, \omega) ds}$$

$$+ c \int_{\tau}^{\tau - t} e^{2\int_{\tau}^{s} \Gamma(r, \omega) dr} \|g(\cdot, s)\|^2 ds.$$
(4.14)

Replacing ω by $\theta_{-\tau}\omega$ in (4.14), we obtain, for every $t \in \mathbb{R}^+, \tau \in \mathbb{R}, \omega \in \Omega$,

$$\|v(\tau, \tau - t, \theta_{-\tau}\omega, v_0)\|^2 + (c_1 + \delta^2 - \alpha\delta) \|u(\tau, \tau - t, \theta_{-\tau}\omega, u_0)\|^2 + \|\nabla u(\tau, \tau - t, \theta_{-\tau}\omega, u_0)\|^2$$

$$\leq (\|v_0\|^2 + (c_1 + \delta^2 - \alpha\delta) \|u_0\|^2 + \|\nabla u_0\|^2) e^{2\int_{\tau}^{\tau - t} \Gamma(s - \tau, \omega) ds}$$

$$+ c \int_{\tau}^{\tau - t} e^{2\int_{\tau}^{s} \Gamma(r - \tau, \omega) dr} \|g(\cdot, s)\|^2 ds.$$

$$(4.15)$$

then

$$\|v(\tau, \tau - t, \theta_{-\tau}\omega, v_0)\|^2 + (c_1 + \delta^2 - \alpha\delta) \|u(\tau, \tau - t, \theta_{-\tau}\omega, u_0)\|^2 + \|\nabla u(\tau, \tau - t, \theta_{-\tau}\omega, u_0)\|^2$$

$$\leq (\|v_0\|^2 + (c_1 + \delta^2 - \alpha\delta) \|u_0\|^2 + \|\nabla u_0\|^2) e^{2\int_0^{-t} \Gamma(s,\omega)ds}$$

$$+ c \int_{-t}^0 e^{2\int_0^s \Gamma(r,\omega)dr} \|g(\cdot, s + \tau)\|^2 ds.$$

$$(4.16)$$

Since $|z(\theta_t \omega)|$ is stationary and ergodic (see [10]), we get from (3.3) and the ergodic theorem that

$$\lim_{t \to \infty} \frac{1}{t} \int_{-t}^{0} |z(\theta_r \omega)| dr = \mathbf{E}(|z(\theta_r \omega)|) = \frac{1}{\sqrt{\pi\delta}},$$
$$\lim_{t \to \infty} \frac{1}{t} \int_{-t}^{0} |z(\theta_r \omega)|^2 dr = \mathbf{E}(|z(\theta_r \omega)|^2) = \frac{1}{2\delta}.$$
(4.17)

By (4.16), there exists $T_1(\omega) > 0$ such that for all $t \ge T_1(\omega)$,

$$\int_{-t}^{0} |z(\theta_r \omega)| dr = \frac{2}{\sqrt{\pi\delta}} t,$$

$$\int_{-t}^{0} |z(\theta_r \omega)|^2 dr = \frac{1}{\delta} t.$$
 (4.18)

Let ε satisfy

$$|\varepsilon| < \frac{2\sqrt{\delta}(\beta_1\beta_2 + 1) + \sqrt{4\delta(\beta_1\beta_2 + 1)^2 + \pi\beta_1\delta^2}}{\beta_1\sqrt{\pi}},\tag{4.19}$$

We have

$$e^{2\int_0^s \Gamma(r,\omega)dr} \le e^{2(\frac{\delta}{2})s} = e^{\delta s}, \quad \forall s \le -T_1.$$

$$(4.20)$$

Since $|z(\theta_s \omega)|$ is tempered, by (3.9) and (4.17), we have the following integral is convergent,

$$R_1^2(\tau,\omega) = 2c \int_{-\infty}^0 e^{2\int_0^s \Gamma(r,\omega)dr} (\|g(\cdot,s+\tau)\|^2) ds.$$
(4.21)

Since $D \in \mathcal{D}$ and $(u_0, v_0) \in D(\tau - t, \theta_{-t}\omega)$, for all $t \ge T_1$, we get from (4.18)-(4.20),

$$(\|v_0\|^2 + (c_1 + \delta^2 - \alpha\delta)\|u_0\|^2 + \|\nabla u_0\|^2 e^{2\int_0^{-t} \Gamma(s,\omega)ds}$$

$$\leq c e^{-\delta t} (\|v_0\|^2 + \|u_0\|^2 + \|\nabla u_0\|)$$

$$\leq c e^{-\delta t} (\|D(\tau - t, \theta_{-t}\omega\|^2) \to 0, \quad as \quad t \to +\infty.$$
(4.22)

From (4.1), (4.16), (4.21) and (4.22), there exists $T_2 = T_2(\tau, \omega, D) \ge T_1$ such that for all $t \ge T_2$,

$$\|Y(\tau, \tau - t, \theta_{-\tau}\omega, Y_0(\theta_{-\tau}\omega))\|_E^2 \le R_1^2(\tau, \omega).$$
(4.23)

So, the proof is completed. $\hfill \Box$

Moreover, under all the previous assumptions for the cocycle Φ governed by (3.7), we have the following corollary.

Corollary 4.1. Suppose that the external force term $g : \mathbb{R} \to L^2(\mathbb{R})$ is $\gamma - periodic$, then the cocycle Φ governed by (3.7) has a pullback absorbing set in E.

Acknowledgement

The paper is supported by Shanghai Natural Science Foundation (16ZR1414000) and Humanities and Social Sciences Project of the Ministry of Education (16YJCZH043).

Competing Interests

Authors have declared that no competing interests exist.

References

- Arnold L. Random dynamical systems. Springer Monographs in Mathematics, Springer-Verlag, Berlin; 1998.
- [2] Fan X. Attractors for a damped stochastic wave equation of sine-Gordon type with sublinear multiplicative noise. Stochastic Analysis and Applications. 2006;24:767-793.
- [3] Lv Y, Wang W. Limiting dynamics for stochastic wave equations. Journal Differential Equations. 2008;244:1-23.
- [4] Caraballo T, Lukaszewicz G, Real J. Pullback attractors for asymptotically compact nonautonomous dynamical systems. Nonlinear Analysis: Theory, Methods and Applications. 2006;64:484-498.
- [5] Jones R, Wang B. Asymptotic behavior of a class of stochastic nonlinear wave equations with dispersive and dissipative terms. Nonlinear Analysis: Real World Applications. 2013;14:1308-1322.
- [6] Wang ZJ, Zhou S, Gu AH. Random attractor of the stochastic strongly damped wave equation. Commun. Nonlinear. Sci. Numer. Simulat. 2012;17:1649-1658.
- [7] Li H, You Y. Random attractor for stochastic wave equation with arbitrary exponent and additive noise on \mathbb{R}^n . Dynamics of PDE. 2015;12:343-378.
- [8] Wang B, Random attractors for non-autonomous stochasitic wave equations with multiplicative noise. Discrete and Continuous Dynamical Systems. 2014;34(1):269-300.
- [9] Wang Z, Zhou S, Gu A. Random attractor for a stochastic damped wave equation with multiplicative noise on unbounded domains. Nonlinear Analysis: Real World Applications. 2011;12:3468-3482.
- [10] Li H, You Y, Tu J, Random attractors and averaging for non-autonomous stochastic wave equations with nonlinear damping. J. Differential Equations. 2015;258:148-190.

C 2019 Li; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:

The peer review history for this paper can be accessed here (Please copy paste the total link in your browser address bar)

http://www.sdiarticle3.com/review-history/49802