

SCIENCEDOMAIN *international* <www.sciencedomain.org>

The low Dimensional Hochschild Cohomology Groups for Some Finite-dimensional Algebra

Deena Al-Kadi[*](#page-0-0)

Department of Mathematics, Taif University, Saudi Arabia.

Research Article

Received: 15 April 2013 Accepted: 07 June 2013 Published: 24 August 2013

Abstract

In this paper we find some results on computing the low-dimensional Hochschild cohomology groups for some finite-dimensional monomial algebra over an algebraically closed field K. The low-dimensional Hochschild cohomology groups have an important interpretations within algebra and geometry.

Keywords: Hochschild cohomology; finite dimensional algebras; low-dimensional 2010 Mathematics Subject Classification: 16E40;16S80

1 Introduction

The main goal of this paper is to give results to use in determining the low-dimensional Hochschild cohomology groups of some finite-dimensional algebra Λ for which $\Lambda = KQ/I$. We assume throughout that Q is a quiver over an algebraically closed field K and I is an admissible ideal in KQ. Al-Kadi in ([1], Theorem 3.6) gives a general theorem on the vanishing of the second Hochschild cohomology group for most of the finite dimensional self-injective algebras of finite representation type of types D and E.

The low-dimensional Hochschild cohomology groups $HH^0(\Lambda)$, $HH^1(\Lambda)$ and $HH^2(\Lambda)$ (defined below) have an important interpretation within algebra such as derivations and extensions. In [2], Happel shows that $HH^{0}(\Lambda)$ is the center of Λ and that the group $HH^{1}(\Lambda)$ is related to derivations of an algebra. The derivations of Λ form the set $\{\delta \in \text{Hom}_K(\Lambda,\Lambda)|\delta(ab) = a\delta(b) + \delta(a)b\}$. It was also noted by Gerstenhaber in [3] that there are connections to algebraic geometry. In fact, $HH^2(\Lambda)$ controls the deformations of an algebra. Within algebraic geometry it is important to know whether or not $HH^2(\Lambda)$ is zero. This paper is concerned with the low dimensional Hochschild cohomology groups as from an algebraic point of view and with finding the dimension of $HHⁱ(\Lambda)$ for $i = 0, 1, 2$. Our main theorems are Theorem [3.4](#page-4-0) and Theorem [3.6](#page-4-1) stated as follows.

Theorem [3.4.](#page-4-0) If Q is connected and has no oriented cycles then dim Im $d_1 = n-1$, where n=number of vertices.

Theorem [3.6.](#page-4-1) Suppose that Q is connected and has no oriented cycles. Let $\Lambda = KQ/I$ be a

Corresponding author: E-mail: dak12le@hotmail.co.uk

finite-dimensional monomial algebra. Suppose also whenever $a_1 \cdots a_n$ is a minimal generator of I then dim $\mathfrak{o}(a_i) \Lambda(\{a_i\})$ =number of arrows from $\mathfrak{o}(a_i)$ to $\mathfrak{t}(a_i)$ for $i = 1, \ldots, n$.

i) If Λ has only one relation, namely $a_1 \cdots a_n$, then dim Ker $d_2 = \dim \text{Hom}(Q^1, \Lambda) - \sum_{k=1}^n m_k$ where $m_k = \dim \mathfrak{o}(a_k) \Lambda \mathfrak{t}(a_k) - 1$.

ii) If the minimal set of generators of I is precisely the set of paths from $\mathfrak{o}(a_1)$ to $\mathfrak{t}(a_n)$. Then Ker $d_2 = \text{Hom}(Q^1, \Lambda)$.

iii) Special case: if dim $\mathfrak{o}(a_i) \Lambda t(a_i) = 1$ for all arrows a_i in Q then dim Ker d_2 = number of arrows.

Our paper is organized as follows. In Section [2,](#page-1-0) we briefly review the related definitions and theorems of Hochschild cohomology. We also include a short description of the projective resolution of [4]. In Section [3,](#page-2-0) we present the results we found to compute the dimension of the low-dimensional Hochschild cohomology groups and we conclude with an example.

2 Preliminaries

In this section we recall some standard definitions and theorems. We have not included the proofs if the results are well known or direct to prove.

Let Λ be a finite-dimensional algebra over a field K. Then any left Λ -module, say M, has a projective resolution which is an exact sequence

$$
\cdots \to P_n \stackrel{A_n}{\to} P_{n-1} \stackrel{A_{n-1}}{\to} \cdots \stackrel{A_1}{\to} P_0 \stackrel{A_0}{\to} M \to 0,
$$
\n
$$
(2.1)
$$

such that each P_i is a projective module. **Notation**: If

$$
\cdots \to P_n \stackrel{A_n}{\to} P_{n-1} \stackrel{A_{n-1}}{\to} \cdots \stackrel{A_3}{\to} P_2 \stackrel{A_2}{\to} P_1 \stackrel{A_1}{\to} P_0 \stackrel{A_0}{\to} M \to 0,
$$

is a minimal projective resolution for M then Ker $A_n := \Omega^{n+1}(M)$.

Given a sequence as (2.1) we may form the complex by taking homomorphisms of each of the terms into N . This gives the complex (2.2) below:

$$
0 \to \text{Hom}(M, N) \stackrel{d_0}{\to} \text{Hom}(P_0, N) \stackrel{d_1}{\to} \text{Hom}(P_1, N) \stackrel{d_2}{\to} \cdots \stackrel{d_{n-1}}{\to} \text{Hom}(P_{n-1}, N) \stackrel{d_n}{\to} \cdots
$$

It is a sequence of modules and maps such that composition of any two adjacent maps is zero. This is the same as saying $d_n \circ d_{n-1} = 0$ that is, Im $d_{n-1} \subset \text{Ker } d_n$. This sequence is not necessarily exact, and leads to the extensions.

Definition 2.1. ([5], p33,p44]). Let N and M be two Λ-modules. For any projective resolution of M as in (2.1) let d_n : Hom $(P_{n-1}, N) \to \text{Hom}(P_n, N)$ be the induced map for all $n \ge 1$ as in (2.2). Then

$$
Ext_{\Lambda}^{n}(M, N) = \operatorname{Ker} d_{n+1}/\operatorname{Im} d_{n} \quad \text{for } n \ge 0,
$$

where $Ext^0_{\Lambda}(M,N) = \operatorname{Ker} d_1.$ The group $Ext^n_{\Lambda}(M,N)$ is called the n-th cohomology group derived from the functor $\operatorname{Hom}\nolimits(-,N)$. Moreover, $\operatorname{Ext}\nolimits_{\Lambda}^{0}(M,N) = \operatorname{Hom}\nolimits(M,N).$

Theorem 2.2. *If*

$$
0 \to A \stackrel{g}{\to} B \stackrel{f}{\to} C \to 0
$$

is an exact sequence of vector spaces then dim $B = \dim A + \dim C$.

Definition 2.3. Definition: ([6], p287) Let Λ be a finite-dimensional algebra over a field K. The n th Hochschild cohomology group $HH^n(\Lambda)$ is $Ext^n_{\Lambda^e}(\Lambda,\Lambda)$, where $\Lambda^e=\Lambda\otimes_K\Lambda^{op}$ is the enveloping algebra of Λ.

The next two theorems help us to find the zero Hochschild cohomology group:

Theorem 2.4. $HH^0(\Lambda) = Z(\Lambda)$ where $Z(\Lambda)$ is the center of Λ .

Theorem 2.5. *If* Q *has no oriented cycles then* $Z(\Lambda) = K$ *.*

To find the Hochschild cohomology groups for some finite dimensional algebras Λ , a projective resolution of Λ as Λ^e -module is needed. The next definition is written using ([4], Theorem2.9).

In general for $\Lambda = KQ/I$ where Q is a quiver and I is an admissible ideal of KQ, a minimal projective resolution of Λ as a Λ , Λ -bimodule begins:

$$
\cdots \to Q^2 \stackrel{A_2}{\to} Q^1 \stackrel{A_1}{\to} Q^0 \stackrel{A_0}{\to} \Lambda \to 0,
$$

where

$$
Q^{0} = \bigoplus_{v, vertex} \Lambda v \otimes v\Lambda,
$$

\n
$$
Q^{1} = \bigoplus_{a, arrow} \Lambda o(a) \otimes t(a)\Lambda,
$$

\n
$$
Q^{2} = \bigoplus_{x \in g^{2}} \Lambda o(x) \otimes t(x)\Lambda,
$$

where g^2 is a minimal set of relations for the ideal I. Note that we write $o(a)$ for the origin of the arrow a and $t(a)$ for the end of a. Next we will define the maps A_0 , A_1 and A_2 . The map $A_0: Q^0 \to \Lambda$, is the multiplication map so is given by $v \otimes v \mapsto v$. The map $A_1: Q^1 \to Q^0$, is a Λ, Λ-homomorphism and is given by $\mathfrak{o}(a) \otimes \mathfrak{t}(a) \mapsto \mathfrak{o}(a) \otimes \mathfrak{o}(a) a - \alpha \mathfrak{t}(a) \otimes \mathfrak{t}(a)$ for each arrow a. To define the map $A_2: Q^2 \to Q^1$, let x be one of the minimal relations.

$$
o(x) \otimes t(x) \mapsto \sum_{j=1}^r c_j (\sum_{k=1}^{s_j} a_{1j} \cdots a_{(k-1)j} \otimes a_{(k+1)j} \cdots a_{s_j j}),
$$

where $a_{1j} \cdots a_{(k-1)j} \otimes a_{(k+1)j} \cdots a_{s_j j} \in \Lambda \mathfrak{o}(a_{kj}) \otimes \mathfrak{t}(a_{kj}) \Lambda$. In this paper the projective resolution is

$$
0 \to Q^2 \stackrel{A_2}{\to} Q^1 \stackrel{A_1}{\to} Q^0 \stackrel{A_0}{\to} \Lambda \to 0,
$$

that is, $Q^i = 0$, for $i \geq 3$. (We assume here that $Q^i = 0$, for $i \geq 3$.)

In the next section, we found some general results to describe the low dimensional Hochschild cohomology groups.

3 Results

Theorem 3.1. *Let* Λ = KQ/I*. Suppose that* Q *is connected and has no oriented cycles. Suppose that* $0 \to Q^2 \to Q^1 \to Q^0 \to \Lambda \to 0$ *is a projective resolution of* Λ *. Then* $HH^0(\Lambda) \cong K$ *. If* $\mathrm{Hom}(Q^2, \Lambda) \neq 0$ and if $\mathrm{Im} d_2 = 0$, where $d_2 : \mathrm{Hom}(Q^1, \Lambda) \to \mathrm{Hom}(Q^2, \Lambda)$, then we have $\mathrm{HH}^2(\Lambda) \cong 0$ $\text{Hom}(Q^2, \Lambda)$ and dim $\text{HH}^1(\Lambda) = \text{dim }\text{HH}^0(\Lambda) - \text{dim }\text{Hom}(Q^0, \Lambda) + \text{dim }\text{Hom}(Q^1, \Lambda)$. If $\text{Hom}(Q^2, \Lambda)$ $= 0$, then $HH^2(\Lambda) = 0$.

We present a summary of the proof next.

Proof. Since Q does not contain an oriented cycle then by Theorem [2.4](#page-2-1) and Theorem [2.5](#page-2-2) we have $HH⁰(\Lambda) \cong K.$

Starting with the minimal projective resolution of Λ:

$$
0 \to Q^2 \stackrel{A_2}{\to} Q^1 \stackrel{A_1}{\to} Q^0 \stackrel{A_0}{\to} \Lambda \to 0,
$$

we get the complex:

$$
0 \to \text{Hom}(\Lambda, \Lambda) \to \text{Hom}(Q^0, \Lambda) \stackrel{d_1}{\to} \text{Hom}(Q^1, \Lambda) \stackrel{d_2}{\to} \text{Hom}(Q^2, \Lambda) \stackrel{d_3}{\to} 0.
$$

We will need some assumptions on $\mathrm{Hom}(Q^2,\Lambda).$ To start consider the short exact sequence:

$$
0 \to \text{Ker } A_0 = \Omega \Lambda \to Q^0 \stackrel{A_0}{\to} \Lambda \to 0.
$$

Then we get the following sequence:

$$
0 \to \text{Hom}(\Lambda, \Lambda) \to \text{Hom}(Q^0, \Lambda) \to \text{Hom}(\Omega \Lambda, \Lambda) \to \text{HH}^1(\Lambda) \to 0,
$$
\n(3.1)

where $\mathrm{HH}^1(\Lambda)=Ext^1_{\Lambda^e}(\Lambda,\Lambda).$

By repeating the steps but with a short exact sequence containing $\Omega\Lambda$. i.e. by using the short exact sequence:

$$
0 \to \text{Ker } A_1 = \Omega^2 \Lambda \to Q^1 \stackrel{A_1}{\to} \Omega \Lambda \to 0,
$$

we get the following sequence:

$$
0 \to \text{Hom}(\Omega \Lambda, \Lambda) \to \text{Hom}(Q^1, \Lambda) \to \text{Hom}(\Omega^2 \Lambda, \Lambda) \to \text{HH}^2(\Lambda) \to 0,
$$
 (3.2)

where $\mathrm{HH}^2(\Lambda)=Ext^1_{\Lambda^e}(\Omega \Lambda, \Lambda).$

We also have the short exact sequence that contains $\Omega^2 \Lambda$:

$$
0 \to \text{Ker } A_2 = \Omega^3 \Lambda \to Q^2 \stackrel{A_2}{\to} \Omega^2 \Lambda \to 0.
$$

But Ker $A_2 = \Omega^3 \Lambda = 0$, so $Q^2 \cong \Omega^2 \Lambda$. Now substitute it in (3.2) to get:

$$
0 \to \text{Hom}(\Omega \Lambda, \Lambda) \to \text{Hom}(Q^1, \Lambda) \to \text{Hom}(Q^2, \Lambda) \to \text{HH}^2(\Lambda) \to 0. \tag{3.2a}
$$

If we make the assumption that $\text{Hom}(Q^2, \Lambda) = 0$ then it follows directly from equation (3.2a) that $\text{Hom}(\Omega \Lambda, \Lambda) \cong \text{Hom}(Q^1, \Lambda)$ and $\text{HH}^2(\Lambda) = 0$.

Now if we assume $\text{Hom}(Q^2, \Lambda) \neq 0$ and $\text{Im } d_2 = 0$, then $\text{HH}^2(\Lambda) = \text{Ker } d_3/\text{Im } d_2 \cong \text{Hom}(Q^2, \Lambda)$. Again it follows directly from (3.2a) that $\mathrm{Hom}(\Omega \Lambda, \Lambda) \cong \mathrm{Hom}(Q^1, \Lambda)$.

Now in sequence (3.1), we know that $\text{Hom}(\Lambda,\Lambda) \cong Z(\Lambda) = HH^0(\Lambda)$ and that $\text{Hom}(\Omega\Lambda,\Lambda) \cong$ $\mathrm{Hom}(Q^1,\Lambda),$ so we get:

$$
0 \to HH^{0}(\Lambda) \to \text{Hom}(Q^{0}, \Lambda) \to \text{Hom}(Q^{1}, \Lambda) \to HH^{1}(\Lambda) \to 0.
$$
 (3.1a)

So dim HH⁰(Λ) – dim Hom(Q^0 , Λ) + dim Hom(Q^1 , Λ) – dim HH¹(Λ) = 0. Therefore, dim HH¹(Λ) = dim HH⁰(Λ) – dim Hom(Q^0 , Λ) + dim Hom(Q^1 , Λ). \Box

The next results describe $Hom(Q^i, \Lambda)$, for $i = 0, 1, 2$.

Theorem 3.2. *There is an isomorphism of vector spaces* $\text{Hom}(\Lambda e \otimes f \Lambda, \Lambda) \cong e \Lambda f$.

Proof. Let α : Hom($\Lambda e \otimes f\Lambda, \Lambda$) $\to e\Lambda f$ be defined by $\phi \mapsto \phi(e \otimes f)$, where $\phi : \Lambda e \otimes f\Lambda \to \Lambda$. Then it is direct to show that α is an isomorphism. \Box

Theorem 3.3. *With the notation of this section and section 1,*

i) Hom $(Q^0, \Lambda) = \bigoplus_{v, vertex} \mathfrak{o}(v) \Lambda \mathfrak{t}(v)$. \mathbf{i} *i*) $\text{Hom}(Q^1, \Lambda) = \bigoplus_{a, \text{arrow}} \mathfrak{o}(a) \Lambda \mathfrak{t}(a).$ *iii*) $\text{Hom}(Q^2, \Lambda) = \bigoplus_{x \in g^2} \mathfrak{o}(x) \Lambda \mathfrak{t}(x)$.

Proof. i) $\text{Hom}(Q^0, \Lambda) = \text{Hom}(\bigoplus_{v, vertex} \Lambda \mathfrak{o}(v) \otimes \mathfrak{t}(v) \Lambda, \Lambda) = \bigoplus_{v, vertex} \text{Hom}(\Lambda \mathfrak{o}(v) \otimes \mathfrak{t}(v) \Lambda, \Lambda) \cong$ $\bigoplus_{v,vertex} \mathfrak{o}(v) \Lambda \mathfrak{t}(v)$ by Theorem [3.2.](#page-3-0) Similarly, we can prove ii) and iii).

Remarks: i) dim $\text{Hom}(Q^0, \Lambda) = \sum_{v,vertex} \text{dim } \mathfrak{o}(v) \Lambda \mathfrak{t}(v)$. ii) dim Hom $(Q^1, \Lambda) = \sum_{a, \arrow w}$ dim $\mathfrak{o}(a)\Lambda(\{a\}).$ iii) dim Hom $(Q^2, \Lambda) = \sum_{x \in g^2}$ dim $\mathfrak{o}(x) \Lambda \mathfrak{t}(x)$.

Theorem 3.4. *If* Q *is connected and has no oriented cycles then* dim Im $d_1 = n-1$ *, where* n=number *of vertices.*

Proof. Since $d_1: \text{Hom}(Q^0, \Lambda) \to \text{Hom}(Q^1, \Lambda)$, then we get the exact sequence:

$$
0 \to \text{Ker } d_1 \to \text{Hom}(Q^0, \Lambda) \to \text{Im } d_1 \to 0.
$$

Then by Theorem [2.2](#page-1-1) we have dim $\text{Im } d_1 = \text{dim Hom}(Q^0, \Lambda) - \text{dim Ker } d_1$, and $\text{Hom}(Q^0, \Lambda) \cong \bigoplus_{n \text{ vertex}} \mathfrak{o}(v) \Lambda(v)$. So dim $\text{Hom}(Q^0, \Lambda) = n$, since Q has no oriented cycles. Also $\text{HH}^0(\Lambda) \cong K$. $v, v_{v,\text{vertex}}$ o(v) Λ t(v). So dim $\text{Hom}(Q^0, \Lambda) = n$, since Q has no oriented cycles. Also $\text{HH}^0(\Lambda) \cong K.$ Therefore dim HH⁰(Λ) = 1. On the other hand, HH⁰(Λ) = $Ext^0(\Lambda, \Lambda)$ = Ker d_1 by Definition [2.1.](#page-1-2) Hence, dim Ker $d_1 = 1$. Therefore, dim Im $d_1 = n - 1$. \Box

We know that $HH^1(\Lambda) = \text{Ker } d_2/\text{Im } d_1$. By using Theorem [3.4](#page-4-0) we can find dim Im d_1 . To find dim Ker d_2 , Theorem [3.6](#page-4-1) below has been identified. A definition of a monomial algebra is needed first.

Definition 3.5. ([1], Definition 1.17) Let $\Lambda = KQ/I$. Then Λ is a monomial algebra if I is generated by a set of paths in KQ each of length at least 2.

Theorem 3.6. *Suppose that* Q *is connected and ha s no oriented cycles. Let* Λ = KQ/I *be a finitedimensional monomial algebra.Suppose also whenever* $a_1 \cdots a_n$ *is a minimal generator of I then* dim $\mathfrak{o}(a_i) \Lambda(\{a_i\})$ =number of arrows from $\mathfrak{o}(a_i)$ to $\mathfrak{t}(a_i)$ for $i = 1, \ldots, n$.

i) If Λ has only one relation, namely $a_1 \cdots a_n$, then $\dim \text{Ker} d_2 = \dim \text{Hom}(Q^1, \Lambda) - \sum_{k=1}^n m_k$ *where* $m_k = \dim \mathfrak{o}(a_k) \Lambda \mathfrak{t}(a_k) - 1$.

ii) If the minimal set of generators of I is precisely the set of paths from $o(a_1)$ to $t(a_n)$. Then $\operatorname{Ker} d_2 = \operatorname{Hom}(Q^1, \Lambda).$

iii) Special case: if dim $\mathfrak{o}(a_i) \Lambda t(a_i) = 1$ *for all arrows* a_i *in* Q *then* dim Ker d_2 = number of arrows.

Proof. Since we have the map $d_1 : \text{Hom}(Q^0, \Lambda) \to \text{Hom}(Q^1, \Lambda)$, then we get the exact sequence:

$$
0 \to \text{Ker } d_2 \to \text{Hom}(Q^1, \Lambda) \to \text{Im } d_2 \to 0.
$$

Therefore,

 $\dim \, \mathrm{Ker} \, d_2 \, = \, \dim \mathrm{Hom}(Q^1,\Lambda) - \dim \, \mathrm{Im} \, d_2$ and $\mathrm{Hom}(Q^1,\Lambda) \cong \bigoplus_{(a, \mathop{\mathrm{arrow}})\mathop{\mathrm{op}}\nolimits}(a) \Lambda \mathfrak{t}(a).$ Since Λ is a monomial algebra, I is generated by monomial relations. Fix a minimal generation set of monomials for I. Suppose that $r = a_1 \cdots a_n$ is one of these minimal relations. Then a typical element of $o(a_i)$ Λt (a_i) is a linear combination of paths from $o(a_i)$ to $t(a_i)$. By hypothesis, a path from $o(a_i)$ to $t(a_i)$ is an arrow from $\mathfrak{o}(a_i)$ to $t(a_i)$. So $\mathfrak{o}(a_i)$ Λ $t(a_i)$ has typical element of the form $c_{a_i}a_i + \sum_{j=1}^{m_k}c_{i_j}\beta_{i_j}$, for some $c_{a_i},c_{i_j}\in K$ and arrows β_{i_j} from $\mathfrak{o}(a_i)$ to $\mathfrak{t}(a_i)$ $(\beta_{i_j}\neq a_i).$ Now let $g\in{\rm Hom}(Q^1,\Lambda).$ Then $g:Q^1\to\Lambda$ is given by $\mathfrak{o}(a)\otimes\mathfrak{t}(a)\mapsto\mathfrak{o}(a)\lambda_a\mathfrak{t}(a)$ for each arrow $a.$ Also

$$
gA_2(\mathfrak{o}(r) \otimes \mathfrak{t}(r)) = g(\mathfrak{o}(a_1) \otimes a_2 \cdots a_n + a_1 \otimes a_3 \cdots a_n + \cdots + a_1 \cdots a_{n-1} \otimes \mathfrak{t}(a_n))
$$

= $g(\mathfrak{o}(a_1) \otimes \mathfrak{t}(a_1))a_2 \cdots a_n + a_1g(\mathfrak{o}(a_2) \otimes \mathfrak{t}(a_2))a_3 \cdots a_n + \cdots$
+ $a_1 \cdots a_{n-1}g(\mathfrak{o}(a_n) \otimes \mathfrak{t}(a_n))$
= $(\mathfrak{o}(a_1)\lambda_{a_1}\mathfrak{t}(a_1))a_2 \cdots a_n + a_1(\mathfrak{o}(a_2)\lambda_{a_2}\mathfrak{t}(a_2))a_3 \cdots a_n + \cdots$

 $+a_1 \cdots a_{n-1}(\mathfrak{o}(a_n)\lambda_{a_n}\mathfrak{t}(a_n)).$

So if $\lambda_{a_i}=c_{a_i}a_i+\sum_{j=1}^{m_k}c_{i_j}\beta_{i_j}$ then $gA_2(\mathfrak{o}(r)\otimes\mathfrak{t}(r))=(c_{a_1}a_1+\sum_{j=1}^{m_1}c_{1_j}\beta_{1_j})a_2\cdots a_n+a_1(c_{a_2}a_2+\sum_{j=1}^{m_1}c_{1_j}\beta_{1_j})a_1\cdots a_n$ $\sum_{i=1}^{m_2} c_{2i} \beta_{2i}$) $a_3 \cdots a_n + \ldots + a_1 \cdots a_{n-1} (c_{a_n} a_n + \sum_{i=1}^{m_n} c_{n_i} \beta_{n_i}).$ (3.3) $j=1 \choose j=1 \choose 2j \beta_2j} a_3 \cdots a_n + \ldots + a_1 \cdots a_{n-1} (c_{a_n} a_n + \sum_{j=1}^{m_n} c_{n_j} \beta_{n_j})$

For i) assume that Λ has only one relation, say $r = a_1 \cdots a_n$. Since $\beta_{i_j} \neq a_i$, so $\beta_{1_i} a_2 \cdots a_n \neq a_i$ $0, a_1\beta_{2i}a_3\cdots a_n\neq 0$, etc. Moreover, they are all linearly independent. Let $g \in \text{Ker }d_2$, then $gA_2=0$ and $g\in\mathrm{Hom}(Q^1,\Lambda).$ Hence from (3.3), $c_{i_j}=0,$ for all $i.$ Therefore, $g(\mathfrak{o}(a_i)\otimes\mathfrak{t}(a_i))=c_{a_i}a_i$ for $i=$ $1,\ldots,n$ and $g(\mathfrak{o}(a)\otimes\mathfrak{t}(a))=\mathfrak{o}(a)\lambda\mathfrak{t}(a)$ for $a\neq a_1,\ldots,a_n$. Hence $\dim \text{Ker}\, d_2=\dim \text{Hom}(Q^1,\Lambda)-1$ $\sum_{k=1}^n m_k$, where $m_k = \dim o(a_k)\Lambda t(a_k) - 1$.

For ii) suppose each minimal generator of I is of the form $r = \gamma_1 \cdots \gamma_n$, where γ_i is some a_i or $\beta_{i_j}.$ Recall that β_{i_j} is an arrow from $\mathfrak{o}(a_i)$ to $\mathfrak{t}(a_i).$ By using similar process to the one used in i) we $\mathsf{g\check{e}t}$ for $g\in \mathrm{Hom}(Q^1,\Lambda)$ that $gA_2(\mathfrak{o}(r)\otimes \mathfrak{t}(r))=(\mathfrak{o}(\gamma_1)\lambda_{\gamma_1}\mathfrak{t}(\gamma_1))\gamma_2\cdots\gamma_n+\gamma_1(\mathfrak{o}(\gamma_2)\lambda_{\gamma_2}\mathfrak{t}(\gamma_2))\gamma_3\cdots\gamma_n+$ $\ldots + \gamma_1 \cdots \gamma_{n-1}(\mathfrak{o}(\gamma_n)\lambda_{\gamma_n}\mathfrak{t}(\gamma_n))$. Since $\lambda_{\gamma_i} \in \mathfrak{o}(\gamma_i)\Lambda \mathfrak{t}(\gamma_i) = \mathfrak{o}(a_i)\Lambda \mathfrak{t}(a_i)$ we may write $\lambda_{\gamma_i} = c_{\gamma_i}\gamma_i + c_{\gamma_i}$ $\sum_{j=1}^{m_k}c_{i_j}\beta_{i_j},$ for some $c_{\gamma_i},c_{i_j}\in K.$ Then as in equation (3.3) we have $gA_2(\mathfrak{o}(r)\otimes\mathfrak{t}(r))=(c_{\gamma_1}\gamma_1+c_{\gamma_2})$ $\sum_{j=1}^{m_1}c_{1_j}\beta_{1_j}^{\cdot}\gamma_2\cdots\gamma_n+\gamma_1(c_{\gamma_2}^{\cdot}\gamma_2+\sum_{j=1}^{m_2}c_{2_j}\beta_{2_j})\gamma_3\cdots\gamma_n+\ldots+\gamma_1\cdots\gamma_{n-1}(c_{\gamma_n}\gamma_n+\sum_{j=1}^{m_n}c_{n_j}\beta_{n_j})=0.$ Therefore, $g \in \text{Ker } d_2$ so $\text{Ker } d_2 = \text{Hom}(Q^1, \Lambda)$.

iii) Special case: assume $\dim o(a_i) \Lambda t(a_i) = 1$ for all arrows $a_i \in Q$. Then $o(a_i) \lambda_{a_i} t(a_i) = c_{a_i} a_i$, where $c_{a_i}\in K.$ So, for $g\in \mathrm{Hom}(Q^1,\Lambda)$ and any relation $r=a_1\cdots a_n,$ the equation (3.3) becomes

 $gA_2(\mathfrak{o}(r) \otimes \mathfrak{t}(r)) = c_{a_1} a_1 \cdots a_n + a_1 c_{a_2} a_2 \cdots a_n + \ldots + a_1 \cdots a_{n-1} c_{a_n} a_n$

$$
= (c_{a_1} + c_{a_2} + \ldots + c_{a_n})(a_1 \cdots a_n) = 0.
$$

Therefore, $g \in \text{Ker } d_2$ so $\text{Ker } d_2 = \text{Hom}(Q^1, \Lambda)$. Since $\dim \mathfrak{o}(a_i) \Lambda \mathfrak{t}(a_i) = 1$, then $\dim \text{Hom}(Q^1, \Lambda) = 1$ number of arrows. Hence \dim Ker d_2 = number of arrows.

Note that once we have described Ker d_2 , then we can find Im d_2 . Thus we can describe $HH¹(\Lambda)$ and $HH^2(\Lambda)$, in the cases $Q^i = 0 \ \forall i \geq 3$, i.e., where Ker $d_3 = \text{Hom}(Q^2, \Lambda)$.

An Example. Let $\Lambda = KQ/I$ where Q is the quiver with two arrows α and β from the vertex 1 to the vertex 2, an arrow γ from the vertex 2 to the vertex 3 and $I = \langle \alpha \gamma \rangle$. The algebra Q is connected and has no oriented cycles and Λ has only one relation. From Theorem [3.6\(](#page-4-1)i), $\dim \text{Ker } d_2 = \text{Hom}(Q^1, \Lambda) - (m_1 + m_2)$, where $m_1 = \text{(number of arrows from } \mathfrak{o}(\alpha) \text{ to } \mathfrak{t}(\alpha)) - 1$, so $m_1 = 1$, and $m_2 =$ (number of arrows from $\mathfrak{o}(\gamma)$ to $\mathfrak{t}(\gamma)$) − 1, so $m_2 = 0$. By using Theorem [3.3,](#page-3-1) dim Hom $(Q^1, \Lambda) = \sum_{a,arrow}$ dim $\mathfrak{o}(a) \Lambda t(a) =$ dim $e_1 \Lambda e_2 +$ dim $e_1 \Lambda e_2 +$ dim $e_2 \Lambda e_3 = 2 + 2 + 1 = 5$. Hence, dim Ker $d_2 = 5 - 1 = 4$. Therefore, dim $HH^1(\Lambda) = \dim \text{Ker } d_2 - \dim \text{Im } d_1 = 4 - 2 = 2$, since dim $\text{Im } d_1 = n - 1 = 3 - 1 = 2$ from Theorem [3.4.](#page-4-0)

Now we will find $HH^2(\Lambda)$. Since $d_3: Hom(Q^2, \Lambda) \to 0$, then Ker $d_3 = Hom(Q^2, \Lambda)$. Again by using Theorem [3.3,](#page-3-1) dim $\text{Hom}(Q^2, \Lambda) = \sum_{r \in g^2} \text{dim } \mathfrak{o}(r) \Lambda f(r) = \text{dim } e_1 \Lambda e_3 = 1$, since $g^2 = {\alpha \gamma}.$ On the other hand, dim Im $d_2 = m_1 + m_2 = 1$, since dim Ker $d_2 = \dim \text{Hom}(Q^1, \Lambda) - \dim \text{Im} d_2$. Hence, dim $HH^2(\Lambda) = \dim \text{Ker } d_3 - \dim \text{Im } d_2 = 1 - 1 = 0.$

4 Conclusion

We have introduced in Section [3](#page-2-0) some results to help in computing the low-dimensional Hochschild cohomology groups for some finite-dimensional monomial algebra Λ over an algebraically closed field K .

Acknowledgment

I thank my husband Jehad for his encouragement.

Competing Interests

The author declares that no competing interests exist.

References

- [1] Al-Kadi, D. Self-injective algebras and the second Hochschild cohomology group. J. Algebra, 2009;321:1049-1078.
- [2] Happel D. Hochschild cohomology of finite-dimensional algebras. Lecture Notes in Mathematics. Springer-Verlag, 1989;1404:108-126.
- [3] Gerstenhaber M. On the deformations of rings and algebras. Ann of Math., 1964;79:59-103.
- [4] Green EL, Snashall N. Projective bimodule resolutions of an algebra and vanishing of the second Hochschild cohomology group. Forum Math. 2004;16:17-36.
- [5] Jans JP. Rings and homology, Holt, Rinehart and Winston, New York; 1964.
- [6] Maclane S. Homology, Springer-Verlag, Berlin and New York; 1995.
- [7] Green EL, Zacharia D. The cohomology ring of a monomial algebra. Manuscripta mathematica. 1994;85:11-23.

 $\mathcal{L}=\{1,2,3,4\}$, we can consider the constant of $\mathcal{L}=\{1,3,4\}$

 c *2013 Deena Al-Kadi; This is an Open Access article distributed under the terms of the Creative Commons Attribution License [http://creativecommons.org/licenses/by/3.0,](http://creativecommons.org/licenses/by/3.0) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.*

Peer-review history:

The peer review history for this paper can be accessed here (Please copy paste the total link in your browser address bar)

www.sciencedomain.org/review-history.php?iid=240&id=6&aid=1920