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Abstract
Online optimization is critical for realizing the design performance of accelerators. Highly efficient
stochastic optimization algorithms are needed for many online accelerator optimization problems
in order to find the global optimum in the non-linear, coupled parameter space. In this study, we
propose to use the multi-generation Gaussian process optimizer for online accelerator
optimization and demonstrate that the algorithm is significantly more efficient than other
stochastic algorithms that are commonly used in the accelerator community.

1. Introduction

Automated online optimization of accelerators has become increasingly more important in recent years as
new machines continue to push the limit in performance and in turn, the operation challenges. For example,
the diffraction limited storage rings built on multi-bend achromat lattices reduce the emittance by a factor of
10–100 from the level of third generation storage rings of the same size. In the mean time, the new rings
become very challenging in non-linear beam dynamics as more and stronger sextupole magnets are
employed in the lattices to correct the chromatic aberrations. Because of the many error sources in the lattice,
the non-linear beam dynamics performance of a storage ring, namely, the dynamic aperture and the local
momentum aperture, can be significantly different from that of the design. Online optimization is an
effective method to restore the performance of the machine [1–4].

In another example, the photon power of a free electron laser depends strongly on the transverse profile
of the electron beam in the undulators. Quadrupole magnets are used to adjust the transverse optics in the
transport line before the undulator section to match the beam profile to the ideal setting that maximizes the
photon beam power. However, since both the initial distribution of the electron beam and the ideal setting
are not precisely known, in practice, the quadrupole set points are found by online optimization [5].

In online optimization, control knobs, such as the set points of magnet power supplies, are varied to
optimize an objective function, which is a measure of the machine performance. Online optimization for
complex problems with multiple variables requires advanced algorithms that are suitable for online
applications. Traditional optimization algorithms, could be sensitive to the inevitable measurement noise in
the objective function. The robust conjugate direction search (RCDS) method was developed for online
optimization of noisy functions and has been successfully applied to many accelerators [1–4, 6–11]. More
recently, a robust simplex (RSimplex) algorithm was also proposed for online optimization [12]. However,
the RCDS and RSimplex algorithms are local optimizers, which seek local optimum in the vicinity of the
starting point and can be attracted to and trapped by one on its convergence path.

In many applications, there can be potentially multiple local minima in the complex parameter space,
while it is critical to find the global optimum. Stochastic optimization algorithms are often used to locate the
global optimum in such cases as they employ stochastic operations that search the parameter space more
completely and enable them to break out from local minima. There are also many cases where it is desirable
to optimize multiple objective functions simultaneously. Two multi-objective stochastic optimization
algorithms, non-dominated sorting genetic algorithm II (NSGA-II) [13] and multi-objective particle swarm
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optimization [14], are commonly used in the accelerator community for design optimizations [15–17],
including optimization of dynamic aperture and local momentum aperture in simulations. They have also
found use in online optimization of single objective problems, for example, in reference [10, 18] for NSGA-II
and in reference [1, 19] for particle swarm optimization (PSO), respectively.

However, stochastic optimization algorithms are usually inefficient. It takes many evaluations of the
objective functions to converge to the global optimum. This is because the trial solutions proposed by the
stochastic operations are not making full use of the information in the data sampled from the parameter
space. And, in the case of NSGA-II, often many redundant solutions are tried in the vicinity of existing good
solutions, leading to a decreased efficiency and potentially causing premature convergence. Measurement
noise for the objective function further reduces the efficiency of NSGA-II as solutions biased by noise tend to
be selected to spawn new trial solutions, which defeat the working mechanism of the algorithm [20]. In the
application of minimization of the vertical emittance of a storage ring, the NSGA-II algorithm took about
20 000 evaluations to reach the optimum [18], while PSO took about 3000 evaluations [19] and RCDS took
only about 300 evaluations [20]. Therefore, efficient stochastic optimization algorithm suitable for online
applications are needed for the accelerator community.

In this study, we propose to use the multi-generation Gaussian process optimizer (MG-GPO) for online
optimization of problems with complex parameter spaces and demonstrate its application in both simulated
and real-life experiments. The method is also naturally applicable to multi-objective problems. MG-GPO
was originally proposed for design optimization [21]. It uses posterior Gaussian process (GP) regression
models to filter for good trial solutions in an iterative process similar to NSGA-II or PSO. It has been
demonstrated in storage ring non-linear lattice design optimization [22].

This paper is organized as follows. Section 2 briefly describes the MG-GPO algorithm. Section 3 shows
the applications of MG-GPO to analytic and simulated problems. Section 4 presents experimental results
when the method is applied to a real accelerator. Section 5 gives the conclusion.

2. TheMG-GPO algorithm

The MG-GPO algorithm leverages the observed data points (from the evaluations of the objective function)
to guide the evolution direction of the stochastic operations [21]. It utilizes the observed data to build a GP
model that approximate the objective function. In each generation, MG-GPO makes use of the stochastic
operations such as flocking [14], crossover, and mutation [13] to generate a large number of trial solutions,
usually tens of times larger than the original population size. It then uses the GP model to filter out a fixed
number of trial solutions with the highest potential, which are to be evaluated on the actual system.
MG-GPO is capable of seeking the global optima due to its stochastic nature while achieving a high efficiency
as it makes full use of the information contained in the measured data.

The MG-GPO was originally designed for design optimization. Small modifications are made to its
implementation in the present study for online applications.

2.1. Algorithm architecture
A schematic of the MG-GPO algorithm is shown in figure 1. The algorithm includes two parts: the initializer
and the evolution loop. The initializer generates the initial population by the latin hypercube sampling [23]
method or by the simple random sampling. The generated population enter the evolution loop to spawn
the trial solutions by performing flocking [14], simulated binary crossover (SBX) [24] and polynomial
mutation (PLM) [25] operations. During this process, the population size could be multiplied by 10–40
times.

At the same time, the population of the previous generation are used to build a GP model, which is
optimized to give the prediction values and uncertainties of the trial solutions. An acquisition function called
lower confidence bound (LCB) is then applied to the trial solutions to assign each one a score per objective.
The non-dominated sorting is employed to select the best scored trial solutions. After the selection, the
population size is reduced back to the original, and the selected ones will be evaluated by the online system to
form the next generation. The loop repeats until meeting the termination condition.

2.2. Evolutionary operations
Several stochastic evolutionary operations are built into the MG-GPO algorithm, which introduce
randomness to the behavior of the algorithm and make the algorithm more robust to the noisy and
potentially non-convex online optimization problems. The flocking operation is borrowed from the PSO
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Figure 1.MG-GPO architecture. The green cylinders denote the previous generation, the yellow cylinders denote the next
generation, the shaded area highlights the evolution loop, the blue/red cubes denote the operators, and the gray cylinders stand
for the intermediate variables/states within one loop.

algorithm. Flocking in PSO has five hyperparameters in total: the three coefficients ω, c1, c2 are set to 0.4, 1
and 1 accordingly [17], and the amplitudes r1, r2 are random values between 0 and 3 in MG-GPO. The SBX
and PLM operations that applied in NSGA-II are also imported in MG-GPO. The control parameter η in
SBX and PLM is set to 20.

The stochastic operations are used to amplify the population as visualized in figure 1. A possible
amplifying strategy is as follows: for an original population size of N0 and the amplification factors for
flocking, crossover, and mutation set to ηf , ηc, and ηm, respectively, the new solutions generated with the
three types of operations will be ηfN0, ηcN0, and ηmN0, respectively, which makes the total amplification
factor ηf + ηc + ηm. The purpose of the amplifying process is to explore the search space more thoroughly.
Comparing to the original population, the amplified population is far more diverse, while still inheriting the
genes in the parent generation.

2.3. GP regression
GP regression is a probabilistic method that gives a prediction of function values with a confidence level from
data samples. We construct the GP regression model with the history data that are collected during the
optimization. In MG-GPO, the history data is composed of the evaluated solutions from the last few
generations and the collection of the best solutions. For example, for a case with the population size N0 = 30,
data from the last five generations can be used. The number of data points used to build the GP model is
limited by the GP computation complexity.

The key component of a GP is its kernel, which describes how closely two points in the input space are
related. In this study, we choose the most widely used radial basis function (RBF) kernel:

kRBF(x,x
′) = σ2

f exp

(
−1

2
(x− x ′)TΘ−2(x− x ′)

)
. (1)

The RBF kernel has two sets of hyperparameters: the variance σ2
f and the length scales

Θ= diag(θ1,θ2, . . . ,θD), where D is the dimension of the input space. To simplify the hyperparameter
tuning, we assume the same length scale for all the input variables per objective, so that the total tunable
hyperparameters of the GP model have been reduced to 3 for a single objective problem: the length scale θ,
the variance σ2

f , and the Gaussian noise variance σ2
n which is included by default for a GP model. We

employed the log marginal likelihood metric as the criteria to tune the hyperparameters. A python package
called GPy [26] is used to auto-tune the hyperparameters, it applies special treatments for highly singular
kernel matrices to make the GP modeling process more stable.
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After a thorough hyperparameter optimization, the GP model could produce the prediction and the
confidence of the given trial solution as shown below [27]:

µ= kT∗(K+σ2
nI)

−1y, (2)

σ2 = k(x∗,x∗)− kT∗(K+σ2
nI)

−1k∗, (3)

where k∗ is the kernel vector for the trail solution, K the kernel matrix, y the objective values for the observed
solutions, k(x∗,x∗) the kernel value for the trail solution, I the identity matrix. The µ and σ2 in the equations
above are the predicted objective value and the corresponding variance, respectively, which are then
transformed to a score per objective by the adaptive acquisition strategy.

2.4. Adaptive acquisition strategy
The acquisition function we choose is the LCB function [28] given by

LCB(x) = µ(x)−κσ(x), (4)

where µ and σ are as in equations (2) and (3). The κ parameter in LCB is a balance factor, which determines
the degree of the search space exploration and exploitation. A larger κ encourages the GP to explore further
(try out the points that have larger uncertainty), and a smaller κ leads to a more conservative strategy.

Instead of using a constant κ strategy, in MG-GPO, κ is allowed to decay from generation to generation
as shown in equation (5) (with ρ < 1) [21]. With this strategy, it emphasizes exploration at the beginning to
avoid being trapped by local optima, and then gradually shifts toward exploitation in order to look for the
best solutions in a relatively small area:

κn = ρ ·κn−1. (5)

In this study, the initial balance factor is set to κ0 = 2 and the decay rate ρ= 0.9 for the adaptive acquisition
strategy to achieve the averagely best performance. This setup encourages strong exploration at the
beginning, and, by attenuating kappa with generation, emphasizes exploitation in the late stage of the
optimization.

3. Simulation

Simulation studies were conducted to test the performance of the MG-GPO algorithm in online
optimizations. An analytic function, the Rosenbrock function with a dimension of 4, and two real-life
accelerator problems were used in the tests. The first accelerator problem is to use skew quadrupoles to
minimize the vertical emittance of a storage ring by compensating the linear coupling and vertical dispersion
errors [20]. The second one is to use sextupole magnets to maximize the dynamic aperture of a storage
ring [1]. In both cases, application on the SPEAR3 storage ring is assumed.

Most hyperparameters of MG-GPO are set to the default values as mentioned in section 2.2. There are a
few tweaks to better adapt the algorithm to the test problems: we adjust the amplification factors ηf , ηc and
ηm for each test problem. For the Rosenbrock problem and the vertical emittance problem,
(ηf,ηc,ηm) = (20,10,10), while for the dynamic aperture problem, (ηf,ηc,ηm) = (2,4,4).

3.1. Minimization of Rosenbrock function
The Rosenbrock function with dimension N is defined as

f(x) =
N−1∑
i=1

[100(xi+1 − x2i )
2 +(1− xi)

2]. (6)

It is a non-convex function frequently used in testing optimization algorithms. We choose the case with
N = 4 in this test, with the parameter range of xi set to [−2, 2] for i= 1–4. The global minimum is located at
x0 =(1, 1, 1, 1), with f(x0) = 0, while a local minimum is at x1 =(−1, 1, 1, 1).

In the test, Gaussian noise with σ= 0.01 is added to the objective function. The PSO and MG-GPO
algorithms were both run for ten times, with 1020 evaluations in each run. The comparison of the median,
mean and standard deviation of the best solutions among 10 runs is shown in the left subplot of figure 2.
Clearly, MG-GPO performs better than PSO in terms of the convergence speed and the final objective values.
The MG-GPO converges to approximately zero with 600 evaluations, while PSO has not converged within
1020 evaluations.
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Figure 2. The history of the median, mean and standard deviation of the best solutions among 10 runs for the Rosenbrock
four-dimensional minimization test for MG-GPO and PSO. Left plot: Gaussian noise σ= 0.01; right plot: σ= 0.1.

Tests with a larger Gaussian noise, σ= 0.1, have also been conducted. The comparison results for two
different noise levels on the Rosenbrock test function are shown in figure 2 (right plot). The results indicate
that MG-GPO is more noise-resilient than PSO for this test case. There is no clear performance decrease for
either algorithms when the noise level is increased from 0.01 to 0.1.

3.2. Minimization of vertical emittance
In a storage ring, the vertical emittance is usually dominated by the residual vertical dispersion and linear
coupling between the horizontal and vertical planes. Both of those can be compensated by skew quadrupoles
magnets, which can be used as tuning knobs. Since the vertical projected emittance varies with location in
the ring and the SPEAR3 storage ring has diagnostics to measure the beam size at only one location, in
experiments Touschek beam lifetime is used as an indirect, global measure of the vertical emittance. The
Touschek lifetime is proportional to the vertical beam size. For a high current beam in a third generation
storage ring such as SPEAR3, Touschek scattering is the dominant beam loss mechanism. Therefore,
minimizing the vertical emittance can be achieved by maximizing the beam loss rate for a high current
beam [20].

In simulation, the vertical emittance can be calculated with the lattice model for the storage ring. It is
then used to calculate the beam loss over a period of 6 s for a beam current of 500 mA in SPEAR3, which is
converted to beam loss rate. Gaussian random noise are added to the beam currents at the beginning and the
end of the 6 s period to simulate measurement errors. It introduces noise to the beam loss rate, i.e. the
objective function. For beam current noise sigma of σI = 0.003 mA, the objective function noise sigma is
about 0.04 mA min−1.

The SPEAR3 has 13 powered skew quadrupoles that are used to correct linear coupling and vertical
dispersion. The strengths of these magnets are the decision variables of the optimization problems. In the
simulation, the strengths are specified in the normalized gradients of the magnets, each with a range
[−0.1, 0.1] m−2. Initial coupling errors are introduced to the lattice model by changing other skew
quadrupoles to reproduce the level of coupling in the machine when all 13 skew quadrupoles are turned off.
The initial coupling ratio (i.e. the ratio of vertical emittance to horizontal emittance) is 1.08%.

MG-GPO and PSO are both applied for the optimization problem. Due to noise in the objective function
and the stochastic nature of the algorithms, the convergence path is different every time. Each algorithm is
tested ten times, with 1020 evaluations in each run. Figure 3 shows the comparison of the median, mean and
standard deviation among the ten best solutions as they evolve during the 1020 evaluations. MG-GPO clearly
outperforms PSO in the convergence speed and the best objective value achieved in 1020 evaluations. The
performance variation within the 10 runs for MG-GPO is slightly larger than that of PSO in this test. The
coupling ratio of the run for which the performance ranked the fifth among all 10 MG-GPO runs is 0.039%,
while the corresponding value for PSO is 0.050%.

3.3. Optimization of dynamic aperture
A sufficiently large dynamic aperture is needed for injecting beam into a storage ring. A large dynamic
aperture is preferred in order to achieve high injection efficiency. For a low emittance storage ring, strong
sextupole magnets are used to correct chromaticities. The non-linear beam motion in the magnetic fields of
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Figure 3. The history of the median and mean of the best solutions among 10 runs for the vertical emittance minimization test for
MG-GPO and PSO. The shaded areas denote the corresponding one-sigma intervals.

Figure 4. The history of the median and mean performance of 10 runs of injection efficiency during optimization in simulation
for the MG-GPO and PSO algorithms. The shaded areas denote the corresponding one-sigma intervals.

the sextupoles limits the dynamic aperture. Magnetic field errors in the real machine can significantly
decrease the dynamic aperture from the design performance. Optimizing dynamic aperture with sextupole
magnets has been proven to be an effective remedy [1, 3, 4].

SPEAR3 storage ring has a total number of 72 sextupoles, which are powered in groups (i.e. families)
according to the symmetry configuration of the ring sextupoles. There are ten sextupole families in total.
Because it is necessary to keep the chromaticities fixed during optimization, we construct eight free knobs
using the null space of the 2-by-10 chromaticity response matrix, as was done in reference [1]. The eight
knobs are obtained with the singular value decomposition method. Each knob is a combination of the ten
sextupole families that corresponds to a pattern with a zero singular values. The knobs do not change
chromaticity to the linear order.

In simulation, the injection efficiency is evaluated by placing the injected beam represented by 1000
randomly generated particles according to the actual distribution into the horizontal phase space and
counting the particles that fall between the dynamic aperture and the septum wall. Illustrations of injection
efficiency calculation in the simulation can be found in figure 5. The dynamic aperture is obtained by particle
tracking simulation, with particles launched from 19 rays on the upper x–y plane that extend from the
origin. The average x-value of the last surviving particles on the first three rays on the negative side is used to
define the phase space ellipse that represents the acceptance. The SPEAR3 upgrade lattice with an emittance
of 6 nm is used. The separation between the stored beam and the injected beam is intentionally increased to
make injection more challenging and hence create room for improvement for the dynamic aperture.

Figure 4 shows a comparison of the negated injected efficiency for the mean, median and standard
deviation values of 10 runs for the MG-GPO and PSO algorithms. The MG-GPO algorithm clearly has faster
convergence. The PSO algorithm eventually catches up as the objective function has an upper limit near
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Figure 5. Injection diagram before (left plot) and after (right plot) DA optimization. The dark vertical line represents the septum
wall. The orange dots represents the beam that will be captured. The dark circle indicates the location of the stored beam.

Figure 6. Comparison of the history of all evaluated solutions and the best-to-date solution during the beam loss rate
optimization experiment with the MG-GPO and PSO algorithms.

(but below, as some particles are lost to the septum wall) 100% and, as the algorithms approach the limit, the
convergence slows down. MG-GPO is also slightly more stable compared to PSO. Figure 5 plots show the
injected beam in the horizontal phase space with the initial dynamic aperture or the optimized dynamic
aperture, respectively. The initial dynamic aperture is for the sextupole setting with all SF and SD sextupoles
in the standard cells set to equal values. The dynamic aperture is improved from 11.8 to 16.5 mm.

4. Experimental application of the MG-GPO algorithm

The MG-GPOmethod has been applied experimentally to the SPEAR3 storage ring to demonstrate its online
optimization capability. In the following we show its application to the vertical emittance minimization
problem and the dynamic aperture optimization problem. The problems are the same as was discussed in the
previous section in simulation.

4.1. Vertical emittance minimization
In the experimental study of vertical emittance minimization, the strengths of the same 13 skew quadrupoles
are used as tuning knobs. In this case, the strengths are changed by modifying the power supply set points of
the magnets. During the experiment, the beam current is maintained at nearly 500 mA with frequent re-fills
at a 5min interval. Since the loss rate depends on the total current, the decrease of beam current in the 5min
period has an impact, which needs to be accounted for by normalizing the loss rate with the beam current
squared [29]. The objective function is the beam loss rate normalized to a 500mA total beam current.

Figure 6 shows the evolution of the negated loss rate in the optimization runs for MG-GPO and PSO
under the same conditions. Within about 480 evaluations, the loss rate reached−1.66 mA min−1 for
MG-GPO, nearly the maximum loss rate achieved in the SPEAR3 ring in recent studies. For PSO, the
convergence speed is slower, and it only reached a loss rate of−1.48 mA min−1.

While MG-GPO requires additional computation time for the algorithm itself, such an overhead is
usually negligible in online optimization scenarios. For example, in the injection efficiency optimization
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Figure 7. Comparison of the history of all evaluated solutions and the best-to-date solution during the injection efficiency
optimization experiments with the MG-GPO and PSO algorithms, starting from the flat sextupole solution.

Figure 8. History of all evaluated solutions and the best-to-date solution during the injection efficiency second optimization
experiment with the MG-GPO algorithm, starting from the best solution of the first run.

experiment, the time to measure one data point is around 17 s. Since the measurements are sequential, it
takes about 8.5min to evaluate for one generation (30 individuals). The MG-GPO calculation in one
generation usually costs less than 8 s (with most of the time spent on GPy hyper-parameter tuning).

4.2. Dynamic aperture optimization
The optimization of dynamic aperture is done by optimizing the injection efficiency with sextupole knobs, in
a manner similar to what was done in reference [1]. Injection into the 6 nm upgrade lattice for SPEAR3 was
used in the experiments. The injection efficiency is measured by the ratio of beam current change in 10 s and
the average beam intensity of the injected beam in the same period. A long duration is needed for the
injection efficiency measurement to reduce the noise of the objective function. The power supply set points
of the same ten sextupole families are varied through eight combined knobs that do not change the
chromaticities as done in the simulated case. The range of the knobs are set such that the maximum variation
of the sextupole current is within±20 A from the initial setting when all SFs and SDs are equal, respectively
(this setting is referred to as the flat sextupole solution).

The optimization run starts with the flat sextupole solution. A matched kicker bump with the standard
bump size was used initially because the injection efficiency is poor for this solution. The first run took five
generations, at which point a substantially improvement of injection efficiency was made. A second run was
launched after the kicker bump size was reduced to 80% of the standard kicker bump and was centered
around the best solution of the first run. The PSO algorithm was run starting from the same initial condition
as the first MG-GPO run.

Figure 7 shows the history of the objective function values for the evaluated solutions and best-to-date
solutions during the first run, in comparison to the PSO run. The injection efficiency as shown can be
interpreted as the fill rate (in unit of mA min−1) normalized to a certain injector beam intensity when the
injector beam is delivered at a 2 Hz repetition rate. In the first run, the injection efficiency reached
approximately−2.9 mA min−1 with 151 evaluation numbers for MG-GPO, while PSO only reached
−2.2 mA min−1. Figure 8 shows the results for the second MG-GPO run. The injection efficiency dropped to
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Figure 9. Comparison of measured dynamic aperture for the three solutions: the initial solution, or the best solution of the first
and second runs.

a lower value initially because of the kicker bump decrease. It was then increased by the algorithm from
−0.5 mA min−1 to about−1.4 mA min−1.

Direct dynamic aperture measurement was done to characterize the performance of the optimized
solutions. In the measurement a small stored beam current is kicked out with an increasingly larger kick
strength. The beam currents (normalized by the initial value) versus kicker voltage are shown in figure 9 for
three cases: the flat sextupole solution and the best solutions from the first run and the second run,
respectively. The kick strength when the beam current drops to 50%may be used as a measure of the dynamic
aperture. The corresponding kick voltage is increased from 0.76 kV (flat sextupole) to 0.9 kV (best solution).

5. Conclusions

In this study, we proposed to use the MG-GPO for online optimization of complex parameter spaces. The
application of the method on accelerator tuning is demonstrated with two important problems, storage ring
vertical emittance minimization with skew quadrupoles and dynamic aperture with sextupoles. Simulation
and experiments both show that the algorithm can effectively improve the performance of the machine.

Acknowledgment

This work was supported by the U.S. Department of Energy, under Contract No. DE-AC02-76SF00515, and
Office of Science, Office of Basic Energy Sciences, FWP 2018-SLAC-100469 and Office of Advanced Scientific
Computing Research under FWP 2018-SLAC-100469ASCR.

Data availability statement

The data that support the findings of this study are available upon reasonable request from the authors.

ORCID iDs

Zhe Zhang https://orcid.org/0000-0002-8143-0381
Minghao Song https://orcid.org/0000-0002-7055-0660
Xiaobiao Huang https://orcid.org/0000-0002-8195-9277

References

[1] Huang X and Safranek J 2015 Phys. Rev. ST Accel. Beams 18 084001
[2] Liuzzo S, Carmignani N, Farvacque L, Nash B P T, Raimondi P, Versteegen R and White S M 2016 RCDS optimizations for the

ESRF storage ring Proc. IPAC2016 (Busan, Korea) pp 3420–2

9

https://orcid.org/0000-0002-8143-0381
https://orcid.org/0000-0002-8143-0381
https://orcid.org/0000-0002-7055-0660
https://orcid.org/0000-0002-7055-0660
https://orcid.org/0000-0002-8195-9277
https://orcid.org/0000-0002-8195-9277
https://doi.org/10.1103/PhysRevSTAB.18.084001
https://doi.org/10.1103/PhysRevSTAB.18.084001


Mach. Learn.: Sci. Technol. 2 (2021) 015014 Z Zhang et al

[3] Olsson D K 2018 Online optimisation of the MAX-IV 3 GeV ring dynamic aperture Proc. IPAC2018 (Vancouver, BC, Canada)
pp 2281–3

[4] Yang X, Ganetis G, Hidaka Y, Shaftan T, Smaluk V, Wang G, Yu L H and Zuhoski P 2019 Online optimization of Nsls-II dynamic
aperture and injection transient Proc. IPAC2019 (Melbourne, Australia)

[5] Duris J et al 2020 Phys. Rev. Lett. 124 124801
[6] Martin I, Apollonio M and Bartolini R 2016 Online suppression of the sextupole resonance driving terms in the diamond storage

ring Proc. IPAC2016 (Busan, Korea) pp 3381–3
[7] Pulampong T, Klysubun P, Kongtawong S, Krainara S and Sudmuang S 2017 Online optimization applications at SPS Proc.

IPAC2017 (Copenhagen, Denmark) pp 4086–8
[8] Zhou G, Jiao Y, Xu G, Wu J and Zhang T 2016 Power improvement of free-electron laser using transverse-gradient undulator with

external focusing Proc. IPAC2016 (Busan, Korea) pp 761–2
[9] Wu J et al 2017 Recent on-line taper optimization on LCLS Proc. FEL’2017 (Santa Fe, NM, US) pp 229–34
[10] Bergan W F, Bazarov I V, Duncan C J R, Liarte D B, Rubin D L and Sethna J P 2019 Phys. Rev. Accel. Beams 22 054601
[11] Yang X et al 2019 Sci. Rep. 9 5115
[12] Huang X 2018 Phys. Rev. Accel. Beams 21 104601
[13] Deb K, Pratap A, Agarwal S and Meyarivan T 2002 Trans. Evol. Comp 6 182–97
[14] Kennedy J and Eberhart R 1995 Particle swarm optimization Proc. ICNN’95 - Int. Conf. on Neural Networks vol 4 pp 1942–8
[15] Bazarov I V and Sinclair C K 2005 Phys. Rev. ST Accel. Beams 8 034202
[16] Borland M, Sajaev V, Emery L and Xiao A 2009 Direct methods of optimization of storage ring dynamic and momentum aperture

Proc. PAC’09 pp 3850–2
[17] Huang X and Safranek J 2014 Nucl. Instrum. Methods Phys. Res. A 757 48–53
[18] Tian K, Safranek J and Yan Y 2014 Phys. Rev. ST Accel. Beams 17 020703
[19] Huang X 2016 Development and application of online optimization algorithms Proc. NAPAC2016 (Chicago, IL) pp 1287–91
[20] Huang X, Corbett J, Safranek J and Wu J 2013 Nucl. Instrum. Methods Phys. Res. A 726 77–83
[21] Huang X 2019 Multi-objective multi-generation Gaussian process optimizer for design optimization (arXiv: 1907.00250)
[22] Song M, Huang X, Spentzouris L and Zhang Z 2020 Nucl. Instrum. Methods Phys. Res. A 976 164273
[23] McKay M D, Beckman R J and Conover W J 1979 Technometrics 21 239–45
[24] Deb K and Agrawal R B 1995 Complex Syst. 9 115–48
[25] Liagkouras K and Metaxiotis K 2013 An elitist polynomial mutation operator for improved performance of MOEAS in computer

networks 2013 22nd Int. Conf. on Computer Communication and Networks (ICCCN) (IEEE) pp 1–5
[26] GPy since 2012 GPy: a Gaussian process framework in python (available at: http://github.com/SheffieldML/GPy)
[27] Rasmussen C E and Williams C K I 2006 Gaussian Processes for Machine Learning (Cambridge, MA: The MIT Press)
[28] Auer P 2002 J. Mach. Learn. Res. 3 397–422
[29] Huang X 2019 Beam-Based Correction and Optimization for Accelerators (Boca Raton, FL: CRC Press)

10

https://doi.org/10.1103/PhysRevLett.124.124801
https://doi.org/10.1103/PhysRevLett.124.124801
https://doi.org/10.1103/PhysRevAccelBeams.22.054601
https://doi.org/10.1103/PhysRevAccelBeams.22.054601
https://doi.org/https://doi.org/10.1038/s41598-019-39208-z
https://doi.org/https://doi.org/10.1038/s41598-019-39208-z
https://doi.org/10.1103/PhysRevAccelBeams.21.104601
https://doi.org/10.1103/PhysRevAccelBeams.21.104601
https://doi.org/10.1109/4235.996017
https://doi.org/10.1109/4235.996017
https://doi.org/10.1103/PhysRevSTAB.8.034202
https://doi.org/10.1103/PhysRevSTAB.8.034202
https://doi.org/10.1016/j.nima.2014.04.078
https://doi.org/10.1016/j.nima.2014.04.078
https://doi.org/10.1103/PhysRevSTAB.17.020703
https://doi.org/10.1103/PhysRevSTAB.17.020703
https://doi.org/10.1016/j.nima.2013.05.046
https://doi.org/10.1016/j.nima.2013.05.046
https://arxiv.org/abs/1907.00250
https://doi.org/10.1016/j.nima.2020.164273
https://doi.org/10.1016/j.nima.2020.164273
http://github.com/SheffieldML/GPy

	Online accelerator optimization with a machine learning-based stochastic algorithm
	1. Introduction
	2. The MG-GPO algorithm
	2.1. Algorithm architecture
	2.2. Evolutionary operations
	2.3. GP regression
	2.4. Adaptive acquisition strategy

	3. Simulation
	3.1. Minimization of Rosenbrock function
	3.2. Minimization of vertical emittance
	3.3. Optimization of dynamic aperture

	4. Experimental application of the MG-GPO algorithm
	4.1. Vertical emittance minimization
	4.2. Dynamic aperture optimization

	5. Conclusions
	Acknowledgment
	References


