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ABSTRACT 
 

Aims: The purpose of this study is to examine a rise of the local tissue oxygen pressure in 
hippocampus (Hip-pO2) which means neuronal activation by mild hyperoxia through oxygen 
radical. 
Study Design: Study was an animal experiment with rat. 
Place and Duration of Study: Department of Department of Life Science and Applied Chemistry, 
Nagaya Institute of Technology, between January 2014 and January 2018. 
Methodology: Rats were exposed to air or mild oxygen gas. At the same time, Local tissue oxygen 
pressure in hippocampus (Hip-pO2) were measured for 20 min with or without treatment of two type 
of radical scavengers. 
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Results: The Hip-pO2 levels were significantly increased by mild hyperoxia exposure (50-60% 
above resting level). The mild hyperoxia-induced enhancement of the Hip-pO2 levels were inhibited 
by MnTMPyP (radical scavenger), but not by NADPH oxidase (NOX) inhibitor Apocynin. 
Conclusion: These findings suggested that mild hyperoxia could activate hippocampus through 
generation of oxygen radicals. 
 

 
Keywords: Mild hyperoxia; oxygen gas; reactive oxygen species; MnTMPyP; apocynin; Hip-pO2; 

neural activation; clark-type electrode. 
 
ABBREVIATIONS 
 
Hip-pO2 : The Local Tissue Oxygen Pressure in 

Hippocampus 
ROS : Reactive Oxygen Species  
NOX  : NADPH Oxidase  
MAO : Monoamine Oxidase  
NOS : NO Synthase 
O2-  : Superoxide 
 

1. INTRODUCTION 
 
Excess high oxygen environment generates 
reactive oxygen species (ROS) in the tissue, It 
acts directly on the cell and gives damage by 
peroxidation [1-3]. For example, as a result of 
exposure of 80% oxygen gas for 5 days to 
neonatal rats, increase in apoptosis and 
decrease in neuronal density was confirmed in 
hippocampal CA1 and DG tissues [4]. In addition, 
exposure to 95% oxygen gas for 2 hours in 
neonatal rats increased expression of Bcl-X in 
the cerebral cortex and cell death in the cortex 
[5]. Moreover, the damage caused by ROS due 
to hyperbaric oxygen irritation affects brain stem 
nerve cells, which disrupts brain stem function 
and causes hyperventilation [6,7]. From the 
above, as the oxygen becomes high pressure / 
high concentration, the damage due to ROS 
tends to be increased. 

 
Meanwhile, the research results indicating 
beneficial effects on biological function have 
been reported with 30 to 40% O2 exposure or 
short term stimulation of 100% O2 inhalation, 
which is considered to be relatively mild oxygen 
stimulation conditions [8-11]. In human studies, 
Chung SC, et al. [8,9] reported that spatial 
recognition testing improves by inhaling 30 to 
40% O2 during testing. Moss.MC and Scholey 
A.B [10,11] reported that the memory and 
learning effects by inhalation of 100% oxygen 
gas for 1 to 2 minute immediately before testing. 
These reports suggest that relatively mild high 
oxygen gas stimulation may activate the brain, 
especially the hippocampus. In vitro experiments 
using hippocampal slices showed that exposure 

of oxygen of 2.84 ATA or 4.54 ATA after 
exposure of oxygen at 0.95 ATA (absolute 
atmospheric pressure) causes neuronal 
activation in CA1 [12]. Similar nerve excitation 
was also observed when switching from 0ATA or 
0.6 ATA oxygen exposure to 0.95 AT oxygen 
exposure [13]. At this time, tissue oxygen content 
in the hippocampal slice has been observed to 
increase as the pressure increases. From this 
result, it is considered that excitement of nerve 
cells may be induced when the tissue oxygen 
amount increases due to high pressure oxygen 
gas exposure. Also, neuronal activation may be 
induced when the tissue oxygen amount 
increases due to hyperbaric oxygen gas 
exposure.  D’Agostino DP [14] observed a 
concentration-dependent manner increase in 
ROS production exposure to 20%, 40%, 60%, 
95% oxygen gas to hippocampal slices. In 
addition, it is reported that the amount of SOD 
mRNA in hippocampal slices increases with 
100% oxygen gas exposure [15]. In an in vitro 
experiment, the hypothesis is that the increase in 
tissue oxygen pressure generates active oxygen 
and causes neuronal excitation. However, there 
is no report showing this causal relationship. In 
addition, there are many uncertainties as to 
whether or not the regional hippocampal tissue 
oxygen pressure (Hip-pO2) increases by 
inhalation of oxygen gas in vivo, and further 
whether hippocampal neurons are activated or 
not. Therefore, in this study, we investigate 
activation of hippocampal nerve cells is 
examined by measuring the Hip-pO2 by relatively 
mild hyperoxia gas (oxygen concentration 
32±0.5%) exposure in vivo. 
 

2. MATERIALS AND METHODS  
 

2.1 Animals 
 

All animal procedures were approved by the 
Nagoya Institute of technology’s Laboratory 
Animal Care and Use Committee. Male Sprague-
Dawley （SD）rats were purchased from SLC 
(Shizuoka, Japan). Rats were housed under a 12 
hours light/dark cycle and maintained at 23±1℃ 
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with ad libitum access to standard rodent chow 
and water. 8 weeks old rats were used for all 
experiments. 
 

2.2 Habituation 
 
Before the surgery, rats were habituated to gas 
chamber for 4 consecutive days to minimize the 
effect of stress from environment (60, 90, 120 
and 120 minutes at each day). Rats were placed 
on the gas chamber (cylindrical acrylic chamber 
(43 cm × 24 cm × 18 cm, 4 slit with 25 cm x 1.5 
cm) in an acrylic cage (50 cm × 30 cm × 20 cm)) 
refluxed with air. Air (oxygen concentration, 
21±0.5%) was supplied to the cage at a flow rate 
of 8 l/min using an air charger (α1500, 
manufactured by Nippon Tankan Industrial Co., 
Ltd. and HIBLOW AIR POMP, manufactured by 
Techno Takatsuki and MS-X 2, National), and 
oxygen gas (oxygen concentration, 32±0.5%) 
was delivered at a same flow rate to air. 
 

2.3 Stereotaxic Surgery for Cannulation 
 
After habituation period, rats were anesthetized 
with sodium pentobarbital (50 mg/kg, i.p.), and a 
stainless steel guide cannula (O.D. 0.8 mm, 
Unique Medical Co., Tokyo, Japan) was 
stereotaxically implanted into the left dorsal 
hippocampal region (co-ordinates: 
anteroposterior +1.5 mm, mediolateral 3.6 mm 
from the bregma, and dorsoventral -2.0 mm from 
the dura). The guide cannula was fixed to the 
skull with an anchor screw using dental cement 
(Shofu Co., Tokyom, Japan). After surgery, 
antibiotics (100 U penicillin and 100 μg 
streptomycin/kg BW.) were administered 
subcutaneously (s.c.). Rats were housed 
individually and allowed to recover for two days 
at least. 
 

2.4 Hip-pO2 Measurement  
 
Hip-pO2 was measured by using improved Clark-
Type electrodes (U0E-04TS, Unique Medical 
Co., Tokyo, Japan) composed with a sensor at 
the tip (diameter 0.4 mm, length 10 mm of Teflon 
tube coating) and followed by a 35 mm stainless 
steel coating. Each electrode was connected to a 
digital pO2 monitor (POG-203, Unique Medical 
Co., Tokyo, Japan). The details are described in 
previous our report [16]. Rats were stabilized in 
acryl chamber cage for 10 min, meantime, the 
electrode sensor was calibrated in water that was 
saturated with 20.9% O2-N2 balance, air and 0% 
O2-N2 gas. After calibration, the electrode 
sensor tip was heparinized, then inserted into the 

hippocampal region through the guide cannula 
and fixed with rocking nut. The tip of sensor 
protruded 1.0 mm from the end of the guide 
cannula. 
 
2.4.1 Experiment 1: Hip-pO2 changes during 

oxygen gas exposure  
 
Rats were placed on the gas chamber flowing 
with air (rate, 1.0 L/min) for 10 minutes and the 
heparinized electrode was inserted through the 
cannula. After wait for stabilization, Hip-pO2 level 
was measured for 80 minutes flowing schedule: 
air (10 min) – 30% oxygen gas (20 min) – air (20 
min) – 30% oxygen gas (20 min) – air (20 min). 
 
2.4.2 Experiment 2: Effect of ROS scavenger 

and NOX inhibitor on oxygen gas 
exposure 

 
Overall experimental conditions were identical to 
experiment 1. MnTMPyP (CALBIOCHEM. 
purchased from Sigma-Aldrich, JAPAN) was 
prepared in a physiological saline to a 
concentration of 5 mg/kg.B.W. Apocynin (Toronto 
Research Chemicals Inc., Canada. purchased 
from FUJIFILM, JAPAN) was prepared in a 
physiological saline and ethanol to a 
concentration of 4 mg/kg.B.W (0.5% ethanol). 
Each reagent was administered by i.p. 20 
minutes before the experiment. Hip-pO2 level 
was measured for 45 minutes flowing schedule: 
air (15 min) – 30% oxygen gas (15 min) – air (15 
min). 
 

2.5 Statistics 
 
The data were analyzed by one- or two-way 
ANOVA, followed by a post-hoc test (Fisher’s 
PLSD) for comparison among means. All data 
were expressed as means ± SD. 
 

3. RESULTS AND DISCUSSION 
 

3.1 Mild Hyperoxia Increases Hip-pO2 
 
After switch air to 30% oxygen gas, Hip-pO2 was 
increased to 60% above resting level. 
Surprisingly, this high level was maintained after 
switch to air again. In addition, 48% increase of 
Hip-pO2 was observed in the second 30% 
oxygen gas exposure and maintained after 
switch to air again (Fig. 1.). Since rats were 
restrained in the chamber during experiment, 
possibility that restraint stress could affect our 
results remained. However, we did not observe 
over-excitement of animals. Therefore, it was 



 
 
 
 

Yoshizato et al.; JALSI, 21(4): 1-8, 2019; Article no.JALSI.50178 
 
 

 
4 
 

shown that the change in Hip-pO2 in this 
experiment was simply a result of high oxygen 
gas stimulation.  
 

3.2 Hypothesis of Hip-pO2 Increase by 
Mild Hyperoxia 

 

The reasons for the increase in local tissue 
oxygen pressure in brain under high oxygen gas 
environment are as follows: 1) the blood oxygen 
amount increases due to an increase in the 
amount of oxygen in inspiration, and 2) an 
increase in blood flow due to neuronal  activation 
is considered [17-19]. Regards 1), oxygen 
present in the blood are divided into hemoglobin-
bound oxygen and dissolved oxygen, and most 
of oxygen exists as hemoglobin-bound oxygen. 
However, when air is normally inhaled under 
atmospheric pressure, the oxygen saturation of 
hemoglobin has already reached approximately 
98%, and even when exposed to high oxygen 
gas, the saturation increase of only 2% can be 
anticipated. Dissolved oxygen that increases by 
0.003 mL / dL every 1 mmHg increases only 
about 0.2% in the case of inhalation of 32±0.5% 
oxygen gas. From this it can not be explained 
that the increase in blood oxygen level alone can 
increase Hip-pO2 by more than 50% by 
exposure to about 30% oxygen gas. Therefore, it 
is speculated that local blood flow increase is 
accompanied. Local cerebral blood flow 
increases as the neuronal activity at that site 
increases. For example, it has been reported that 
local cerebral blood flow in the rat striatum 
increases when striatum neuron cells are active 
[17]. In addition, cerebral blood flow in the 
hippocampus is increased by the treadmill 
running exercise, reports suggesting that this 
increase in blood flow is due to an increase in 
neural activity in the hippocampus [18,19]. For 
these findings, the main reason for the increase 
in Hip-pO2 due to the exposure to oxygen gas of 
about 30% observed in this experiment is that 
the hippocampal neurons are activated by a 
slight increase in blood oxygen amount, and it is 
inferred that this is due to an increase in the local 
blood flow caused by it.  
 

3.3 Administration of MnTMPyP, but not 
Apocynin, Suppressed the Mild 
Hyperoxia-Induced Hip-pO2 
Increases 

 
The increase of Hip-pO2 might be a consequence 
of increase of ROS activity. Therefore, MnTMPyP 
(active oxygen scavenger) and Apocynin (NOX 
inhibitor) were treated to investigate whether 

ROS was involved in the rise in Hip-pO2 at 30% 
oxygen gas exposure. MnTMPyP is a widely 
used reagent as an active oxygen scavenger and 
has an effect of reducing oxidative stress [20, 21]. 
Also, Apocynin is a reagent that specifically 
inhibits NOX, and it has been found that the 
effect of reducing nerve cell death and oxidative 
stress upon NOX activation [22]. Before the 
experiment, we intraperitoneally injected 
MnTMPyP or apoxynin and measured change of 
Hip-pO2 with 30% oxygen gas exposure (Fig. 2.). 
At the first, administration of MnTMPyP 
suppressed increase of Hip-pO2 by 32% oxygen 
gas exposure to 10-20% above from resting level 
(control groups, 50-60% above from resting level). 
However, Apocynin showed no suppressive 
effect on Hip-pO2 increase by 30% oxygen gas 
exposure (both of control and Apocynin group, 
50-60% above from resting level).  
 

3.4 ROS Mediates the Increase of Hip-pO2 
By Mild Hyperoxia 

 
In this study, we showed that the rise in Hip-pO2 
due to mild hyperoxia is mediated by reactive 
oxygen species (ROS) from experiments using 
radical scavenger (MnTMPyP). In vitro 
experiments using hippocampal slices reported 
that ROS increases in a concentration dependent 
manner with 40 to 60% oxygen gas [14]. In the 
culture medium without blood flow, it is 
considered that active oxygen ROS was 
generated due to an increase in the amount of 
tissue oxygen due to an increase in dissolved 
oxygen. Subsequently, it has been reported that 
ROS production was induced to excite the 
hippocampal nerve cells in many cases [14,23-
25]. Even with a slight increase in blood or tissue 
oxygen level, ROS production occurs, and as a 
result of this ROS causing neuronal activation in 
hippocampus, could accompanie by an increase 
in blood flow. This is surmised to be cause of the 
greatly Hip-pO2 rise as our results have shown. 
 
Four possible sources of ROS production are 
mitochondria, NADPH oxidase (NOX), 
Monoamine oxidase (MAO), and NO synthase 
(NOS) [23]. NOX is a major ROS production 
department in blood vessels [26-29], and it is 
also expressed in the brain [30,31]. It is thought 
that oxygen ingested is the first to act due to the 
fact that the production of ROS (O2-) is the main 
function and because NOX localized on the cell 
membrane. However, a NOX inhibitor, Apocynin 
could not suppress the mild hyperoxia-induced 
Hip-pO2 increases. Furthermore, MAO and NOS 
are enzymes that do not generate ROS as a by-



product or directly use oxygen [23], therefore, 
these would be hard to be considered as a 
source of high oxygen-dependent ROS. 
Consequently, mitochondria are likely to be the 
source of ROS production by mild hyperoxia 
stimulation. Under hypoxic conditions, it is known 
that ROS is increased by decreasing electron 
transfer chain by inhibiting oxidative 

 

Fig. 1. Mild hyperoxia increases hippocampal tissue oxygen pressure with sustained pattern
Rats in gas chamber were exposed to 32% of oxygen gas and air according to following schedule: Air (10 min) 
O2 gas (20 min) – Air (20 min) – O2 gas (20 min) 

cannula, and measured during all gas exposure experiment. Data are mean ± SD. (n=7)

Fig. 2. Effect of the inhibitor or scavenger administration on pO

Drug was applied during 30% oxygen gas exposure: (A) MnTMPyP (5
Apocynin (4 mg/kg I.P) (n=4), saline control (n=6). Data are mean ± SD. *: P<0.01 vs Air control, a: P<0.05 
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product or directly use oxygen [23], therefore, 
these would be hard to be considered as a 

dependent ROS. 
mitochondria are likely to be the 

mild hyperoxia 
Under hypoxic conditions, it is known 

that ROS is increased by decreasing electron 
transfer chain by inhibiting oxidative 

phosphorylation [32-35]. In hyperoxic conditions, 
an increase in dissolved oxygen and a 
concomitant increase in mitochondrial respiratory 
chains may be driving an increase in ROS. 
However, further studies with mitochondrial 
superoxide scavengers are needed to clarify the 
mechanisms of the mild hyperoxia
production.  

 
1. Mild hyperoxia increases hippocampal tissue oxygen pressure with sustained pattern

Rats in gas chamber were exposed to 32% of oxygen gas and air according to following schedule: Air (10 min) 
O2 gas (20 min) – Air (20 min). The Hip-pO2 was introduced to pre

cannula, and measured during all gas exposure experiment. Data are mean ± SD. (n=7)

 

 
2. Effect of the inhibitor or scavenger administration on pO2 changes induced by mild 

hyperoxia 
Drug was applied during 30% oxygen gas exposure: (A) MnTMPyP (5 mg/kg I.P) (n=5), saline control (n=6), (B) 

mg/kg I.P) (n=4), saline control (n=6). Data are mean ± SD. *: P<0.01 vs Air control, a: P<0.05 
MnTMPyP vs saline control 

 
 
 
 

; Article no.JALSI.50178 
 
 

35]. In hyperoxic conditions, 
an increase in dissolved oxygen and a 

ase in mitochondrial respiratory 
chains may be driving an increase in ROS. 
However, further studies with mitochondrial 
superoxide scavengers are needed to clarify the 

hyperoxia-induced ROS  

 

1. Mild hyperoxia increases hippocampal tissue oxygen pressure with sustained pattern 
Rats in gas chamber were exposed to 32% of oxygen gas and air according to following schedule: Air (10 min) – 

pO2 was introduced to pre-implanted 
cannula, and measured during all gas exposure experiment. Data are mean ± SD. (n=7) 

 

changes induced by mild 

mg/kg I.P) (n=5), saline control (n=6), (B) 
mg/kg I.P) (n=4), saline control (n=6). Data are mean ± SD. *: P<0.01 vs Air control, a: P<0.05 
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4. CONCLUSION 
 
We were able to investigate the reactivity of the 
Hip-pO2 to O2 gas stimulus in real time. It began 
to react in one minute after the start of the 
stimulation, reached the peak after 6 minutes.  

Our findings suggested that relatively mild 
hyperoxia could fully active local hippocampal 
neuron through ROS production. Nagatomo F 
[36] found that oxidative metabolites in the blood 
did not increase even if a gas with oxygen 
concentration of 35% or less was inhaled for 24 
hours under atmospheric pressure in rats. 
However, more than 40% O2 inhalation for 24 
hours induced oxidative stress. From this, it is 
conceivable that relatively mild hyperoxia about 
30% (strictly 32 ± 2%) oxygen used in this study 
generates ROS causing neuronal activition, but it 
does not greatly damage the brain. Relatively 
mild hyperoxia stimulation has the possibility of 
expecting beneficial neuronal activation effect 
without oxidative stress disorder.  
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