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Abstract

Hadamard matrices and their applications have steadily and rapidly grown during the last 2
decades. Due to that many researchers have developed various concepts on Hadamard matrices.
This paper concentrates on Generalized Hadamarad matrices. In the first part of this work, some
new results on construction of generalized Hadamard matrices GH(p, pn) over Cp are introduced.
In the second part, graphs obtained from generalized Hadamard matrices are introduced, namely
generalized Hadamard graphs. In particular, we show that the generalized Hadamard graphs are
pn− regular. Our results have been illustrated by constructing pn− regular graphs for different
values of p and n.

Keywords: Generalized Hadamard matrix; Hadamard matrix; Kronecker product; Latin square;
regular graph.

2010 Mathematics Subject Classification: 53C25, 83C05, 57N16.

*Corresponding author: E-mail: vindinisha@hotmail.com;

http://www.sdiarticle4.com/review-history/63334


Nishadi and Perera; JAMCS, 35(8): 65-75, 2020; Article no.JAMCS.63334

1 Introduction

Hadamard matrices and their applications have steadily and rapidly grown during the last 2 decades.
Due to that many researchers have developed various concepts on Hadamard matrices. A Hadamard
matrix H of order n is an n×n array with entries ±1, which satisfies HHT = nIn, where In denotes
the identity matrix of order n and HT is the transpose of H. It is recognized that n has to be
necessarily 1, 2 or a multiple of 4, but there is no certainty whether such a Hadamard matrix exists
at every possible order. The Hadamard Conjecture claims that there exists a Hadamard matrix of
order 4t for every natural number t [1]; [2].

An n-Hadamard graph is a graph of 4n number of vertices defined in terms of a Hadamard matrix
Hn = (hij) by constructing the vertices using 4n symbols r+i , r

−
i , c+j , and c−j , where r stands for

”row” and c stands for ”columns” and constructing two edges (r±i , c±j ) for each matrix element such

that hij = 1 and (r±i , c∓j ) for each matrix element such that hij = −1 [3]; [4].

This paper is concerned with the generalization of Hadamard matrices and graphs induced by
generalized Hadamard matrices. Let C be a multiplicative group of order w. An v × v matrix
M = [mij ] with entries from C where w divides v is a generalized Hadamard matrix denoted by
GH(w, v)over C if, for all i ̸= j, the sequence of quotients mijm

−1
jk , 1 ≤ k ≤ v, contains each element

of C exactly v/w times. If M is a GH(w, v) over C then MM∗ = vIv + v/w(
∑

u∈C u)(Jv − Iv),

where M∗ denotes the conjugate transpose of M [5]; [6]. If C is abelian then GH(w, v)T is also a
generalized Hadamard matrix, where GH(w, v)T denotes the transpose of GH(w, v). This result
does not generalize to non-abelian groups, as shown by Craigen and de Launey [7].

When C is changed, the definition alters accordingly. Let Cp be the cyclic group of all complex
pth root of unity. A square matrix M = [mij ] of order v over Cp is called a generalized Hadamard
matrix denoted by GH(p, v), if MM∗ = vIv, where M∗ is the conjugate transpose of M and and
Iv is the identity matrix of order v. Further, it contains each element of Cp exactly vp times [8].

A generalized Hadamard matrix of order 3 over C3 is given to be: 1 ω ω2

1 1 1
1 ω2 ω


Two generalized Hadamard matrices H1 and H2 are said to be equivalent if and only if one can be
obtained from the other by permuting the rows (columns) and a series of multiplications of elements
of group of rows (columns). An GH(p, v) can be reduced to the standard form (or normalized form)
in which the initial row and column contain only 1. Then,

v∑
j=1

mij =

v∑
j=1

mC
ij = 0, i = 2, 3, · · · , v (1.1)

v∑
i=1

mij =

v∑
i=1

mC
ij = 0, j = 2, 3, · · · , v (1.2)

A square sub matrix after omitting the first row and first column of standard form of GH(p, v) is
known as the core [9].

The term Kronecker product, also known as the tensor product is defined, as it is very useful in
this context. If A = [aij ] is an u×v matrix for i = 1, 2, · · · , u and j = 1, 2, · · · , v and B is any p× q
matrix then the Kronecker product of A and B, denoted by A ⊗ B, is the up × vq matrix formed
by multiplying each aij element by the entire matrix B. That is, [6]
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A⊗B =


a11B a12B · · · a1vB
a21B a22B · · · a2vB

...
...

. . .
...

au1B au2B · · · auvB


u×v

It leads to the following lemma.

Lemma 1.1. If M1is an GH(p, v1) matrix over C and M2 is an GH(p, v2) matrix over C, then
the Kronecker product M1 ⊗M2 is an GH(p, v1v2) matrix over C [8].

We examine the construction of generalized Hadamard matrices with the properties of Latin square.
A Latin Square of order n is an n×n matrix containing n different symbols that each symbol occurs
in each row and each column exactly once [10]. The following is an example of a Latin square of
order 3.  1 3 2

3 2 1
2 1 3


Once the construction of generalized Hadamard matrices is accomplished, we consider the generalization
of the Hadamard graphs and discuss their properties [11].

Although it is easy to represent a graph by a diagram of points joined by lines, such a representation
may be irrelevant if we wish to store a large graph in a computer. One way of storing a simple
graph is by listing the vertices adjacent to each vertex of the graph known as adjacency matrix [12].

Let G = (V,E) be a simple graph with vertex set V = {1, 2, · · · , n}. The adjacency matrix of G,
denoted by A(G) is defined as the n× n matrix A(G) = [aij ] where,

aij =

{
1 if i and j are adjacent in G
0 otherwise.

2 Generating Generalized Hadamard Matrices

The main purpose of this paper is to generalize the Hadamard matrices for order of prime powers
over cyclic groups of prime orders. To construct a GH(p, pn) over Cp, we can use the following
steps.

Step 1: Let the elements be x1, x2, x3, , xp.

Step 2: Write a Latin square by using the cyclic shifting method [13] by taking the first row
x1, x2, , xp. Convert into the standard form by multiplying inverse elements.

Step 3: Label the first row and first column elements of the core as A1, A2, , Ap−1. Observe that, it
has a triangular pattern.

1 1 1 1 · · · 1 1
1 A1 A2 A3 · · · Ap−2 Ap−1

1 A2 A2A3A
−1
1 A3A4A

−1
1 · · · Ap−1Ap−2A

−1
1 Ap−1A

−1
1

1 A3 A3A4A
−1
1 A3A4A5A

−1
1 A−1

2 · · · Ap−1Ap−2A
−1
1 A−1

2 Ap−1A
−1
2

..

.
..
.

..

.
..
.

. . .
..
.

..

.

1 Ap−3 Ap−2Ap−3A
−1
1 Ap−1Ap−2Ap−3A

−1
1 A−1

2 · · · Ap−1Ap−2A
−1
p−4A

−1
p−5 Ap−1A

−1
p−4

1 Ap−2 Ap−1Ap−2A
−1
1 Ap−1Ap−2A

−1
1 A−1

2 · · · Ap−1Ap−2A
−1
p−3A

−1
p−4 Ap−1A

−1
p−3

1 Ap−1 Ap−1A
−1
1 Ap−1A

−1
2 · · · Ap−1A

−1
p−3 Ap−1A

−1
p−2


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Step 4: Substitute Ai = ωi for i = 1, 2, , p− 1, where ω is the pth root of unity.

H =



1 1 1 1 · · · 1 1 1
1 ω ω2 ω3 · · · ωp−3 ωp−2 ωp−1

1 ω2 ω4 ω6 · · · ω2p−6 ω2p−4 ωp−2

1 ω3 ω6 ω9 · · · ω3p−9 ω2p−6 ωp−3

...
...

...
...

. . .
...

...
...

1 ωp−3 ω2p−6 ω3p−9 · · · ω9 ω6 ω3

1 ωp−2 ω2p−4 ω2p−6 · · · ω6 ω4 ω2

1 ωp−1 ωp−2 ωp−3 · · · ω3 ω2 ω


(2.1)

Step 5: Use the Kronecker product to construct the normalized GH(p, p2) matrix.
Applying the Kronecker product construction repeatedly, one can constructGH(p, pn), where n ∈ N.

The method described above is proved by the conditions mentioned (1.1) and (1.2) for the standard
form of a generalized Hadamard.

Theorem 2.1. Let p > 2 be a prime number. Then there exists GH(p, p) over Cp with the condition
hij = ωij(modp).

Proof. The core elements in (2.1) are represented by hij = ωij(modp).
Now consider

p∑
i=1

mij = m1j +

p∑
i=2

mij

= 1 +

p−1∑
i=1

hij

= 1 + hj + h2j + · · ·+ h(p−1)j

= 1 + ωj(modp) + ω2j(modp) + · · ·+ ω(p−1)j(modp)

= 1 + ωj(modp)

[
1− ω(p−1)j(modp)

1− ωj(modp)

]
; since j < p, ωj(modp) ̸= 1

= 1 +

[
ωj(modp) − ωpj(modp)

1− ωj(modp)

]
= 1− 1

= 0

The similar proof can be used to show that
∑p

i=1 m
C
ij = 0 and equation (1.1) considering any

column. Thus, we can say that there exists a generalized Hadamard matrix GH(p, p).

2.1 Case I: p = 3, n = 1

In these subsections, we construct the Generalized Hadamard matrices for prime orders, and prime
power orders.

In fact, the generalized Hadamard matrix of order 3 is to be constructed.The matrix with coefficients
A′

is is of the form: 1 1 1
1 A1 A2

1 A2 A2A
−1
1


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After Substituting Ai = ωi for i = 1, 2, where ω is the 3rd root of unity we will get the matrix of
the form:

H1 =

1 1 1
1 ω ω2

1 ω2 ω

 (2.2)

To verify the obtained matrix is a generalized Hadamard matrix, consider the product H1H
∗
1 :

H1H
∗
1 =

1 1 1
1 ω ω2

1 ω2 ω

1 1 1
1 ω ω2

1 ω2 ω

∗

=

1 1 1
1 ω ω2

1 ω2 ω

1 1 1
1 ω2 ω
1 ω ω2


=

 3 1 + ω + ω2 1 + ω + ω2

1 + ω + ω2 3 1 + ω + ω2

1 + ω + ω2 1 + ω + ω2 3


= 3

1 0 0
0 1 0
0 0 1


= 3I3

Thus, H1 is a generalized Hadamard matrix.

2.2 Case II: p = 5, n = 1

The generalized Hadamard matrix of order 5 over C5 is considered. Here ω is the 5th root of unity.
That is ω5 = 1. This implies 1 + ω + ω2 + ω3 + ω4 = 0.

H2 =


1 1 1 1 1
1 ω ω2 ω3 ω4

1 ω2 ω4 ω ω3

1 ω3 ω ω4 ω2

1 ω4 ω3 ω2 ω

 (2.3)

2.3 Case III: p = 7, n = 1

The generalized Hadamard matrix of order 7 over C7 is considered. Here ω is the 7th root of unity.
That is ω7 = 1. This implies 1 + ω + ω2 + ω3 + ω4 + ω5 + ω6 = 0.

H3 =



1 1 1 1 1 1 1
1 ω ω2 ω3 ω4 ω5 ω6

1 ω2 ω4 ω6 ω ω3 ω5

1 ω3 ω6 ω2 ω5 ω ω4

1 ω4 ω ω5 ω2 ω6 ω3

1 ω5 ω3 ω ω6 ω4 ω2

1 ω6 ω5 ω4 ω3 ω2 ω


(2.4)
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2.4 Case IV: p = 3, n = 2

Here, we use the lemma 1.1 which consists of the Kronecker product on generalized Hadamard
matrices. If H1 is GH(3, 3) and H2 is GH(3, 3), then there exists GH(3, 9) over C3.

H4 = H1 ⊗H1 =



1 1 1 1 1 1 1 1 1
1 ω ω2 1 ω ω2 1 ω ω2

1 ω2 ω 1 ω2 ω 1 ω2 ω
1 1 1 ω ω ω ω2 ω2 ω2

1 ω ω2 ω ω2 1 ω2 1 ω
1 ω2 ω ω 1 ω2 ω2 ω 1
1 1 1 ω2 ω2 ω2 ω ω ω
1 ω ω2 ω2 1 ω ω ω2 1
1 ω2 ω ω2 ω 1 ω 1 ω2


(2.5)

The normalized generalized Hadamard matrices of orders less than 100 which can be constructed
using recursive algorithm are tabulated as follows. (Table 1)

3 Generating Generalized Hadamard Graphs

It is useful to have a common method of finding generalized Hadamard graphs from generalized
Hadamard matrices as it was not done so far in the literature. We present such a method in this
paper by using the properties of Latin squares.

Definition 3.1. Let the distinct elements of generalized Hadamard matrixGH(p, pn) as 1, ω, · · · , ωp−i.
Then the Latin square using cyclic shifting method with elements {1, ω, · · · , ωp−i} can be converted
into row matrix with elements {L0, L1, , Lp−1} such that Lm = [him].
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A =


1 ω · · · ωp−1

ω ω2 · · · 1
...

...
. . .

...
ωp−1 1 · · · ωp−2

 (3.1)

=
[
L0 L1 · · · Lp−1

]
(3.2)

Definition 3.2. A generalized Hadamard graph of 2pn+1 number of vertices and p2n+1 edges
defined in terms of generalized Hadamard matrix GH(p, pn) by constructing:

i) the vertices using 2pn+1 symbols r1i , r
ω
i , · · · , rp−1

i , c1j , c
ω
j , · · · , cp−2

j and cp−1
j , where r stands

for ‘row’ and c stands for ‘column’ for i, j = 1, 2, · · · , pn.

ii) and the edges (rL0
i , cLm

j ) such that hij = ωm, where m = 0, 1, · · · , p− 1.

Theorem 3.1. Let p > 2 be a prime number. Then there exists a pn− regular graph from generalized
Hadamard matrix GH(p, pn) over Cp.

Proof. It is well-known that the necessary and sufficient conditions for a k- regular graph of order
n exists if n ≥ k+1 and that nk is even. Equality holds when the graph is a complete graph. In the
above constructed generalized Hadamard graph has n = 2pn+1 number of vertices and it is regular
of k = pn. We will show that the above two conditions are satisfied by n and k.

Claim: nk is even and n− (k + 1) > 0.

It can be seen that nk is even as n is a multiple of 2.

Let’s consider n− (k + 1)

n− (k + 1) = 2pn+1 − (pn + 1)

= 2pn+1 − pn − 1

= pn(2p− 1)− 1 > 0 ; since p > 2 and n ∈ N

Thus, there exist a pn− regular graph on 2pn+1 number of vertices.

3.1 Case I: Graph obtained from GH(3, 3n)

In these subsections, we construct the Generalized Hadamard graphs for prime orders and prime
power orders of generalized Hadamard matrices using the Python software.

The Latin square related with GH(3, 3n) can be shown as follows:

A1 =

 1 ω ω2

ω ω2 1
ω2 1 ω

 =
[
L0 L1 L2

]
(3.3)

Define 6.3n symbols r1i , r
ω
i , r

ω2

i , c1j , c
ω
j , c

ω2

j for i, j = 1, 2, · · · , 3n−1 as the vertices of the graph.

According to the definition, edges (rL0
i , cLm

j ) if hij = ωm, where m = 0, 1, 2. Then we have 32n+1

number of edges.
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3.1.1 When n = 1

This gives the graph for the generalized Hadamard matrix GH(3, 3). We can obtain the following
edges set:

h11 = 1 ⇒ (rL0
1 , cL0

1 ) ⇒ (r11, c
1
1), (r

ω
1 , c

ω
1 ), (r

ω2

1 , cω
2

1 ) (3.4)

h12 = 1 ⇒ (rL0
1 , cL0

2 ) ⇒ (r11, c
1
2), (r

ω
1 , c

ω
2 ), (r

ω2

1 , cω
2

2 ) (3.5)

h13 = 1 ⇒ (rL0
1 , cL0

3 ) ⇒ (r11, c
1
3), (r

ω
1 , c

ω
3 ), (r

ω2

1 , cω
2

3 ) (3.6)

h21 = 1 ⇒ (rL0
2 , cL0

1 ) ⇒ (r12, c
1
1), (r

ω
2 , c

ω
1 ), (r

ω2

2 , cω
2

1 ) (3.7)

h22 = ω ⇒ (rL0
2 , cL1

2 ) ⇒ (r12, c
ω
2 ), (r

ω
2 , c

ω2

2 ), (rω
2

2 , c12) (3.8)

h23 = ω2 ⇒ (rL0
2 , cL2

3 ) ⇒ (r12, c
ω2

3 ), (rω2 , c
1
3), (r

ω2

2 , cω3 ) (3.9)

h31 = 1 ⇒ (rL0
3 , cL0

1 ) ⇒ (r13, c
1
1), (r

ω
3 , c

ω
1 ), (r

ω2

3 , cω
2

1 ) (3.10)

h32 = ω2 ⇒ (rL0
3 , cL2

2 ) ⇒ (r13, c
ω2

2 ), (rω3 , c
1
2), (r

ω2

3 , cω2 ) (3.11)

h33 = ω ⇒ (rL0
3 , cL1

3 ) ⇒ (r13, c
ω
3 ), (r

ω
3 , c

ω2

3 ), (rω
2

3 , c13) (3.12)

One can obtain the following graph displayed in Fig. 1.

Fig. 1. graph obtained from GH(3, 3)

From Fig. 1, it can be observed that there are 18 vertices and each vertex has degree 3. Thus, 3−
regular graph can be obtained from GH(3, 3).

3.1.2 When n = 2

This gives the graph for the generalized Hadamard matrix GH(3, 9). Some edges can be given as
follows:

h11 = 1 ⇒ (r11, c
1
1), (r

ω
1 , c

ω
1 ), (r

ω2

1 , cω
2

1 ) (3.13)

h44 = ω ⇒ (r14, c
ω
4 ), (r

ω
4 , c

ω2

4 ), (rω
2

4 , c14) (3.14)

h75 = ω2 ⇒ (r17, c
ω2

5 ), (rω7 , c
1
5), (r

ω2

7 , cω5 ) (3.15)

One can obtain the following graph displayed in Fig. 2.
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Fig. 2. graph obtained from GH(3, 9)

From Fig. 2, it can be seen that the graph has 54 vertices and each vertex has degree 9. Hence, 9−
regular graph can be obtained from GH(3, 9)

3.2 Case II: Graph obtained from GH(5, 5n)

The Latin square related with GH(5, 5n) can be shown as follows:

A1 =


1 ω ω2 ω3 ω4

ω ω2 ω3 ω4 1
ω2 ω3 ω4 1 ω
ω3 ω4 1 ω ω2

ω4 1 ω ω2 ω3

 =
[
L0 L1 L2

]
(3.16)

Then 10.5n symbols r1i , r
ω
i , r

ω2

i , rω
3

i , rω
4

i , c1j , c
ω
j , c

ω2

j , cω
3

j , cω
4

j for i, j = 1, 2, · · · , 5n−1 would be the

vertices of the graph. According to the definition, edges (rL0
i , cLm

j ) if hij = ωm, where m =

0, 1, 2, 3, 4. Then we have 52n+1 number of edges.

3.2.1 When n = 1

This gives the graph for the generalized Hadamard matrix GH(5, 5). Some edges can be given as
follows:

h11 = 1 ⇒ (r11, c
1
1), (r

ω
1 , c

ω
1 ), (r

ω2

1 , cω
2

1 ), (rω
3

1 , cω
3

1 ), (rω
4

1 , cω
4

1 ) (3.17)

h22 = ω ⇒ (r12, c
ω
2 ), (r

ω
2 , c

ω2

2 ), (rω
2

2 ), cω
3

2 ), (rω
3

2 , cω
4

2 ), (rω
4

2 , c12) (3.18)

h34 = ω3 ⇒ (r13, c
ω3

4 ), (rω3 , c
ω4

4 ), (rω
2

3 , c14), (r
ω3

3 , cω4 ), (r
ω4

3 , cω
2

4 ) (3.19)

One can obtain the following graph displayed in Fig. 3.
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Fig. 3. graph obtained from GH(5, 5)

From Fig. 3, it can be observed that the graph has 50 vertices and each vertex has degree 5. Hence,
5− regular graph can be obtained from GH(5, 5)

4 Conclusions

a In section (1), a brief illustration on generalized Hadamard matrices and fundamentals in our
research has been discussed.

b In section (2), we have developed a method of constructing generalized Hadamard matrices of
prime power orders and verify the method by giving a theorem with proof. In particular,
the illustrative examples have been discussed case wise.

c In section (3), we have worked on generating graphs from generalized Hadamard matrices and
have developed an algorithm. Further, the algorithm has been automated using Python
software. We have identified that the generalized Hadamard graph obtained from generalized
Hadamard matrix GH(p, pn) has a special property, namely pn− regular. In addition, it
has been verified by giving a theorem with proof. Our results have been illustrated by
constructing pn− regular graphs for different values of p and n and this might be used for
further identification of properties of generalized Hadamard graphs.

.
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