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1. Introduction

L et H be an infinite dimensional complex Hilbert space and B(H) be the algebra of all bounded linear
operators on H. In this paper, we discuss various types of norm inequalities for inner product type

integral transformers in terms of Landau type inequality, Grüss type inequality and Cauchy-Schwarz type
inequality. We shall also consider the applications in quantum theory. We begin by the following definition:

Definition 1. Grüss inequality states that if f and g are integrable real functions on [a, b] such that C ≤ f (x) ≤
D and E ≤ g(x) ≤ F hold for some real constants C, D, E, F and for all x ∈ [a, b], then∣∣∣∣ 1

b− a

∫ b

a
f (x)g(x)dx− 1

(b− a)2

∫ b

a
f (x)dx

∫ b

a
g(x)dx

∣∣∣∣ ≤ 1
4
(D− C)(F− E). (1)

Inequality (1) is very interesting to many researchers and it has been considered in many studies whereby
conditions on functions are varied to give different estimates (see [1] and references therein). More on this
inequality (and the classical one [2]) are discussed in the sequel.

Next, we discuss a very important definition of inner product type integral (i.p.t.i) transformer which is
key to our study.

Definition 2. Consider weakly µ∗-measurable operator valued (o.v) functions A, B : Ω → B(H) and for
all X ∈ B(H). Let the function t → AtXBt be also weakly µ∗-measurable. If these functions are Gel’fand
integrable for all X ∈ B(H), then the inner product type linear transformation X →

∫
Ω AtXBtdt is called an

inner product type integral (i.p.t.i) transformer on B(H) and denoted by
∫

Ω At ⊗ Btdt or IA,B.

Remark 1. If µ is the counting measure on N then such transformers are known as elementary operators whose
certain properties have been studied in details (see [3] and the references therein).

2. Preliminaries

In this section, we consider a special type of norms called the unitarily invariant norm. We give its
description in details which will be useful in the sequel. Let C∞(H) denote the space of all compact linear
operators acting on a separable, complex Hilbert spaceH. Each symmetric gauge function Φ, denoted by (s.g.),
on sequences gives rise to a unitarily invariant (u.i) norm on operators defined by ‖X‖Φ = Φ({sn(X)}∞

n=1)

with s1(X) ≥ s2(X) ≥ . . . being the singular values of X, i.e., the eigenvalues of |X| = (X∗X)
1
2 . We denote
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any such norm by the symbol |||·|||, which is therefore defined on a naturally associated norm ideal C|||·|||(H)

of C∞(H) and satisfies the invariance property |‖UXV|‖ = |‖X|‖ for all X ∈ C|||·|||(H) and for all unitary
operators U, V ∈ B(H). One of the well known among u.i. norms are the Schatten p-norms defined for

1 ≤ p < ∞ as ‖X‖p = p
√

∑∞
n=1 sp

n(X), while ‖X‖∞ = ‖X‖ = s1(X) coincides with the operator norm ‖X‖.
Minimal and maximal u.i. norm are among Schatten norms, i.e., ‖X‖∞ ≤ |‖X‖| ≤ ‖X‖1 for all X ∈ C1(H) (see
inequality (IV.38) [4]). For f , g ∈ H, we will denote by g∗ ⊗ f one dimensional operator (g∗ ⊗ f )h = 〈h, g〉 f for
all h ∈ H and it is known that the linear span of {g∗ ⊗ f | f , g ∈ H} is dense in each of Cp(H) for 1 ≤ p ≤ ∞.
Schatten p-norms are also classical examples of p-reconvexized norms. Namely, any u.i. norm ‖.‖Φ could be

p-reconvexized for any p ≥ 1 by setting ‖A‖Φ(p) = ‖|A|p‖
1
p
Φ for all A ∈ B(H) such that |A|p ∈ Φ(H). For the

proof of the triangle inequality and other properties of these norms, see [2] and for the characterization of the
dual norm for p-reconvexized, see Theorem 2.1 [2].

The set C|||·||| = {A ∈ K(H) : |||A||| < ∞} is a closed self-adjoint ideal J of B(H) containing finite
rank operators. It enjoys the following properties. First, for all A, B ∈ B(H) and X ∈ J , |||AXB||| ≤
||A|| |||X||| ||B|| . Secondly, if X is a rank one operator, then |||X||| = ‖X‖ . The Ky Fan norm as an example of
unitarily invariant norms is defined by ‖A‖(k) = ∑k

j=1 sj(A) for k = 1, 2, . . .. The Ky Fan dominance Theorem
[5] states that ‖A‖(k) ≤ ‖B‖(k) (k = 1, 2, . . .) if and only if |||A||| ≤ |||B||| for all unitarily invariant norms
||| · |||, see [6] for more information on unitarily invariant norms. The inequalities involving unitarily invariant
norms have been of special interest (see [5] and the references therein).

Lemma 1. Let T and S be linear mappings defined on C∞(H). If ‖T X‖ ≤ ‖SX‖ for all X ∈ C∞(H), ‖T X‖1 ≤
‖SX‖1 for all X ∈ C∞(H), then T X ≤ SX for all unitarily invariant norms.

Proof. The norms ‖ · ‖ and ‖ · ‖1 are dual to each other in the sense that ‖X‖ = sup‖Y‖1=1 |tr(XY)| and
‖X‖1 = sup‖Y‖=1 |tr(XY)|. Hence ‖T ∗X‖ ≤ ‖S∗X‖ and ‖T ∗X‖1 ≤ ‖S∗X‖1. Consider the Ky Fan norm

‖ · ‖(k). Its dual norm is ‖ · ‖]
(k) = max{‖ · ‖, (1/k)‖ · ‖1}. Thus, by duality, ‖T X‖(k) ≤ ‖SX‖(k) and the result

follows by Ky Fan dominance property [6].

An operator A ∈ B(H) is called G1 operator if the growth condition∥∥∥(z− A)−1
∥∥∥ =

1
dist(z, σ(A))

holds for all z not in the spectrum σ(A) of A. Here dist(z, σ(A)) denotes the distance between z and σ(A). It
is known that hyponormal (in particular, normal) operators are G1 operators [4].

Let A, B ∈ B(H) and let f be a function which is analytic on an open neighborhood Ω of σ(A) in the
complex plane. Then f (A) denotes the operator defined on H by f (A) = 1

2πi
∫
C

f (z)(z − A)−1dz, called the

Riesz-Dunford integral, where C is a positively oriented simple closed rectifiable contour surrounding σ(A)

in Ω (see [2] and the references therein). The spectral mapping theorem asserts that σ( f (A)) = f (σ(A)).
Throughout this paper, D = {z ∈ C : |z| < 1} denotes the unit disk, ∂D stands for the boundary of D and dA =

dist(∂D, σ(A)). In addition, we adopt the notation H = { f : D→ C : f is analytic,<( f ) > 0 and f (0) = 1}.
In this work, we present some upper bounds for ||| f (A)Xg(B)± X|||, where A, B are G1 operators, ||| · |||

is a unitarily invariant norm and f , g ∈ H. Further, we find some new upper bounds for the the Schatten
2-norm of f (A)X ± Xg(B). Up-to this juncture, we find some upper estimates for ||| f (A)Xg(B) + X||| in
terms of ||| |AXB|+ |X| ||| and ||| f (A)Xg(B)− X||| in terms of ||| |AX|+ |XB| |||, where A, B are G1 operators
and f , g ∈ H.

Proposition 1. If A, B ∈ B(H) are G1 operators with σ(A) ∪ σ(B) ⊂ D and f , g ∈ H, then for every X ∈ B(H) and
for every unitarily invariant norm |||·|||, the inequality ||| f (A)Xg(B) + X||| ≤ 2

√
2

dAdB
||| |AXB|+ |X| ||| holds.

Proof. From the Herglotz representation Theorem [1], it follows that f ∈ H can be represented as
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f (z) =
2π∫
0

eiα + z
eiα − z

dµ(α) + i= f (0) =
2π∫
0

eiα + z
eiα − z

dµ(α), (2)

where µ is a positive Borel measure on the interval [0, 2π] with finite total mass
2π∫
0

dµ(α) = f (0) = 1. Similarly

g(z) =
2π∫
0

eiα+z
eiα−z dν(α) for some positive Borel measure ν on the interval [0, 2π] with finite total mass 1. We have

f (A)Xg(B) + X =

2π∫
0

2π∫
0

[(
eiα − A

)−1 (
eiα + A

)
X
(

eiβ + B
) (

eiβ − B
)−1

+ X
]

dµ(α)dν(β).

By some computation, we have

||| f (A)Xg(B) + X||| ≤
2π∫
0

2π∫
0

2
∥∥∥∥(eiα − A

)−1
∥∥∥∥ ∣∣∣∣∣∣∣∣∣AXB + eiαXeiβ

∣∣∣∣∣∣∣∣∣ ∥∥∥∥(eiα − B
)−1

∥∥∥∥ dµ(α)dν(β).

Since A and B are G1 operators, we deduce that∣∣∣∣∣∣∣∣(eiα − A
)−1

∣∣∣∣∣∣∣∣ = 1
dist(eiα, σ(A))

≤ 1
dist(∂D, σ(A))

=
1

dA
, (3)

and similarly
∣∣∣∣∣∣(eiβ − B

)−1
∣∣∣∣∣∣ ≤ 1

dB
. Now, for every positive operators C, D, every non-negative operator

monotone function h(t) on [0, ∞) and every unitarily invariant norm ||| · |||, we have |||h(A + B)||| ≤
|||h(A) + h(B)|||. Now, from the Ky Fan dominance theorem, we infer that∣∣∣∣∣∣∣∣∣AXB + eiαXeiβ

∣∣∣∣∣∣∣∣∣ ≤ √2 ||| |AXB|+ |X| ||| . (4)

Therefore, it follows from inequality (3) and Equation (4) that

||| f (A)Xg(B) + X||| ≤ 2
√

2
dAdB

||| |AXB|+ |X| ||| ,

which completes the proof.

Theorem 1. Let f , g ∈ H and A ∈ B(H) be a G1 operator with σ(A) ⊂ D. The inequality ||| f (A)Xg(A∗) + X||| ≤
2

d2
A
||| A|X|A∗ + |X| ||| holds for every normal operator X ∈ B(H) commuting with A and for every unitarily invariant

norm |||·|||.

Proof. Let X and AXB be normal. Since |||C + D||| ≤ ||| |C| + |D| ||| for any normal operators C and D,
the constant

√
2 can be reduced to 1 in Equation (4). Now from Fuglede–Putnam theorem, if A ∈ B(H) is an

operator, X ∈ (B)((H)) is normal and AX = XA, then AX∗ = X∗A. Thus if X is a normal operator commuting
with a G1 operator A, then AXA∗ is normal, |AXA∗| = A|X|A∗ and A∗ is a G1 operator with dA∗ = dA. By
Proposition 1 the proof is complete.

Next, letting A = B in Proposition 1, we obtain the following result.

Corollary 1. Let f , g ∈ H and A ∈ B(H) be a G1 operator with σ(A) ⊂ D. Then ||| f (A)Xg(A)− X||| ≤
2
√

2
d2

A
||| |AX|+ |XA| ||| for every X ∈ B(H) and for every unitarily invariant norm |||·|||.

Setting X = I in Proposition 1 again, we obtain the following result.
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Corollary 2. Let f , g ∈ H and A, B ∈ Mn be G1 matrices such that σ(A) ∪ σ(B) ⊂ D. Then ||| f (A)g(B) + I||| ≤
2
√

2
dAdB
||| |AB|+ I ||| for every unitarily invariant norm |||·||| .

Corollary 3. If A ∈ B(H) is self-adjoint and f is a continuous complex function on σ(A), then f (UAU∗) =

U f (A)U∗ for all unitaries U.

Proof. By the Stone-Weierstrass theorem, there is a sequence (pn) of polynomials uniformly converging to f
on σ(A). Hence,

f (UAU∗) = lim
n

pn(UAU∗) = U(lim
n

pn(A))U∗ = U f (A)U∗.

We note that σ(UAU∗) = σ(A).

We conclude this section by presenting some inequalities involving the Hilbert-Schmidt norm ‖ · ‖2.

Theorem 2. Let A, B ∈ Mn be Hermitian matrices satisfying σ(A) ∪ σ(B) ⊂ D and let f , g ∈ H. Then ‖ f (A)X ±
Xg(B)‖2 ≤

∥∥∥X+|A|X
dA

+ X+X|B|
dB

∥∥∥
2

.

Proof. Let A = UD(νj)U∗ and B = VD(µk)V∗ be the spectral decomposition of A and B and let Y = U∗XV :=
[yjk]. Noting that |eiα − λj| ≥ dA and |eiβ − µk| ≥ dB, we have from [7] that

‖ f (A)X± Xg(B)‖2
2 = ∑

j,k
| f (λj)± g(µk)|2|yjk|2

≤∑
j,k

(
1 + |λj|

dA
+

1 + |µk|
dB

)2

|yjk|2

=

∥∥∥∥X + |A|X
dA

+
X + X|B|

dB

∥∥∥∥2

2
,

which completes the proof.

3. Operators in function spaces

In this section, we present some results on operator valued functions. From [5], if (Ω,M,µ) is a measure
space, for a σ-finite measure µ onM, the mapping A : Ω → B(H) will be called [µ] weakly∗-measurable if a
scalar valued function t → tr(AtY) is measurable for any Y ∈ C1(H). Moreover, if all these functions are in
Ł1(Ω, µ), then since B(H) is the dual space of C1(H), for any E ∈ M, we have the unique operator IE ∈ B(H),
called the Gel’fand or weak ∗-integral of A over E, such that

tr(IEY) =
∫

E
tr(AtY)dt for all Y ∈ C∞(H). (5)

We denote it by
∫

E Atdµ(t) or
∫

E Adµ. We consider the following important aspect.

Proposition 2. A : Ω → B(H) is [µ] if and only if scalar valued functions t → 〈At f , f 〉 are [µ] measurable (resp.
integrable) for every f ∈ H.

Proof. Every one dimensional operator f ∗ ⊗ f is in C1(H) and tr(At( f ∗ ⊗ f )) = tr( f ∗ ⊗ At f ) = 〈At f , f 〉 ,
so that [µ] weak ∗-measurability (resp. [µ] weak ∗-integrability) of A directly implies measurability (resp.
integrability) of 〈At f , f 〉 for any f ∈ H. The converse follows immediately from [4] and this completes the
proof.

We note that in view of Proposition 2, the Equation (5) of Gel’fand integral for o.v. functions can be
reformulated as follows [2]:

Proposition 3. If 〈A f , f 〉 ∈ L1(E, µ) for all f ∈ H, for some E ∈ M and a B(H)-valued function A on E, then the
mapping f →

∫
E 〈At f , f 〉 dµ(t) represents a quadratic form of bounded operator

∫
E Adm or

∫
E Atdµ(t), satisfying the

following
〈(∫

E Atdµ(t)
)

f , g
〉
=
∫

E 〈At f , g〉 dµ(t), f or all f , g ∈ H.
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Proof. It suffices to show that for all E ∈ M, ΦE( f , g) =
∫

E 〈At f , g〉 dµ(t), for all f , g ∈ H, defines a bounded
sesquilinear functional Φ on H. Indeed, by [1], we have |ΦE( f , g)| ≤

∫
E | 〈At f , g〉 | dµ(t) ≤ ‖At f , g‖L1 ≤

M‖ f ‖‖g‖ for all f , g ∈ H since integration is a contractive functional on Ł1(Ω, µ). This completes the
proof.

Remark 2. It is known from [1] that for a [µ] A : Ω → B(H) we have that A∗A is Gel’fand integrable if and
only if

∫
Ω ‖At f ‖2dµ(t) < ∞, for all f ∈ H. Moreover, for a [µ] function A : Ω → B(H). Let us consider a

linear transformation ~A : D~A → L2(Ω, µ,H), with the domain D~A = { f ∈ H |
∫

Ω ‖At f ‖2dµ(t) < ∞}, defined
by (~A f )(t) = At f . and all f ∈ D~A.

In the next section, we devote our efforts to results on inner product type integral transformers in terms
of Landau, Cauchy-Schwarz and Grüss type norm inequalities.

4. Norm inequalities

In this section, we consider various types of norm inequalities for inner product type integral transformers
discussed in [1,2,4,7]. From [1], a sufficient condition is provided when A∗ and B from Definition 2 are both
in L2

G(Ω, dµ,B(H)). If each of families (At)t∈Ω and (Bt)t∈Ω consists of commuting normal operators, then by
Theorem 3.2 [1], the i.p.t.i transformer

∫
Ω At ⊗ Btdµ(t) leaves every u.i. norm ideal C|‖·|‖(H) invariant and the

following Cauchy-Schwarz inequality holds:∣∣∣∣∥∥∥∥∫Ω
AtXBtdµ(t)

∣∣∣∣∥∥∥∥ ≤ ∣∣∣∣∥∥∥∥√∫Ω
A∗t Atdµ(t)

√∫
Ω

B∗t Btdµ(t)
∣∣∣∣∥∥∥∥ , (6)

for all X ∈ C|‖·|‖(H). Normality and commutativity condition can be dropped for Schatten p-norms as shown
in Theorem 3.3 [1]. In Theorem 3.1 [2], a formula for the exact norm of the i.p.t.i transformer

∫
Ω At ⊗ Btdµ(t)

acting on C2(H) is found. In Theorem 2.1 [2], the exact norm of the i.p.t.i transformer
∫

Ω A∗t ⊗ Atdµ(t) is given
for two specific cases: ∥∥∥∥∫Ω

A∗t ⊗ Atdµ(t)
∥∥∥∥

B(H)→CΦ(H)
=

∥∥∥∥∫Ω
A∗t Atdµ(t)

∥∥∥∥
CΦ(H)

, (7)

∥∥∥∥∫Ω
A∗t ⊗ Atdµ(t)

∥∥∥∥
CΦ(H)→C1(H)

=

∥∥∥∥∫Ω
At A∗t dµ(t)

∥∥∥∥
CΦ∗ (H)

,

where Φ∗ stands for a s.g. function related to the dual space (CΦ(H))∗. The norm appearing in (7) and its
associated space L2

G(Ω, dµ,B(H), CΦ(H)) present only a special case of norming a field A = (At)t∈Ω. A much
wider class of norms ‖ · ‖Φ,Ψ and their associated spaces L2

G(Ω, dµ,B(H), CΦ(H)) are given by [2]:

‖A‖Φ,Ψ =

∥∥∥∥∫Ω
A∗t ⊗ Atdµ(t)

∥∥∥∥ 1
2

B(CΦ(H),CΨ(H))
(8)

for an arbitrary pair of s.g. functions Φ and Ψ. For the proof of completeness of the space
L2

G(Ω, dµ, CΦ(H), CΨ(H)), see Theorem 2.2 [2]. Before going into the details of this section lets consider the
following Proposition which will be useful in the sequel [7]. We give its proof for completion.

Proposition 4. Let µ be a probability measure on Ω, then for every field (At)t∈Ω in L2(Ω, µ,B(H)), for all B ∈ B(H),
for all unitarily invariant norms |‖ · |‖ and for all θ > 0,

∫
Ω
|At − B|2 dµ(t) =

∫
Ω

∣∣∣∣At −
∫

Ω
Atdµ(t)

∣∣∣∣2 dµ(t) +
∣∣∣∣∫Ω

Atdµ(t)− B
∣∣∣∣2 (9)

≥
∫

Ω

∣∣∣∣At −
∫

Ω
Atdµ(t)

∣∣∣∣2 dµ(t) =
∫

Ω
|At|2dµ(t)−

∣∣∣∣∫Ω
Atdµ(t)

∣∣∣∣2 , (10)
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min
B∈B(H)

∣∣∣∣∣
∥∥∥∥∥
∣∣∣∣∫Ω
|At − B|2 dµ(t)|

∣∣∣∣θ
∣∣∣∣∣
∥∥∥∥∥ =

∣∣∣∣∣∣
∥∥∥∥∥∥
∣∣∣∣∣
∫

Ω

∣∣∣∣At −
∫

Ω
Atdµ(t)

∣∣∣∣2 dµ(t)

∣∣∣∣∣
θ
∥∥∥∥∥∥
∣∣∣∣∣∣ (11)

=

∣∣∣∣∣
∫

Ω
|At|2dµ(t)−

∣∣∣∣∫Ω
Atdµ(t)

∣∣∣∣2 ‖|θ |
∥∥∥∥∥ . (12)

Thus, the considered minimum is always obtained for B =
∫

Ω Atdµ(t).

Proof. The expression (9) is trivial and the inequality (10) follows from (9), while identity (10) is just a a special
case of Lemma 2.1 [1] applied for k = 1 and δ1 = Ω.

As 0 ≤ A ≤ B for A, B ∈ C∞(H) implies sθ
n(A) ≤ sθ

n(B) for all n ∈ N, as well as |‖Aθ |‖ ≤ |‖Bθ |‖, then
(12) follows.

Recall that, for a pair of random real variables (Y, Z), its coefficient of correlation

ρY,Z =
|E(YZ)− E(Y)E(Z)|

σ(Y)σ(Z)
=

|E(YZ)− E(Y)E(Z)|√
E(Y2)− E2(Y)

√
E(Z2)− E2(Z)

always satisfies |ρY,Z| ≤ 1. For square integrable functions f and g on [0, 1] and D( f , g) =
∫ 1

0 f (t)g(t) dt −∫ 1
0 f (t) dt

∫ 1
0 g(t) dt. Landau proved that |D( f , g)| ≤

√
D( f , f )D(g, g).

The following result represents a generalization of Landau inequality in u.i. norm ideals [2] for Gel’fand
integrals of o.v. functions with relative simplicity of its formulation.

Theorem 3. If µ is a probability measure on Ω. Let both fields (At)t∈Ω and (Bt)t∈Ω be in L2(Ω, µ,B(H)) consisting
of commuting normal operators and consider√ ∫

Ω
|At|2 −

∣∣∣∣∫Ω
Atdµ(t)

∣∣∣∣2X

√ ∫
Ω
|Bt|2dµ(t)−

∣∣∣∣∫Ω
Btdµ(t)

∣∣∣∣2,

for some X ∈ B(H). Then ∫
Ω

AtXBtdµ(t)−
∫

Ω
AtdtX

∫
Ω

Btdµ(t) ∈ C|‖.|‖(H).

Proof. First, we have the following Korkine type identity for i.p.t.i transformers∫
Ω

AtX Btdµ(t)−
∫

Ω
Atdµ(t)X

∫
Ω

Btdµ(t) =
∫

Ω
dµ(s)

∫
Ω

AtXBtdµ(t)−
∫

Ω

∫
Ω

AtXBs dµ(s)dµ(t)

=
1
2

∫
Ω2

(As − At)X(Bs − Bt)d(µ× µ)(s, t). (13)

In this representation, we have (As− At)(s,t)∈Ω2 and (Bs− Bt)(s,t)∈Ω2 to be in L2(Ω2, µ× µ,B(H)) because
by an application of the identity (13),

1
2

∫
Ω2
|As − At|2 d(µ× µ)(s, t) =

∫
Ω
|At|2dµ(t)−

∣∣∣∣∫Ω
Atdµ(t)

∣∣∣∣2 =
∫

Ω

∣∣∣∣At −
∫

Ω
Atdµ(t)

∣∣∣∣2 dµ(t) ∈ B(H). (14)

Both families (As − At)(s,t)∈Ω2 and (Bs − Bt)(s,t)∈Ω2 consist of commuting normal operators and by
Theorem 3.2 [1]

1
2

∫
Ω2

(As − At)X(Bs − Bt)d(µ× µ)(s, t) ∈ C|‖·||‖(H)

due to identity (14), and so the conclusion (13) follows.

Lemma 2. Let µ (resp. ν) be a probability measure on Ω (resp. 0). Further, let both families {As, Ct}(s,t)∈Ω×0 and
{Bs, Dt}(s,t)∈Ω×0 consist of commuting normal operators and let
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√ ∫
Ω |As|2dµ(s)

∫
0
|Ct|2dν(t)−

∣∣∫
Ω Asdµ(s)

∫
0

Ctdν(t)
∣∣2X
√ ∫

Ω |Bs|2dµ(s)
∫
0
|Dt|2dν(t)−

∣∣∫
Ω Bsdµ(s)

∫
0

Dtdν(t)
∣∣2

be in C|‖·||‖(H) for some X ∈ B(H). Then∫
Ω

∫
0

AsCtXBsDt dµ(s) dν(t)−
∫

Ω
As dµ(s)

∫
0

Ct dν(t)X
∫

Ω
Bs dµ(s)

∫
0

Dt dν(t) ∈ C|‖·||‖(H).

Proof. Apply Theorem 3 to the probability measure µ × ν on Ω × 0 and families (AsCt)(s,t)∈Ω×0 and
(BsDt)(s,t)∈Ω×0 of normal commuting operators in L2

G(Ω×0, dµ× ν,B(H)). The rest follows trivially.

Next, we consider Landau type inequality for i.p.t.i transformers in Schatten ideals for the Schatten
p-norms.

Proposition 5. Let µ be a probability measure on Ω and (At)t∈Ω and (Bt)t∈Ω be µ-weak∗ measurable families of
bounded Hilbert space operators such that

∫
Ω

(
‖At f ‖2 + ‖A∗t f ‖2 + ‖Bt f ‖2 + ‖B∗t f ‖2) dµ(t) < ∞ for all f ∈ H and

let p, q, r ≥ 1 such that
1
p
=

1
2q

+
1
2r

. Then for all X ∈ Cp(H),

∥∥∥∥∫Ω
AtXBtdµ(t)−

∫
Ω

Atdµ(t)X
∫

Ω
Btdµ(t)

∥∥∥∥
p

6

∥∥∥∥∥∥∥∥∥
∫

Ω

∣∣∣∣∣∣∣
(∫

Ω

∣∣∣∣A∗t − ∫Ω
A∗t dµ(t)

∣∣∣∣2 dµ(t)

) q−1
2 (

At −
∫

Ω
Atdµ(t)

)∣∣∣∣∣∣∣
2

dµ(t)


1
2q
∥∥∥∥∥∥∥∥∥

X

∥∥∥∥∥∥∥∥
∫

Ω

∣∣∣∣∣∣
(∫

Ω

∣∣∣∣Bt −
∫

Ω
Btdµ(t)

∣∣∣∣2 dµ(t)

) r−1
2 (

B∗t −
∫

Ω
B∗t dµ(t)

)∣∣∣∣∣∣
2

dµ(t)


1
2r
∥∥∥∥∥∥∥∥

p

. (15)

Proof. According to identity (14), applying Theorem 3.3 [1] to families (As −At)(s,t)∈Ω2 and (Bs −Bt)(s,t)∈Ω2

gives

∥∥∥∥∫Ω
AtXBtdµ(t)−

∫
Ω
Atdµ(t)X

∫
Ω
Btdµ(t)

∥∥∥∥
p
=

∥∥∥∥1
2

∫
Ω2

(As − At)X(Bs − Bt)d(µ× µ)(s, t)
∥∥∥∥

p

≤

∥∥∥∥∥∥
(

1
2

∫
Ω2

(A∗s −A∗t )
(

1
2

∫
Ω2
|A∗s −A∗t |2(µ× µ)(s, t)

)q−1
(As −At)d(µ× µ)(s, t)

) 1
2q
∥∥∥∥∥∥

×
∥∥∥∥∥
(

1
2

∫
Ω2

(Bs −Bt)
(1

2

∫
Ω2
|Bs −Bt|2(µ× µ)(s, t)

)r−1
(B∗s −B∗t )d(µ× µ)(s, t)

) 1
2r
∥∥∥∥∥

p

. (16)

By applying identity (14) once again, the last expression in (16) becomes

∥∥∥∥(1
2

∫
Ω2

(As −At)
∗
(∫

Ω

∣∣∣∣A∗t − ∫Ω
A∗t dµ(t)

∣∣∣∣2 dµ(t)

)q−1

(As −At)d(µ× µ)(s, t)
) 1

2q

(
1
2

∫
Ω2

(Bs −Bt)
(∫

Ω

∣∣∣∣Bs −
∫

Ω
Btdµ(t)

∣∣∣∣2 dµ(s)
)r−1

(Bs −Bt)
∗d(µ× µ)(s, t)

) 1
2r
∥∥∥∥

p
.
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Denoting
(∫

Ω

∣∣A∗s − ∫ΩA
∗dµ

∣∣2 dµ(s)
) p−1

2
(resp.

(∫
Ω

∣∣Bs −
∫

Ω Bdµ
∣∣2 dµ(s)

) r−1
2

) by Y (resp. Z), then the
expression (16) becomes

∥∥∥∥(1
2

∫
Ω2
|YAs −YAt|2 d(µ× µ)(s, t)

) 1
2q

.
(

1
2

∫
Ω2
|ZB∗s − ZB∗t |

2 d(µ× µ)(s, t)
) 1

2r
∥∥∥∥

p
. (17)

Again applying identity (14) to families (YAt)t∈Ω and (ZB∗t )t∈Ω, (17) becomes∥∥∥∥∥∥
(∫

Ω

∣∣∣∣YAt −
∫

Ω
YAtdµ(t)

∣∣∣∣2 dµ(t)

) 1
2q

.

(∫
Ω

∣∣∣∣ZB∗t − ∫Ω
ZB∗t dµ(t)

∣∣∣∣2 dµ(t)

) 1
2r
∥∥∥∥∥∥

p

,

which obviously equals to the righthand side of (15).

The next result [1] is a special case of an abstract Hölder inequality presented in Theorem 3.1.(e) [1] for
Cauchy-Schwarz inequality for o.v. functions in u.i. norm ideals.

Proposition 6. Let µ be a measure on Ω. Further, let (At)t∈Ω and (Bt)t∈Ω be µ-weak∗ measurable in B(H) such that
|
∫

Ω |At|2dµ(t)|θ and |
∫

Ω |Bt|2dµ(t)|θ are in C‖|.|‖H for some θ > 0 and for u.i. norm. Then we have

‖||
∫

Ω
A∗t Btdµ(t)‖||θ‖|| ≤ ‖||

∫
Ω

A∗t Atdµ(t)‖||θ‖||
1
2 ‖||

∫
Ω

B∗t Btdµ(t)‖||θ‖||
1
2 .

Proof. Take Φ to be a s.g. function that generates u.i. norm ‖| · ‖|, Φ1 = Φ, Φ2 = Φ3 = Φ(2) (2-reconvexization
of Φ), α = 2θ and X = I, and then apply Theorem 3.1 [1], we get our desired result.

Now, we give another generalization of Landau inequality for Gel’fand integrals of o.v. functions in u.i.
norm ideals.

Theorem 4. If µ is a probability measure on Ω, θ > 0 and (At)t∈Ω and (Bt)t∈Ω are as in Proposition 6, µ-weak∗

measurable families of bounded Hilbert space operators such that ‖||
∫

Ω |At|2dµ(t)‖||θ and ‖||
∫

Ω |Bt|2dµ(t)‖||θ are in
C‖|.|‖H for some θ > 0 and for some u.i. norm ‖| · ‖| we have

∥∥∥∥∣∣∣∣∫Ω
A∗t Btdµ(t)−

∫
Ω

A∗t dµ(t)
∫

Ω
Btdµ(t)‖||θ

∥∥∥∥∣∣∣∣2
≤ ‖|

∫
Ω
‖||At‖||2dµ(t)− ‖||

∫
Ω

Atdµ(t)‖||2‖||θ‖||‖||
∫

Ω
‖||Bt‖||2dµ(t)− ‖||

∫
Ω

Btdµ(t)‖||2‖||θ‖|.

Proof. It suffices to invoke Proposition 6 to o.v. families (As− At)(s,t)∈Ω2 and (Bs− Bt)(s,t)∈Ω2 and use identity
[7] to proof this result.

Now, we consider some interesting quantities that relate to norm inequalities. For bounded set of
operators A = (At)t∈Ω, we see that the radius of the smallest disk that essentially contains its range is

r∞(A) = inf
A∈B(H)

ess sup
t∈Ω
‖At − A‖ = inf

A∈B(H)
‖At − A‖∞ = min

A∈B(H)
‖At − A‖∞.

From the triangle inequality, we have
∣∣‖At − A′‖ − ‖At − A‖

∣∣ ≤ ‖A′ − A‖, so the mapping A →
ess supt∈Ω ‖At − A‖ is nonnegative and continuous on B(H). Since (At)t∈Ω is bounded field of operators,
we also have ‖At − A‖ → ∞ when ‖A‖ → ∞, so this mapping attains minimum [5], and it actually attains
at some A0 ∈ B(H), which represents a center of the disk considered [6]. Any such field of operators is of
finite diameter, therefore, we have that r∞(A) = ess sups,t∈Ω ‖As − At‖, with the simple inequalities given as
r∞(A) ≤ diam∞(A) ≤ 2r∞(A) relating those quantities. For such fields of operators we can now state the
following stronger version of Grüss inequality [2].
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Lemma 3. Let µ be a σ-finite measure on Ω and let A = (At)t∈Ω and B = (Bt)t∈Ω be [µ] a.e. bounded fields
of operators. Then, for all X ∈ C|‖.|‖(H), supµ(δ)>0 ‖|

1
µ(δ)

∫
δAtXBtdµ(t)− 1

µ(δ)

∫
δAtdµ(t) X 1

µ(δ)

∫
δ Btdµ(t)|‖ ≤

mini Pi · ‖|X‖|. (Here sup is taken over all measurable sets δ ⊆ Ω such that 0 < µ(δ) < ∞).

Lemma 3 has the following immediate implication when (At)t∈Ω and (Bt)t∈Ω are bounded fields of
self-adjoint operators.

Theorem 5. If µ is a probability measure on Ω and C, D, E, F be bounded self-adjoint operators. Also, let (At)t∈Ω
and (Bt)t∈Ω be bounded self-adjoint fields satisfying C ≤ At ≤ D and E ≤ Bt ≤ F for all t ∈ Ω. Then for all
X ∈ C|‖.|‖(H), we have∥∥∥∥∣∣∣∣∫Ω

AtXBtdµ(t)−
∫

Ω
Atdµ(t) X

∫
Ω
Btdµ(t)

∣∣∣∣∥∥∥∥ ≤ ‖D− C‖ · ‖F− E‖
4

· ‖|X|‖. (18)

Proof. As C−D
2 ≤ At − C+D

2 ≤ D−C
2 for every t ∈ Ω, then

ess sup
t∈Ω
‖At −

C + D
2
‖ = ess sup

t∈Ω
sup
‖ f ‖=1

‖|〈At −
C + D

2
‖ f , f 〉| ≤ sup

‖ f ‖=1
|〈D− C

2
f , f 〉| = ‖D− C‖

2
,

which implies r∞(A) ≤ ‖D−C‖
2 , and similarly r∞(B) ≤ ‖F−E‖

2 . Thus (18) follows directly.

In case of H = C and µ being the normalized Lebesgue measure on [a, b] (i.e. d µ(t) = dt
b−a ), then (1)

follows from Theorem 5. This special case also confirms the sharpness of the constant 1
4 in the inequality (18).

Lastly, we consider, the Grüss type inequality for elementary operators in the example below.

Example 1. Let A1, . . . , An, B1, . . . , Bn, C, D, E and F be bounded linear self-adjoint operators acting on a
Hilbert space H such that C ≤ Ai ≤ D and E ≤ Bi ≤ F for all i = 1, 2, · · · , n, then for arbitrary X ∈ C‖|.|‖H,
we have

‖| 1
n

n

∑
i=1

AiXBi −
1
n2

n

∑
i=1

Ai X
n

∑
i=1

Bi‖| ≤
‖D− C‖‖F− E‖

4
‖|X‖|.

Indeed, it is sufficient to prove that the elementary operator is normally represented and that Grüss type
inequality holds for it [3].

In the next section, we dedicate our effort to the applications of this study in other fields. We consider
quantum theory in particular, whereby, we describe the application in quantum chemistry and quantum
mechanics.

5. Applications in quantum theory

Norm inequalities and other properties of i.p.t.i transformers have various applications in other fields.
We discuss the applications in quantum theory involving two cases [3]. The first case is in quantum chemistry,
whereby, we consider the Hamiltonian which is a bounded, self-adjoint operator on some infinite-dimensional
Hilbert space which governs a quantum chemical system. The Hamiltonian helps in estimation of ground state
energies of chemical systems via subsystems.

The quantum mechanics deals with commutator approximation. The discussions of approximation by
commutators AX−XA or by generalized commutator AX−XB originates from quantum theory. For instance,
the Heisenberg uncertainly principle may be mathematically deduced as saying that there exists a pair A, X
of linear operators and a non-zero scalar α for which AX − XA = αI. A natural question immediately arises:
How close can AX − XA be to the identity? In [3], it is discussed that if A is normal, then, for all X ∈ B(H),
||I − (AX− XA)|| ≥ ||I||. In the inequality here, the zero commutator is a commutator approximate in B(H).
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