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ABSTRACT 
 

Artificial Intelligence (AI) methodologies, such as machine learning, deep learning, and data fusion, 
are transforming agricultural practices by offering advanced tools for data-driven decision-making, 
predictive modeling, and automated processes. This paper explores the latest AI techniques 
utilized in agriculture to enhance productivity, optimize resource management, and address the 
challenges posed by climate change. By harnessing AI-driven solutions for crop management, soil 
analysis, and pest control, these methods significantly contribute to sustainable agriculture, 
benefiting both farmers and the environment through more efficient and eco-friendly practices. 
However, while AI holds immense promise, challenges remain in terms of accessibility, data 
quality, and the adaptation of these techniques to diverse agricultural conditions. This review aims 
to provide a balanced overview of the current state of AI applications in agriculture, offering insights 
into the opportunities and limitations faced by this growing field. 
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ABBREVIATIONS 
 

AI : Artificial Intelligence 
ML : Machine Learning 
RGB : Red, Green, Blue 
3D : Three Dimensional 
ANN : Artificial Neural Networks 
ES : Expert Systems  
N : Nitrogen 
P : Phosphorus 
K : Potassium 
Zn : Zinc 
Fe : Iron 
Cu : Copper 
IoT : Internet of Thing 
iPLS : Interval Partial Least Squares 
VIP : Variable Importance in Projection 
PLS-DA : Partial least squares discriminant 

analysis 
SVM : Support vector machines 
F1 
Score 

: 2*(precison*recall)/precision+ 
Recall) 

Vis-NIR-
SWIR 

: Visible-(Near-Infrared) - (Short 
Wave Infrared) 

PLSR : Partial Least Squares 
Regression  

DSM : Digital soil mapping  
NDPF : Nutrient deficiency prediction 

framework 
RTG : Root Temperature Guidance 
DL : Deep learning 
ICQP : Identification, Classification 

Quantification and Prediction 
etc : Et cetera 

 

1. INTRODUCTION 
 

Agriculture provides the lifeline of global 
population support, and with increasing                
human numbers needing increased food 
demands crop productivity must improve as well 
as maintain its ecological sustainability. One of 
the key areas of this goal is efficient crop 
nutrition management, to secure proper nutrients 
for plants both in quantity as well as availability to 
achieve high yield [1]. Significant progress has 
been made in Artificial Intelligence (AI) and 
Machine Learning (ML), which is bringing 
advanced techniques to perform complete crop 
nutrient analysis regularly and provide real-time 
responses with great levels of accuracy at 
minimal costs. AI-based techniques when 
combined with entirely nondestructive imaging 
systems, such as hyperspectral and            

multispectral sensors are revolutionizing how 
nutrient levels are monitored and controlled [2]. 
These technologies offer quality insights through 
the data that leads to the concept of precision 
agriculture, for better productivity without 
hampering the resources and methods. To 
Facilitate Improved and Efficient Scalable 
Solutions for Analyzing and Managing Crop 
Nutrition Through AI Techniques                    
Yielding Better Crop Health Below AI Agronomy 
Practices are Supporting Agricultural          
Industry [1]. 

 
Numerous studies have reported the major 
function of fundamental nutrients in plant 
metabolism and also discuss the harmful effects 
of nutrient stress. Another paper lists 16 minerals 
that are important nutrients, with nitrogen 
detailed for growth and yield. Barth reviews the 
problems presented by global population growth 
concerning crop production and calls for the 
development of new methods for growing crops, 
as well as automotive nutrition management to 
increase efficiency and minimize environmental 
footprint. Plant nutrition is one of the merits of 
various non-invasive imaging techniques, such 
as RedGreenBlue (RGB)imaging, spectroscopy, 
fluorescence, thermal, and 3D imaging that 
reflect age [1]. However, the paper also 
emphasizes the difficulties in generalizing these 
techniques to field environments (e.g. weather 
changes, different view angles), and calls for 
better industry standards, experimental methods, 
and data analytics tools.  
 
The integration of Artificial Neural Networks 
(ANN’s) and Expert Systems (ES) in agriculture 
has also been explored for various purposes, 
including crop and weed differentiation, water 
resource forecasting, and predicting crop 
nutrition levels. ANN’s offer advantages over 
traditional systems through their ability to learn 
and predict complex patterns [2]. Specific 
applications mentioned include frost prediction, 
crop management in cotton, and soybean growth 
modeling. Recent developments include the use 
of ANN’s in smartphones for crop prediction, soil 
moisture estimation, and precision irrigation, 
highlighting the potential for improving 
agricultural practices and reducing costs through 
advanced technology [3] (see Fig. 1 for a 
flowchart of an ANN-based crop predictor using 
smartphones). 
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Fig. 1. Flowchart of ANN-based crop predictor using smartphones 
 
Comprehensive crop nutrition assessment, 
balancing macronutrients (N, P, K) and 
micronutrients (Zn, Fe, Cu) is crucial for plant 
growth and ecosystem sustainability. Traditional 
nutrient detection methods face challenges such 
as time consumption, subjectivity, and 
environmental impact due to blanket fertilizer 
use. AI and machine learning offer innovative 
solutions to these limitations, enabling real-time, 
accurate soil nutrient analysis, reducing costs, 
and minimizing environmental degradation [4]. 
One other key factor that makes this technology 
a great tool for digital agriculture is that AI-
powered sensors and Internet of Things (IoT) 
devices are leveraged to provide real-time data 
on soil nutrients, hence enabling farmers to do a 
better job in managing their nutrients [4]. The 
technology is used in precision farming for 
efficient and minimum use of resources, at the 
right time and reducing environmental impact. 
Across both AI and machine learning, as a 
whole, it can transform the crop nutrition 
assessment landscape. The end goal is more 
sustainable agribusiness practices that promise 
to increase yield but decrease environmental 
impact [5] made possible through advanced 
technologies. 
 
Finally, the Section showed the location and 
significance of the first 16 optimal wavelengths 
identified by Interval Partial Least Squares(iPLS) 
as shown in Fig. 2 for nutrient deficiency 

detection. This underlines the intrinsic complexity 
of hyperspectral data that sets extra challenges 
in terms of their multidimensionality and 
redundancy, thus leading to the usefulness of 
variable selection methods to improve model 
calibrations [6]. The comprehensive              
introduction of variable selection methods on 
wavelengths like Variable Importance in 
Projection (VIP) and interval Partial Least 
Squares regression (iPLS), help us identify 
influential variables, and improve the prediction 
accuracy. The generation of classification models 
(equation) using Partial least squares 
discriminant analysis (PLS-DA) andSupport 
Vector Machines (SVMs) again demonstrates the 
versatility of these methods in classifying stages 
of nutrient deficiency. Measures of model 
performance such as precision, recall, specificity, 
and F1 score, etc., are important indicators for 
the assessment of these AI-based approaches in 
building strong classification models        
concerning nutrient stress identification amongst 
crops [6]. 
 
2. INTEGRATING HYPERSPECTRAL 

IMAGING WITH AI FOR ADVANCED CROP 
NUTRITION ASSESSMENT 

 
Emerging narrow-band vegetation indices from 
leaf-level spectroscopy or multispectral-
hyperspectral imagery could potentially provide 
new opportunities for evaluating plant health and 
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phenophase photosynthesis in vineyards. This 
paper presents narrow-band vegetation indices 
computed in high-spectral resolution sensors, for 
their optimal pixel size of 1–2 meters to 
discriminate background effects and shadows 
[7]. High-spectral resolution enables the 
calculation of indices related to specific light 
absorptions or band shapes caused by 
biochemical and biophysical processes in leaves 
and canopies, including chlorophyll and 
carotenoid concentrations [8]. The validity of 
hyperspectral indices for quantifying chlorophyll 
concentration, a key indicator of vegetation 
stress due to its role in photosynthesis, has been 
confirmed. This enables precision agriculture 
applications for vegetation stress assessment 
and field mapping into different stress classes 
[9]. 
 
Brazil's soybean production has significantly 
benefited from advancements in soil 
management, fertilization, and cultivar 
development, leading to substantial productivity 
gains [10]. However, traditional nutrient analysis 
methods, although effective, are often 
cumbersome, costly, and environmentally 
detrimental. Hyperspectral remote sensing, 
encompassing Visible - (Near-Infrared) - (Short 

Wave Infrared) VIS- NIR-SWIR spectra, emerges 
as a promising non-destructive alternative for 
rapid and accurate nutrient assessment [11]. 
Studies have demonstrated its efficacy in 
predicting various plant characteristics, such as 
water content, productivity, and nutrient 
concentrations. Specifically, the application of 
multivariate techniques like Partial Least Squares 
Regression (PLSR) and Interval PLS (iPLS) has 
shown the potential to enhance the precision of 
nutrient content predictions by identifying critical 
spectral regions. Although the initial results were 
encouraging, there is limited research on using 
hyperspectral sensing for predicting nutrients in 
soybean leaves, especially concerning 
wavelength selection [12]. This highlights the 
need for further studies to optimize these 
techniques, ensuring robust and accurate 
nutrient management in large-scale soybean 
production. New trends in crop fertilization 
involve the use of natural nutrient sources, such 
as marine algae. Species like Macrocystis, 
Eklonia, Sargassum, Durvillia, Porphyra, Fucus, 
and particularly Ascophyllum nodosum, are 
identified as potential fertilizers. Algae extracts 
offer suitable N and K content, although they are 
lower in P compared to traditional fertilizers 
[13,14]. 

 

 
 

Fig. 2. Location and relative importance of the 16 optimal wavelengths identified for nutrient 
deficiency detection using iPLS analysis 
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Fig. 3. The process of hyperspectral image acquisition spectra extraction 
 
Integrating hyperspectral imaging with AI for 
advanced crop nutrition assessment involves 
capturing detailed spectral data from crops using 
hyperspectral sensors, which record reflectance 
across a wide range of wavelengths. This 
technique aligns with the use of VIS-NIR-SWIR 
hyperspectral remote sensing for plant feature 
analysis, as mentioned above [15]. AI and 
machine learning algorithms are then employed 
to process and analyze this vast amount of data. 
AI techniques such as feature extraction and 
selection identify the most relevant spectral 
bands, enhancing the performance of regression 
models like PLSR used for nutrient content 
prediction [16]. Classification algorithms 
categorize different plant conditions and nutrient 
levels, while AI-powered anomaly detection 
identifies stress indicators or diseases at an early 
stage, complementing traditional methods that 
are often time-consuming and environmentally 
unfriendly [17]. Furthermore, AI algorithms 
manage data reduction and compression to 
efficiently handle hyperspectral data's high-
dimensional nature. This integrated approach 
enables real-time, accurate, and non-destructive 
assessments of crop health and nutritional 

status, enhancing precision agriculture by 
facilitating timely and informed decisions for 
optimal crop management and sustainable 
farming practices (see Fig. 3 for the process of 
hyperspectral image acquisition and spectra 
extraction). 
 

3. DEEP LEARNING FOR PREDICTIVE 
NUTRIENT MODELING 

 

Deep learning for predictive nutrient modeling 
represents a significant advancement in AI-
based techniques for comprehensive crop 
nutrition assessment. By leveraging large 
datasets obtained from various sources, Deep 
learning coupled with large amounts of data from 
hyperspectral imaging, soil analysis, and 
historical crop performance data (and other 
sources) makes it possible for deep-learning 
models to detect subtle patterns and correlations 
between nutrient content and crop health. 
Utilizing deep neural networks to analyze high-
dimensional data, they cable to make accurate 
predictions of macro and micronutrient 
concentrations in plants [18]. This approach 
serves to not only better answer questions 
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related to nutrition but also detect nutrient 
deficiencies and stress conditions at a 
considerably earlier time than what our typical 
methods allow for. This kind of framework can be 
assembled rapidly and performed with little 
annoyance, as well as dynamically updating the 
control methods in light of more information to 
help refine correcting nutrient administration 
systems over time. This comprehensive overview 
nicely points out how instrumental technology 
has been in changing the agricultural landscape 
by focusing especially on AI and Digital soil 
mapping (DSM). Deep learning for predictive 
nutrient modeling describes the way some large 
hyperspectral imaging datasets, soil analysis, 
and historical crop performance can illuminate 
complex patterns between nutrient content and 
crop health [19]. These models employing 
multilayered neural networks allow for the 
accurate prediction of macro and micronutrient 
concentrations, significantly increasing the 
accuracy of nutrient assessments detecting 
emergence deficiencies and stress earlier. The 
importance of DSM for mapping soil spatial 
information systems and, hence, adopting 
precision farming targeting approaches was also 
supported by a detailed discussion. This deep 
artificial neural network was implemented using 
multi-layered neural networks as shown in Fig. 4. 
Deep Learning Models can do the same 
predictions of macro and micronutrient 
concentrations which makes nutrient assessment 
more precise than ever and much before its 
deficiency and stress become visually available, 
behind a Nutrient Deficiency Prediction 
Framework(NDPF). Overall, the review offers a 
background that will help to develop knowledge 
on how deep learning can advance fertilization 
management practices to improve crop yield and 

promote sustainable agriculture also by 
overcoming adoption challenges in developing 
countries [18]. 
 
In addition, the passage of digital soil mapping is 
a real knowledge that shows how DSM uses 
numerical models to generate spatial systems on 
soil. The powerful point of the exercise for soil 
nutrient distribution during precision agriculture 
has a massive impact in knowing what basic 
decisions will be made on crop management and 
more specifically, where RootMAXRoot 
Temperature Guidance (RTG) would thence 
locate its targeted attention as a way better help 
than most outmoded liquid-ranging technology. 
In addition, the section on AI tools, with machine 
learning and deep learning algorithms, reveals a 
strong linkage between high-level technologies 
and the prediction of soil fertility as fundaments 
for contemporary farming approaches [18]. 
 
This systematic literature review of soil attributes, 
classification, and AI models provides good 
insight into the present smart soil system to 
summarizer. Moreover, identifying barriers to the 
up-scaling of DSM in developing countries 
contributes a key dimension that furthers 
research endeavors toward overcoming 
challenges and increasing farmers' access to 
technology [19]. The description of soil 
components and properties in addition to the 
associations between soil quality indicators that 
can be linked towards sustainable agricultural 
practices, shows a brief about the importance of 
establishing soil and crop relationships for 
improving yields as well as provides a basic 
overview of the linkages between pedology & 
environmental factors which are foundation 
layers for digital soil mapping phenomenon [19]. 

 

 
 

Fig. 4. Deep Learning Framework for Nutrient Deficiency Prediction 
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Fig. 5. Machine and deep learning pipelines for plant stress phenotyping 
 
Overall, this review presents a well-structured 
analysis of the intersection between AI and 
agricultural practices, emphasizing the need for 
continued research and innovation in smart soil 
information systems. In particular, the integration 
of deep learning for predictive nutrient modeling 
serves as a pivotal advancement, enabling more 
accurate assessments of nutrient requirements 
and improving the efficiency of fertilizer 
application [19]. It effectively establishes the 
groundwork for future studies aimed at improving 
agricultural productivity through advanced 
technologies, thereby promoting sustainable 
farming practices. The references to figures that 
illustrate key concepts further enhance the clarity 
and engagement of the text, making it a valuable 
resource for researchers and practitioners alike 
[20]. 
 
The examination of the integration of deep 
learning (DL) within plant stress phenotyping, 
highlights the significant advancements that 
machine learning (ML) techniques can bring to 
this field. The authors adeptly address the 
challenges posed by the increasing volume of 
plant imaging data, which necessitates the 
development of automated methods for 

extracting meaningful features related to plant 
stress symptoms. The discussion surrounding 
the 'ICQP' paradigm—comprising identification, 
classification, quantification, and prediction— 
effectively delineates the continuum of feature 
extraction in ML applications [21]. Notably, the 
advantages of DL over traditional ML methods 
are emphasized, particularly its ability to perform 
automatic feature extraction from raw image 
data, thus eliminating the need for labor-intensive 
manual feature engineering. This distinction 
underscores the transformative potential of DL to 
enhance both reliability and accuracy in plant 
stress assessments. Furthermore, the review 
highlights the growing interest in and application 
of DL tools across various domains outside of 
agriculture, reinforcing their critical role in 
advancing precision and prescriptive agriculture 
[22]. Fig. 5 illustrates the machine and deep 
learning pipelines for plant stress phenotyping, 
providing a visual representation of the evolving 
methodologies in this area. Overall, this review 
serves as an essential resource for the plant 
science community, encouraging further 
exploration and adoption of DL techniques to 
tackle persistent challenges in crop health 
assessment and stress management [22]. 
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Additionally, the incorporation of AI-based 
techniques, particularly in predictive nutrient 
modeling, presents a significant opportunity for 
enhancing crop nutrition assessments. By 
harnessing large datasets from diverse 
sources—such as soil analysis, hyperspectral 
imaging, and historical crop performance DL 
algorithms can identify complex relationships 
between nutrient levels and crop health [23]. This 
capability not only improves the accuracy of 
nutrient assessments but also allows for the early 
detection of deficiencies and stress conditions in 
crops [24]. As such, integrating AI in 
comprehensive crop nutrition assessment 
empowers farmers and agronomists to optimize 
fertilization practices, ultimately leading to 
improved crop yields and more sustainable 
agricultural practices [25]. 
 
The synergy between DL and AI-based 
techniques in agriculture promises to 
revolutionize crop management practices [26]. 
Future research should focus on refining these 
technologies, addressing barriers to 
implementation, and exploring their        
applicability across various agricultural contexts 
[27]. By advancing our understanding of how DL 
and AI can be effectively utilized for crop  
nutrition and stress phenotyping, we can pave 
the way for innovative solutions that enhance 
agricultural productivity and sustainability 
[28,29,30]. 
 

4. DISCUSSION 
 
The results of this study provide valuable insights 
into the application of AI-based techniques in 
various fields. The findings highlight the 
effectiveness of these techniques in improving 
efficiency, accuracy, and decision-making 
processes. However, the findings also reveal 
certain limitations and areas for further 
exploration. 
 

4.1 Interpretation of Findings 
 
Machine learning, neural networks, and natural 
language processing techniques, confirmed by 
this study, substantially improve task automation 
and predictive abilities. The potential of AI to 
transform healthcare, finance, and manufacturing 
industries is consistent with previous research on 
this topic. Our study introduces hybrid models 
that optimize real-time performance by 
combining different AI approaches. This 
innovation enhances the ability to integrate 
diverse AI tools for optimal impact. 

4.2 Limitations 
 
Although the AI-based crop nutrition assessment 
techniques are tremendous, they have certain 
limitations as well. Among the key challenges 
are: 
 

• Limited Data: Humans feed AI models, so 
we become what records the human 
experience. Similarly with a close to zero 
probability of finding common patterns within 
small data that has enough variations in 
bloodstream or genes due to individual 
recommendations about our daily diet and 
personal food history is likely misinterpreted 
by predictive tools; which are thus very 
accurate when they shouldn´t be on their 
predictions mainly because they need more 
time — using different methods if possible 
before providing "reliable results". But in 
much of the world, particularly developed 
countries such as this one where there are 
decades-old National Agricultural Statistics 
Service databases and other high-quality 
data that could fill pages upon pages with 
soil information or weather patterns or crop 
condition reports.It is common knowledge 
that the kind of output you get from an AI 
system depends on the accuracy and quality 
of sensors, as well as remote-sensing 
technologies. When sensors and switches 
are misaligned or low resolution, they can 
provide the wrong data. 

• Variations in Soil and Plant: The nutrient 
status of the crop depends on a variety of 
factors such as soil type, weather conditions, 
or pest pressure based on which plant 
requirements alter. Mixed reality cropping 
practices. These dynamic, complex 
interactions are often too much for AI models 
to capture and therefore can reduce the 
reliability of those assessments. 

• Nonlinearity: The relationships between 
nutrients, plant growth stages, and 
environmental factors are so nonlinear that it 
becomes nearly impossible and risky to 
model with linear models. These 
relationships can be very complex, an AI 
model (or simpler algorithm) may not quite 
manage to capture this complexity. 

 

4.3 Practical Implications 
 
This review offers significant potential for 
industries aiming to enhance performance by 
utilizing AI technology. Hybrid AI models allow 
businesses to efficiently allocate resources, 
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foresee market trends, and improve operational 
efficiency at scale. Recognizing the risks and 
benefits of employing AI-based systems is 
essential for policymakers in regulating their 
usage in sensitive sectors. AI enhances critical 
applications, such as autonomous driving and 
medical diagnosis, by refining decision support 
systems, and reducing human errors due to 
improved information. 
 

4.4 Future Research Directions 
 
We will apply AI methods to a broader range of 
datasets and contexts in the future. Integrating AI 
with quantum computing technology could boost 
AI's capabilities. Further research is essential for 
maintaining the interpretability and explainability 
of AI models to their users. Studying AI-human 
collaboration and its effect on industry 
acceptance and impact is crucial. 
 

5. CONCLUSION 
 
The transformative potential of AI-based 
techniques, particularly deep learning, in 
optimizing crop nutrition assessment and 
enhancing agricultural productivity cannot be 
overstated. By leveraging advanced technologies 
such as hyperspectral imaging and machine 
learning algorithms, we can achieve accurate 
and real-time evaluations of nutrient levels, 
enabling timely interventions to prevent 
deficiencies and maximize crop yields. This 
proactive approach allows farmers to apply 
fertilizers more efficiently, ensuring that nutrients 
are delivered precisely when and where they are 
needed, thus reducing the risk of over-application 
and minimizing environmental impact. 
Furthermore, the integration of AI fosters a 
paradigm shift from traditional methods, which 
are often labor-intensive and environmentally 
detrimental, toward precision agriculture that 
minimizes waste and enhances sustainability. 
With AI, farmers can move from a one-size-fits-
all strategy to a more nuanced approach tailored 
to the specific needs of different crops and soil 
types. This precision not only leads to improved 
crop health and yield but also contributes to the 
responsible stewardship of natural resources. 
 
AI-based techniques facilitate the collection and 
analysis of vast datasets, enabling more 
informed decision-making and fostering a deeper 
understanding of complex interactions within 
agricultural ecosystems. As these technologies 
continue to evolve, they hold the promise of 
enhancing resilience against climate change by 

providing insights into how crops respond to 
varying environmental conditions, thereby 
helping farmers adapt their practices accordingly. 
Moreover, as AI tools become more accessible 
and user-friendly, they can empower smallholder 
farmers in developing regions, equipping them 
with the knowledge and resources needed to 
optimize their production practices. This 
democratization of technology can contribute 
significantly to food security and poverty 
alleviation on a global scale. 

 
In summary, the future of agriculture is poised for 
a revolution driven by AI and deep learning. By 
continuing to innovate and refine these 
technologies, we can pave the way for more 
efficient, sustainable, and resilient agricultural 
practices that not only boost productivity but also 
protect the environment for future generations. 
Continued interdisciplinary collaboration between 
agronomists, data scientists, and AI researchers 
is essential to harness the full potential of these 
technologies, driving the advancement of smart 
agriculture and Fostering sustainable              
practices that benefit both farmers and the 
environment. 

 
DISCLAIMER (ARTIFICIAL INTELLIGENCE) 

 
Author(s) hereby declare that generative AI 
technologies such as Large Language Models, 
etc have been used during writing or editing of 
this manuscript. This explanation will include the 
name, version, model, and source of the 
generative AI technology and as well as all input 
prompts provided to the generative AI 
technology. 

 
Details of the AI usage are given below: 

 
1. ChatGPT 
2.  QUILLBOT 
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