

SCIENCEDOMAIN international www.sciencedomain.org

The low Dimensional Hochschild Cohomology Groups for Some Finite-dimensional Algebra

Deena Al-Kadi*

Department of Mathematics, Taif University, Saudi Arabia.

Research Article

Received: 15 April 2013 Accepted: 07 June 2013 Published: 24 August 2013

Abstract

In this paper we find some results on computing the low-dimensional Hochschild cohomology groups for some finite-dimensional monomial algebra over an algebraically closed field K. The low-dimensional Hochschild cohomology groups have an important interpretations within algebra and geometry.

Keywords: Hochschild cohomology; finite dimensional algebras; low-dimensional 2010 Mathematics Subject Classification: 16E40;16S80

1 Introduction

The main goal of this paper is to give results to use in determining the low-dimensional Hochschild cohomology groups of some finite-dimensional algebra Λ for which $\Lambda = KQ/I$. We assume throughout that Q is a quiver over an algebraically closed field K and I is an admissible ideal in KQ. Al-Kadi in ([1], Theorem 3.6) gives a general theorem on the vanishing of the second Hochschild cohomology group for most of the finite dimensional self-injective algebras of finite representation type of types D and E.

The low-dimensional Hochschild cohomology groups $\mathrm{HH}^0(\Lambda), \mathrm{HH}^1(\Lambda)$ and $\mathrm{HH}^2(\Lambda)$ (defined below) have an important interpretation within algebra such as derivations and extensions. In [2], Happel shows that $\mathrm{HH}^0(\Lambda)$ is the center of Λ and that the group $\mathrm{HH}^1(\Lambda)$ is related to derivations of an algebra. The derivations of Λ form the set $\{\delta \in \mathrm{Hom}_K(\Lambda,\Lambda) | \delta(ab) = a\delta(b) + \delta(a)b\}$. It was also noted by Gerstenhaber in [3] that there are connections to algebraic geometry. In fact, $\mathrm{HH}^2(\Lambda)$ controls the deformations of an algebra. Within algebraic geometry it is important to know whether or not $\mathrm{HH}^2(\Lambda)$ is zero. This paper is concerned with the low dimensional Hochschild cohomology groups as from an algebraic point of view and with finding the dimension of $\mathrm{HH}^i(\Lambda)$ for i = 0, 1, 2. Our main theorems are Theorem 3.4 and Theorem 3.6 stated as follows.

Theorem 3.4. If Q is connected and has no oriented cycles then dim $\text{Im } d_1 = n-1$, where n=number of vertices.

Theorem 3.6. Suppose that Q is connected and has no oriented cycles. Let $\Lambda = KQ/I$ be a

Corresponding author: E-mail: dak12le@hotmail.co.uk

finite-dimensional monomial algebra. Suppose also whenever $a_1 \cdots a_n$ is a minimal generator of I then dim $\mathfrak{o}(a_i) \Lambda \mathfrak{t}(a_i)$ =number of arrows from $\mathfrak{o}(a_i)$ to $\mathfrak{t}(a_i)$ for $i = 1, \ldots, n$.

i) If Λ has only one relation, namely $a_1 \cdots a_n$, then dim Ker $d_2 = \dim \operatorname{Hom}(Q^1, \Lambda) - \sum_{k=1}^n m_k$ where $m_k = \dim \mathfrak{o}(a_k) \Lambda \mathfrak{t}(a_k) - 1$.

ii) If the minimal set of generators of I is precisely the set of paths from $\mathfrak{o}(a_1)$ to $\mathfrak{t}(a_n)$. Then $\operatorname{Ker} d_2 = \operatorname{Hom}(Q^1, \Lambda)$.

iii) Special case: if dim $\mathfrak{o}(a_i)\Lambda t(a_i) = 1$ for all arrows a_i in Q then dim Ker d_2 = number of arrows.

Our paper is organized as follows. In Section 2, we briefly review the related definitions and theorems of Hochschild cohomology. We also include a short description of the projective resolution of [4]. In Section 3, we present the results we found to compute the dimension of the low-dimensional Hochschild cohomology groups and we conclude with an example.

2 Preliminaries

In this section we recall some standard definitions and theorems. We have not included the proofs if the results are well known or direct to prove.

Let Λ be a finite-dimensional algebra over a field K. Then any left Λ -module, say M, has a projective resolution which is an exact sequence

$$\dots \to P_n \xrightarrow{A_n} P_{n-1} \xrightarrow{A_{n-1}} \dots \xrightarrow{A_1} P_0 \xrightarrow{A_0} M \to 0,$$
(2.1)

such that each P_i is a projective module. Notation: If

$$\cdots \to P_n \stackrel{A_n}{\to} P_{n-1} \stackrel{A_{n-1}}{\to} \cdots \stackrel{A_3}{\to} P_2 \stackrel{A_2}{\to} P_1 \stackrel{A_1}{\to} P_0 \stackrel{A_0}{\to} M \to 0,$$

is a minimal projective resolution for M then $\operatorname{Ker} A_n := \Omega^{n+1}(M)$.

Given a sequence as (2.1) we may form the complex by taking homomorphisms of each of the terms into N. This gives the complex (2.2) below:

$$0 \to \operatorname{Hom}(M, N) \xrightarrow{d_0} \operatorname{Hom}(P_0, N) \xrightarrow{d_1} \operatorname{Hom}(P_1, N) \xrightarrow{d_2} \cdots \xrightarrow{d_{n-1}} \operatorname{Hom}(P_{n-1}, N) \xrightarrow{d_n} \cdots$$

It is a sequence of modules and maps such that composition of any two adjacent maps is zero. This is the same as saying $d_n \circ d_{n-1} = 0$ that is, $\operatorname{Im} d_{n-1} \subset \operatorname{Ker} d_n$. This sequence is not necessarily exact, and leads to the extensions.

Definition 2.1. ([5], p33,p44]). Let N and M be two Λ -modules. For any projective resolution of M as in (2.1) let d_n : Hom $(P_{n-1}, N) \to \text{Hom}(P_n, N)$ be the induced map for all $n \ge 1$ as in (2.2). Then

$$Ext_{\Lambda}^{n}(M,N) = \operatorname{Ker} d_{n+1}/\operatorname{Im} d_{n} \quad \text{for } n \ge 0,$$

where $Ext_{\Lambda}^{0}(M, N) = \text{Ker } d_{1}$. The group $Ext_{\Lambda}^{n}(M, N)$ is called the *n*-th cohomology group derived from the functor Hom(-, N). Moreover, $Ext_{\Lambda}^{0}(M, N) = \text{Hom}(M, N)$.

Theorem 2.2. If

$$0 \to A \xrightarrow{g} B \xrightarrow{f} C \to 0$$

is an exact sequence of vector spaces then $\dim B = \dim A + \dim C$.

Definition 2.3. Definition: ([6], p287) Let Λ be a finite-dimensional algebra over a field K. The *n*-th Hochschild cohomology group $\operatorname{HH}^{n}(\Lambda)$ is $Ext^{n}_{\Lambda^{e}}(\Lambda,\Lambda)$, where $\Lambda^{e} = \Lambda \otimes_{K} \Lambda^{op}$ is the enveloping algebra of Λ .

The next two theorems help us to find the zero Hochschild cohomology group:

Theorem 2.4. $HH^0(\Lambda) = Z(\Lambda)$ where $Z(\Lambda)$ is the center of Λ .

Theorem 2.5. If *Q* has no oriented cycles then $Z(\Lambda) = K$.

To find the Hochschild cohomology groups for some finite dimensional algebras Λ , a projective resolution of Λ as Λ^{e} -module is needed. The next definition is written using ([4], Theorem2.9).

In general for $\Lambda = KQ/I$ where Q is a quiver and I is an admissible ideal of KQ, a minimal projective resolution of Λ as a Λ , Λ -bimodule begins:

$$\cdots \to Q^2 \stackrel{A_2}{\to} Q^1 \stackrel{A_1}{\to} Q^0 \stackrel{A_0}{\to} \Lambda \to 0,$$

where

$$Q^{0} = \bigoplus_{v,vertex} \Lambda v \otimes v\Lambda,$$
$$Q^{1} = \bigoplus_{a,arrow} \Lambda \mathfrak{o}(a) \otimes \mathfrak{t}(a)\Lambda,$$
$$Q^{2} = \bigoplus_{x \in g^{2}} \Lambda \mathfrak{o}(x) \otimes \mathfrak{t}(x)\Lambda,$$

where g^2 is a minimal set of relations for the ideal *I*. Note that we write $\mathfrak{o}(a)$ for the origin of the arrow *a* and $\mathfrak{t}(a)$ for the end of *a*. Next we will define the maps A_0, A_1 and A_2 . The map $A_0: Q^0 \to \Lambda$, is the multiplication map so is given by $v \otimes v \mapsto v$. The map $A_1: Q^1 \to Q^0$, is a Λ, Λ -homomorphism and is given by $\mathfrak{o}(a) \otimes \mathfrak{t}(a) \mapsto \mathfrak{o}(a) \otimes \mathfrak{o}(a)a - a\mathfrak{t}(a) \otimes \mathfrak{t}(a)$ for each arrow *a*. To define the map $A_2: Q^2 \to Q^1$, let *x* be one of the minimal relations.

$$o(x) \otimes t(x) \mapsto \sum_{j=1}^r c_j (\sum_{k=1}^{s_j} a_{1j} \cdots a_{(k-1)j} \otimes a_{(k+1)j} \cdots a_{s_j j}),$$

where $a_{1j} \cdots a_{(k-1)j} \otimes a_{(k+1)j} \cdots a_{s_j j} \in \Lambda \mathfrak{o}(a_{kj}) \otimes \mathfrak{t}(a_{kj}) \Lambda$. In this paper the projective resolution is

$$0 \to Q^2 \xrightarrow{A_2} Q^1 \xrightarrow{A_1} Q^0 \xrightarrow{A_0} \Lambda \to 0.$$

that is, $Q^i = 0$, for $i \ge 3$. (We assume here that $Q^i = 0$, for $i \ge 3$.)

In the next section, we found some general results to describe the low dimensional Hochschild cohomology groups.

3 Results

Theorem 3.1. Let $\Lambda = KQ/I$. Suppose that Q is connected and has no oriented cycles. Suppose that $0 \to Q^2 \to Q^1 \to Q^0 \to \Lambda \to 0$ is a projective resolution of Λ . Then $\operatorname{HH}^0(\Lambda) \cong K$. If $\operatorname{Hom}(Q^2, \Lambda) \neq 0$ and if $\operatorname{Im} d_2 = 0$, where $d_2 : \operatorname{Hom}(Q^1, \Lambda) \to \operatorname{Hom}(Q^2, \Lambda)$, then we have $\operatorname{HH}^2(\Lambda) \cong \operatorname{Hom}(Q^2, \Lambda)$ and $\dim \operatorname{HH}^1(\Lambda) = \dim \operatorname{HH}^0(\Lambda) - \dim \operatorname{Hom}(Q^0, \Lambda) + \dim \operatorname{Hom}(Q^1, \Lambda)$. If $\operatorname{Hom}(Q^2, \Lambda) = 0$, then $\operatorname{HH}^2(\Lambda) = 0$.

We present a summary of the proof next.

Proof. Since Q does not contain an oriented cycle then by Theorem 2.4 and Theorem 2.5 we have $HH^0(\Lambda) \cong K$.

Starting with the minimal projective resolution of Λ :

$$0 \to Q^2 \stackrel{A_2}{\to} Q^1 \stackrel{A_1}{\to} Q^0 \stackrel{A_0}{\to} \Lambda \to 0,$$

we get the complex:

$$0 \to \operatorname{Hom}(\Lambda, \Lambda) \to \operatorname{Hom}(Q^0, \Lambda) \xrightarrow{d_1} \operatorname{Hom}(Q^1, \Lambda) \xrightarrow{d_2} \operatorname{Hom}(Q^2, \Lambda) \xrightarrow{d_3} 0$$

We will need some assumptions on $Hom(Q^2, \Lambda)$. To start consider the short exact sequence:

$$0 \to \operatorname{Ker} A_0 = \Omega \Lambda \to Q^0 \stackrel{A_0}{\to} \Lambda \to 0.$$

Then we get the following sequence:

$$0 \to \operatorname{Hom}(\Lambda, \Lambda) \to \operatorname{Hom}(Q^0, \Lambda) \to \operatorname{Hom}(\Omega\Lambda, \Lambda) \to \operatorname{HH}^1(\Lambda) \to 0,$$
(3.1)

where $\operatorname{HH}^{1}(\Lambda) = Ext^{1}_{\Lambda^{e}}(\Lambda, \Lambda)$.

By repeating the steps but with a short exact sequence containing $\Omega\Lambda$. i.e. by using the short exact sequence:

$$0 \to \operatorname{Ker} A_1 = \Omega^2 \Lambda \to Q^1 \stackrel{A_1}{\to} \Omega \Lambda \to 0,$$

we get the following sequence:

$$0 \to \operatorname{Hom}(\Omega\Lambda, \Lambda) \to \operatorname{Hom}(Q^1, \Lambda) \to \operatorname{Hom}(\Omega^2\Lambda, \Lambda) \to \operatorname{HH}^2(\Lambda) \to 0,$$
(3.2)

where $\operatorname{HH}^{2}(\Lambda) = Ext_{\Lambda^{e}}^{1}(\Omega\Lambda, \Lambda)$.

We also have the short exact sequence that contains $\Omega^2 \Lambda$:

$$0 \to \operatorname{Ker} A_2 = \Omega^3 \Lambda \to Q^2 \stackrel{A_2}{\to} \Omega^2 \Lambda \to 0.$$

But $\operatorname{Ker} A_2 = \Omega^3 \Lambda = 0$, so $Q^2 \cong \Omega^2 \Lambda$. Now substitute it in (3.2) to get:

$$0 \to \operatorname{Hom}(\Omega\Lambda, \Lambda) \to \operatorname{Hom}(Q^1, \Lambda) \to \operatorname{Hom}(Q^2, \Lambda) \to \operatorname{HH}^2(\Lambda) \to 0.$$
(3.2a)

If we make the assumption that $\operatorname{Hom}(Q^2, \Lambda) = 0$ then it follows directly from equation (3.2a) that $\operatorname{Hom}(\Omega\Lambda, \Lambda) \cong \operatorname{Hom}(Q^1, \Lambda)$ and $\operatorname{HH}^2(\Lambda) = 0$.

Now if we assume $\operatorname{Hom}(Q^2, \Lambda) \neq 0$ and $\operatorname{Im} d_2 = 0$, then $\operatorname{HH}^2(\Lambda) = \operatorname{Ker} d_3 / \operatorname{Im} d_2 \cong \operatorname{Hom}(Q^2, \Lambda)$. Again it follows directly from (3.2a) that $\operatorname{Hom}(\Omega\Lambda, \Lambda) \cong \operatorname{Hom}(Q^1, \Lambda)$.

Now in sequence (3.1), we know that $\operatorname{Hom}(\Lambda, \Lambda) \cong Z(\Lambda) = \operatorname{HH}^0(\Lambda)$ and that $\operatorname{Hom}(\Omega\Lambda, \Lambda) \cong \operatorname{Hom}(Q^1, \Lambda)$, so we get:

$$0 \to \operatorname{HH}^{0}(\Lambda) \to \operatorname{Hom}(Q^{0}, \Lambda) \to \operatorname{Hom}(Q^{1}, \Lambda) \to \operatorname{HH}^{1}(\Lambda) \to 0.$$
(3.1a)

So dim $\operatorname{HH}^{0}(\Lambda)$ – dim $\operatorname{Hom}(Q^{0}, \Lambda)$ + dim $\operatorname{Hom}(Q^{1}, \Lambda)$ – dim $\operatorname{HH}^{1}(\Lambda) = 0$. Therefore, dim $\operatorname{HH}^{1}(\Lambda) = \dim \operatorname{Hom}(Q^{0}, \Lambda)$ – dim $\operatorname{Hom}(Q^{0}, \Lambda)$ + dim $\operatorname{Hom}(Q^{1}, \Lambda)$.

The next results describe $\text{Hom}(Q^i, \Lambda)$, for i = 0, 1, 2.

Theorem 3.2. There is an isomorphism of vector spaces $\operatorname{Hom}(\Lambda e \otimes f\Lambda, \Lambda) \cong e\Lambda f$.

Proof. Let α : Hom $(\Lambda e \otimes f\Lambda, \Lambda) \to e\Lambda f$ be defined by $\phi \mapsto \phi(e \otimes f)$, where $\phi : \Lambda e \otimes f\Lambda \to \Lambda$. Then it is direct to show that α is an isomorphism.

Theorem 3.3. With the notation of this section and section 1,

$$\begin{split} &i) \operatorname{Hom}(Q^0, \Lambda) = \bigoplus_{v, vertex} \mathfrak{o}(v) \Lambda \mathfrak{t}(v). \\ &ii) \operatorname{Hom}(Q^1, \Lambda) = \bigoplus_{a, arrow} \mathfrak{o}(a) \Lambda \mathfrak{t}(a). \\ &iii) \operatorname{Hom}(Q^2, \Lambda) = \bigoplus_{x \in q^2} \mathfrak{o}(x) \Lambda \mathfrak{t}(x). \end{split}$$

Proof. i) $\operatorname{Hom}(Q^0, \Lambda) = \operatorname{Hom}(\bigoplus_{v, vertex} \Lambda \mathfrak{o}(v) \otimes \mathfrak{t}(v)\Lambda, \Lambda) = \bigoplus_{v, vertex} \operatorname{Hom}(\Lambda \mathfrak{o}(v) \otimes \mathfrak{t}(v)\Lambda, \Lambda) \cong \bigoplus_{v, vertex} \mathfrak{o}(v)\Lambda \mathfrak{t}(v)$ by Theorem 3.2. Similarly, we can prove ii) and iii). \Box

Remarks: i) dim $\operatorname{Hom}(Q^0, \Lambda) = \sum_{v,vertex} \dim \mathfrak{o}(v)\Lambda \mathfrak{t}(v)$. ii) dim $\operatorname{Hom}(Q^1, \Lambda) = \sum_{a,arrorw} \dim \mathfrak{o}(a)\Lambda \mathfrak{t}(a)$. iii) dim $\operatorname{Hom}(Q^2, \Lambda) = \sum_{x \in g^2} \dim \mathfrak{o}(x)\Lambda \mathfrak{t}(x)$.

Theorem 3.4. If *Q* is connected and has no oriented cycles then dim $\text{Im } d_1 = n-1$, where *n*=number of vertices.

Proof. Since $d_1 : \operatorname{Hom}(Q^0, \Lambda) \to \operatorname{Hom}(Q^1, \Lambda)$, then we get the exact sequence:

$$0 \to \operatorname{Ker} d_1 \to \operatorname{Hom}(Q^0, \Lambda) \to \operatorname{Im} d_1 \to 0.$$

Then by Theorem 2.2 we have dim $\operatorname{Im} d_1 = \dim \operatorname{Hom}(Q^0, \Lambda) - \dim \operatorname{Ker} d_1$, and $\operatorname{Hom}(Q^0, \Lambda) \cong \bigoplus_{v,vertix} \mathfrak{o}(v)\Lambda \mathfrak{t}(v)$. So dim $\operatorname{Hom}(Q^0, \Lambda) = n$, since Q has no oriented cycles. Also $\operatorname{HH}^0(\Lambda) \cong K$. Therefore dim $\operatorname{HH}^0(\Lambda) = 1$. On the other hand, $\operatorname{HH}^0(\Lambda) = Ext^0(\Lambda, \Lambda) = \operatorname{Ker} d_1$ by Definition 2.1. Hence, dim $\operatorname{Ker} d_1 = 1$. Therefore, dim $\operatorname{Im} d_1 = n - 1$.

We know that $HH^1(\Lambda) = \text{Ker } d_2/\text{Im } d_1$. By using Theorem 3.4 we can find dim Im d_1 . To find dim Ker d_2 , Theorem 3.6 below has been identified. A definition of a monomial algebra is needed first.

Definition 3.5. ([1], Definition 1.17) Let $\Lambda = KQ/I$. Then Λ is a monomial algebra if I is generated by a set of paths in KQ each of length at least 2.

Theorem 3.6. Suppose that Q is connected and has no oriented cycles. Let $\Lambda = KQ/I$ be a finitedimensional monomial algebra. Suppose also whenever $a_1 \cdots a_n$ is a minimal generator of I then dim $\mathfrak{o}(a_i)\Lambda\mathfrak{t}(a_i)$ =number of arrows from $\mathfrak{o}(a_i)$ to $\mathfrak{t}(a_i)$ for i = 1, ..., n.

i) If Λ has only one relation, namely $a_1 \cdots a_n$, then dim Ker $d_2 = \dim \operatorname{Hom}(Q^1, \Lambda) - \sum_{k=1}^n m_k$ where $m_k = \dim \mathfrak{o}(a_k) \Lambda \mathfrak{t}(a_k) - 1$.

ii) If the minimal set of generators of I is precisely the set of paths from $\mathfrak{o}(a_1)$ to $\mathfrak{t}(a_n)$. Then $\operatorname{Ker} d_2 = \operatorname{Hom}(Q^1, \Lambda)$.

iii) Special case: if dim $\mathfrak{o}(a_i)\Lambda t(a_i) = 1$ for all arrows a_i in Q then dim Ker d_2 = number of arrows.

Proof. Since we have the map $d_1 : \operatorname{Hom}(Q^0, \Lambda) \to \operatorname{Hom}(Q^1, \Lambda)$, then we get the exact sequence:

$$0 \to \operatorname{Ker} d_2 \to \operatorname{Hom}(Q^1, \Lambda) \to \operatorname{Im} d_2 \to 0.$$

Therefore,

dim Ker $d_2 = \dim \operatorname{Hom}(Q^1, \Lambda) - \dim \operatorname{Im} d_2$ and $\operatorname{Hom}(Q^1, \Lambda) \cong \bigoplus_{(a, arrow)} \mathfrak{o}(a) \operatorname{At}(a)$. Since Λ is a monomial algebra, I is generated by monomial relations. Fix a minimal generation set of monomials for I. Suppose that $r = a_1 \cdots a_n$ is one of these minimal relations. Then a typical element of $\mathfrak{o}(a_i)\operatorname{At}(a_i)$ is a linear combination of paths from $\mathfrak{o}(a_i)$ to $\mathfrak{t}(a_i)$. By hypothesis, a path from $\mathfrak{o}(a_i)$ to $\mathfrak{t}(a_i)$ is an arrow from $\mathfrak{o}(a_i)$ to $\mathfrak{t}(a_i)$. So $\mathfrak{o}(a_i)\operatorname{At}(a_i)$ has typical element of the form $c_{a_i}a_i + \sum_{j=1}^{m_k} c_{i_j}\beta_{i_j}$, for some $c_{a_i}, c_{i_j} \in K$ and arrows β_{i_j} from $\mathfrak{o}(a_i)$ to $\mathfrak{t}(a_i)$ ($\beta_{i_j} \neq a_i$). Now let $g \in \operatorname{Hom}(Q^1, \Lambda)$. Then $g: Q^1 \to \Lambda$ is given by $\mathfrak{o}(a) \otimes \mathfrak{t}(a) \mapsto \mathfrak{o}(a)\lambda_a\mathfrak{t}(a)$ for each arrow a. Also

$$gA_{2}(\mathfrak{o}(r)\otimes\mathfrak{t}(r)) = g(\mathfrak{o}(a_{1})\otimes a_{2}\cdots a_{n} + a_{1}\otimes a_{3}\cdots a_{n} + \ldots + a_{1}\cdots a_{n-1}\otimes\mathfrak{t}(a_{n}))$$

$$= g(\mathfrak{o}(a_{1})\otimes\mathfrak{t}(a_{1}))a_{2}\cdots a_{n} + a_{1}g(\mathfrak{o}(a_{2})\otimes\mathfrak{t}(a_{2}))a_{3}\cdots a_{n} + \ldots$$

$$+a_{1}\cdots a_{n-1}g(\mathfrak{o}(a_{n})\otimes\mathfrak{t}(a_{n}))$$

$$= (\mathfrak{o}(a_{1})\lambda_{a_{1}}\mathfrak{t}(a_{1}))a_{2}\cdots a_{n} + a_{1}(\mathfrak{o}(a_{2})\lambda_{a_{2}}\mathfrak{t}(a_{2}))a_{3}\cdots a_{n} + \ldots$$

 $+a_1\cdots a_{n-1}(\mathfrak{o}(a_n)\lambda_{a_n}\mathfrak{t}(a_n)).$

So if $\lambda_{a_i} = c_{a_i}a_i + \sum_{j=1}^{m_k} c_{i_j}\beta_{i_j}$ then $gA_2(\mathfrak{o}(r) \otimes \mathfrak{t}(r)) = (c_{a_1}a_1 + \sum_{j=1}^{m_1} c_{1_j}\beta_{1_j})a_2 \cdots a_n + a_1(c_{a_2}a_2 + \sum_{j=1}^{m_2} c_{2_j}\beta_{2_j})a_3 \cdots a_n + \dots + a_1 \cdots a_{n-1}(c_{a_n}a_n + \sum_{j=1}^{m_n} c_{n_j}\beta_{n_j}).$ (3.3)

For i) assume that Λ has only one relation, say $r = a_1 \cdots a_n$. Since $\beta_{ij} \neq a_i$, so $\beta_{1j}a_2 \cdots a_n \neq 0$, $a_1\beta_{2j}a_3 \cdots a_n \neq 0$, etc. Moreover, they are all linearly independent. Let $g \in \text{Ker } d_2$, then $gA_2 = 0$ and $g \in \text{Hom}(Q^1, \Lambda)$. Hence from (3.3), $c_{ij} = 0$, for all *i*. Therefore, $g(\mathfrak{o}(a_i) \otimes \mathfrak{t}(a_i)) = c_{a_i}a_i$ for $i = 1, \ldots, n$ and $g(\mathfrak{o}(a) \otimes \mathfrak{t}(a)) = \mathfrak{o}(a)\lambda\mathfrak{t}(a)$ for $a \neq a_1, \ldots, a_n$. Hence dim $\text{Ker } d_2 = \dim \text{Hom}(Q^1, \Lambda) - \sum_{k=1}^n m_k$, where $m_k = \dim \mathfrak{o}(a_k)\Lambda\mathfrak{t}(a_k) - 1$.

For ii) suppose each minimal generator of I is of the form $r = \gamma_1 \cdots \gamma_n$, where γ_i is some a_i or β_{i_j} . Recall that β_{i_j} is an arrow from $\mathfrak{o}(a_i)$ to $\mathfrak{t}(a_i)$. By using similar process to the one used in i) we get for $g \in \operatorname{Hom}(Q^1, \Lambda)$ that $gA_2(\mathfrak{o}(r) \otimes \mathfrak{t}(r)) = (\mathfrak{o}(\gamma_1)\lambda_{\gamma_1}\mathfrak{t}(\gamma_1))\gamma_2 \cdots \gamma_n + \gamma_1(\mathfrak{o}(\gamma_2)\lambda_{\gamma_2}\mathfrak{t}(\gamma_2))\gamma_3 \cdots \gamma_n + (\gamma_1 \cdots \gamma_{n-1}(\mathfrak{o}(\gamma_n)\lambda_{\gamma_n}\mathfrak{t}(\gamma_n)))$. Since $\lambda_{\gamma_i} \in \mathfrak{o}(\gamma_i)\Lambda\mathfrak{t}(\gamma_i) = \mathfrak{o}(a_i)\Lambda\mathfrak{t}(a_i)$ we may write $\lambda_{\gamma_i} = c_{\gamma_i}\gamma_i + \sum_{j=1}^{m_k} c_{i_j}\beta_{i_j}$, for some $c_{\gamma_i}, c_{i_j} \in K$. Then as in equation (3.3) we have $gA_2(\mathfrak{o}(r) \otimes \mathfrak{t}(r)) = (c_{\gamma_1}\gamma_1 + \sum_{j=1}^{m_k} c_{i_j}\beta_{1_j})\gamma_2 \cdots \gamma_n + \gamma_1(c_{\gamma_2}\gamma_2 + \sum_{j=1}^{m_2} c_{2_j}\beta_{2_j})\gamma_3 \cdots \gamma_n + \ldots + \gamma_1 \cdots \gamma_{n-1}(c_{\gamma_n}\gamma_n + \sum_{j=1}^{m_n} c_{n_j}\beta_{n_j}) = 0$. Therefore, $g \in \operatorname{Ker} d_2$ so $\operatorname{Ker} d_2 = \operatorname{Hom}(Q^1, \Lambda)$.

iii) Special case: assume dim $\mathfrak{o}(a_i)\Lambda\mathfrak{t}(a_i) = 1$ for all arrows $a_i \in Q$. Then $\mathfrak{o}(a_i)\lambda_{a_i}\mathfrak{t}(a_i) = c_{a_i}a_i$, where $c_{a_i} \in K$. So, for $g \in \operatorname{Hom}(Q^1, \Lambda)$ and any relation $r = a_1 \cdots a_n$, the equation (3.3) becomes

 $gA_2(\mathfrak{o}(r)\otimes\mathfrak{t}(r))=c_{a_1}a_1\cdots a_n+a_1c_{a_2}a_2\cdots a_n+\ldots+a_1\cdots a_{n-1}c_{a_n}a_n$

 $= (c_{a_1} + c_{a_2} + \ldots + c_{a_n})(a_1 \cdots a_n) = 0.$

Therefore, $g \in \text{Ker } d_2$ so $\text{Ker } d_2 = \text{Hom}(Q^1, \Lambda)$. Since $\dim \mathfrak{o}(a_i)\Lambda \mathfrak{t}(a_i) = 1$, then $\dim \text{Hom}(Q^1, \Lambda) =$ number of arrows. Hence $\dim \text{Ker } d_2 =$ number of arrows.

Note that once we have described Ker d_2 , then we can find Im d_2 . Thus we can describe HH¹(Λ) and HH²(Λ), in the cases $Q^i = 0 \ \forall i \geq 3$, i.e., where Ker $d_3 = \text{Hom}(Q^2, \Lambda)$.

An Example. Let $\Lambda = KQ/I$ where Q is the quiver with two arrows α and β from the vertex 1 to the vertex 2, an arrow γ from the vertex 2 to the vertex 3 and $I = \langle \alpha \gamma \rangle$. The algebra Q is connected and has no oriented cycles and Λ has only one relation. From Theorem 3.6(i), dim Ker $d_2 = \text{Hom}(Q^1, \Lambda) - (m_1 + m_2)$, where $m_1 = (\text{number of arrows from } \mathfrak{o}(\alpha) \text{ to } \mathfrak{t}(\alpha)) - 1$, so $m_1 = 1$, and $m_2 = (\text{number of arrows from } \mathfrak{o}(\gamma) \text{ to } \mathfrak{t}(\gamma)) - 1$, so $m_2 = 0$. By using Theorem 3.3, dim $\text{Hom}(Q^1, \Lambda) = \sum_{a, arrow} \dim \mathfrak{o}(a) \Lambda \mathfrak{t}(a) = \dim e_1 \Lambda e_2 + \dim e_1 \Lambda e_2 + \dim e_2 \Lambda e_3 = 2 + 2 + 1 = 5$. Hence, dim Ker $d_2 = 5 - 1 = 4$. Therefore, dim $\text{HH}^1(\Lambda) = \dim \text{Ker } d_2 - \dim \text{Im } d_1 = 4 - 2 = 2$, since dim Im $d_1 = n - 1 = 3 - 1 = 2$ from Theorem 3.4.

Now we will find $\operatorname{HH}^2(\Lambda)$. Since $d_3 : \operatorname{Hom}(Q^2, \Lambda) \to 0$, then $\operatorname{Ker} d_3 = \operatorname{Hom}(Q^2, \Lambda)$. Again by using Theorem 3.3, dim $\operatorname{Hom}(Q^2, \Lambda) = \sum_{r \in g^2} \dim \mathfrak{o}(r) \Lambda \mathfrak{t}(r) = \dim e_1 \Lambda e_3 = 1$, since $g^2 = \{\alpha \gamma\}$. On the other hand, dim $\operatorname{Im} d_2 = m_1 + m_2 = 1$, since dim $\operatorname{Ker} d_2 = \dim \operatorname{Hom}(Q^1, \Lambda) - \dim \operatorname{Im} d_2$. Hence, dim $\operatorname{HH}^2(\Lambda) = \dim \operatorname{Ker} d_3 - \dim \operatorname{Im} d_2 = 1 - 1 = 0$.

4 Conclusion

We have introduced in Section 3 some results to help in computing the low-dimensional Hochschild cohomology groups for some finite-dimensional monomial algebra Λ over an algebraically closed field K.

Acknowledgment

I thank my husband Jehad for his encouragement.

Competing Interests

The author declares that no competing interests exist.

References

- Al-Kadi, D. Self-injective algebras and the second Hochschild cohomology group. J. Algebra, 2009;321:1049-1078.
- Happel D. Hochschild cohomology of finite-dimensional algebras. Lecture Notes in Mathematics. Springer-Verlag, 1989;1404:108-126.
- [3] Gerstenhaber M. On the deformations of rings and algebras. Ann of Math., 1964;79:59-103.
- [4] Green EL, Snashall N. Projective bimodule resolutions of an algebra and vanishing of the second Hochschild cohomology group. Forum Math. 2004;16:17-36.
- [5] Jans JP. Rings and homology, Holt, Rinehart and Winston, New York; 1964.
- [6] Maclane S. Homology, Springer-Verlag, Berlin and New York; 1995.
- [7] Green EL, Zacharia D. The cohomology ring of a monomial algebra. Manuscripta mathematica. 1994;85:11-23.

© 2013 Deena Al-Kadi; This is an Open Access article distributed under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/3.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:

The peer review history for this paper can be accessed here (Please copy paste the total link in your browser address bar)

www.sciencedomain.org/review-history.php?iid=240&id=6&aid=1920