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Abstract

In this paper we find some results on computing the low-dimensional Hochschild cohomology

groups for some finite-dimensional monomial algebra over an algebraically closed field K. The

low-dimensional Hochschild cohomology groups have an important interpretations within algebra

and geometry.
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1 Introduction
The main goal of this paper is to give results to use in determining the low-dimensional Hochschild
cohomology groups of some finite-dimensional algebra Λ for which Λ = KQ/I. We assume
throughout that Q is a quiver over an algebraically closed field K and I is an admissible ideal
in KQ. Al-Kadi in ([1], Theorem 3.6) gives a general theorem on the vanishing of the second
Hochschild cohomology group for most of the finite dimensional self-injective algebras of finite
representation type of types D and E.

The low-dimensional Hochschild cohomology groups HH0(Λ),HH1(Λ) and HH2(Λ) (defined
below) have an important interpretation within algebra such as derivations and extensions. In [2],
Happel shows that HH0(Λ) is the center of Λ and that the group HH1(Λ) is related to derivations
of an algebra. The derivations of Λ form the set {δ ∈ HomK(Λ,Λ)|δ(ab) = aδ(b) + δ(a)b}. It was
also noted by Gerstenhaber in [3] that there are connections to algebraic geometry. In fact, HH2(Λ)
controls the deformations of an algebra. Within algebraic geometry it is important to know whether
or not HH2(Λ) is zero. This paper is concerned with the low dimensional Hochschild cohomology
groups as from an algebraic point of view and with finding the dimension of HHi(Λ) for i = 0, 1, 2.
Our main theorems are Theorem 3.4 and Theorem 3.6 stated as follows.
Theorem 3.4. If Q is connected and has no oriented cycles then dim Im d1 = n−1, where n=number
of vertices.
Theorem 3.6. Suppose that Q is connected and has no oriented cycles. Let Λ = KQ/I be a
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finite-dimensional monomial algebra.Suppose also whenever a1 · · · an is a minimal generator of I
then dim o(ai)Λt(ai)=number of arrows from o(ai)to t(ai) for i = 1, . . . , n.

i) If Λ has only one relation, namely a1 · · · an, then dim Ker d2 = dim Hom(Q1,Λ) −Σnk=1mk

where mk = dim o(ak)Λt(ak)− 1.
ii) If the minimal set of generators of I is precisely the set of paths from o(a1) to t(an). Then

Ker d2 = Hom(Q1,Λ).
iii) Special case: if dim o(ai)Λt(ai) = 1 for all arrows ai in Q then dim Ker d2 = number of

arrows.
Our paper is organized as follows. In Section 2, we briefly review the related definitions and

theorems of Hochschild cohomology. We also include a short description of the projective resolution
of [4]. In Section 3, we present the results we found to compute the dimension of the low-dimensional
Hochschild cohomology groups and we conclude with an example.

2 Preliminaries
In this section we recall some standard definitions and theorems. We have not included the proofs
if the results are well known or direct to prove.

Let Λ be a finite-dimensional algebra over a field K. Then any left Λ-module, say M , has a
projective resolution which is an exact sequence

· · · → Pn
An→ Pn−1

An−1→ · · · A1→ P0
A0→M → 0, (2.1)

such that each Pi is a projective module.
Notation: If

· · · → Pn
An→ Pn−1

An−1→ · · · A3→ P2
A2→ P1

A1→ P0
A0→M → 0,

is a minimal projective resolution for M then KerAn := Ωn+1(M).
Given a sequence as (2.1) we may form the complex by taking homomorphisms of each of the

terms into N . This gives the complex (2.2) below:

0→ Hom(M,N)
d0→ Hom(P0, N)

d1→ Hom(P1, N)
d2→ · · ·

dn−1→ Hom(Pn−1, N)
dn→ · · ·

It is a sequence of modules and maps such that composition of any two adjacent maps is zero.
This is the same as saying dn ◦dn−1 = 0 that is, Im dn−1 ⊂ Ker dn. This sequence is not necessarily
exact, and leads to the extensions.

Definition 2.1. ([5], p33,p44]). Let N and M be two Λ-modules. For any projective resolution of M
as in (2.1) let dn : Hom(Pn−1, N)→ Hom(Pn, N) be the induced map for all n ≥ 1 as in (2.2). Then

ExtnΛ(M,N) = Ker dn+1/Im dn for n ≥ 0,

where Ext0Λ(M,N) = Ker d1. The group ExtnΛ(M,N) is called the n-th cohomology group derived
from the functor Hom(−, N). Moreover, Ext0Λ(M,N) = Hom(M,N).

Theorem 2.2. If
0→ A

g→ B
f→ C → 0

is an exact sequence of vector spaces then dim B = dim A+ dim C.

Definition 2.3. Definition: ([6], p287) Let Λ be a finite-dimensional algebra over a field K. The n-
th Hochschild cohomology group HHn(Λ) is ExtnΛe(Λ,Λ), where Λe = Λ ⊗K Λop is the enveloping
algebra of Λ.
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The next two theorems help us to find the zero Hochschild cohomology group:

Theorem 2.4. HH0(Λ) = Z(Λ) where Z(Λ) is the center of Λ.

Theorem 2.5. If Q has no oriented cycles then Z(Λ) = K.

To find the Hochschild cohomology groups for some finite dimensional algebras Λ, a projective
resolution of Λ as Λe-module is needed. The next definition is written using ([4], Theorem2.9).

In general for Λ = KQ/I where Q is a quiver and I is an admissible ideal of KQ, a minimal
projective resolution of Λ as a Λ,Λ-bimodule begins:

· · · → Q2 A2→ Q1 A1→ Q0 A0→ Λ→ 0,

where
Q0 =

⊕
v,vertex

Λv ⊗ vΛ,

Q1 =
⊕

a,arrow

Λo(a)⊗ t(a)Λ,

Q2 =
⊕
x∈g2

Λo(x)⊗ t(x)Λ,

where g2 is a minimal set of relations for the ideal I. Note that we write o(a) for the origin of
the arrow a and t(a) for the end of a. Next we will define the maps A0, A1 and A2. The map
A0 : Q0 → Λ, is the multiplication map so is given by v ⊗ v 7→ v. The map A1 : Q1 → Q0 , is a
Λ,Λ-homomorphism and is given by o(a)⊗ t(a) 7→ o(a)⊗ o(a)a− at(a)⊗ t(a) for each arrow a. To
define the map A2 : Q2 → Q1, let x be one of the minimal relations.

o(x)⊗ t(x) 7→
r∑
j=1

cj(

sj∑
k=1

a1j · · · a(k−1)j ⊗ a(k+1)j · · · asjj),

where a1j · · · a(k−1)j ⊗ a(k+1)j · · · asjj ∈ Λo(akj)⊗ t(akj)Λ.
In this paper the projective resolution is

0→ Q2 A2→ Q1 A1→ Q0 A0→ Λ→ 0,

that is, Qi = 0, for i ≥ 3. (We assume here that Qi = 0, for i ≥ 3.)
In the next section, we found some general results to describe the low dimensional Hochschild

cohomology groups.

3 Results
Theorem 3.1. Let Λ = KQ/I. Suppose that Q is connected and has no oriented cycles. Suppose
that 0 → Q2 → Q1 → Q0 → Λ → 0 is a projective resolution of Λ. Then HH0(Λ) ∼= K. If
Hom(Q2,Λ) 6= 0 and if Im d2 = 0, where d2 : Hom(Q1,Λ) → Hom(Q2,Λ), then we have HH2(Λ) ∼=
Hom(Q2,Λ) and dim HH1(Λ) = dim HH0(Λ)− dim Hom(Q0,Λ) + dim Hom(Q1,Λ). If Hom(Q2,Λ)
= 0, then HH2(Λ) = 0.

We present a summary of the proof next.

Proof. Since Q does not contain an oriented cycle then by Theorem 2.4 and Theorem 2.5 we have
HH0(Λ) ∼= K.

Starting with the minimal projective resolution of Λ:
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0→ Q2 A2→ Q1 A1→ Q0 A0→ Λ→ 0,

we get the complex:

0→ Hom(Λ,Λ)→ Hom(Q0,Λ)
d1→ Hom(Q1,Λ)

d2→ Hom(Q2,Λ)
d3→ 0.

We will need some assumptions on Hom(Q2,Λ). To start consider the short exact sequence:

0→ KerA0 = ΩΛ→ Q0 A0→ Λ→ 0.

Then we get the following sequence:

0→ Hom(Λ,Λ)→ Hom(Q0,Λ)→ Hom(ΩΛ,Λ)→ HH1(Λ)→ 0, (3.1)

where HH1(Λ) = Ext1Λe(Λ,Λ).
By repeating the steps but with a short exact sequence containing ΩΛ. i.e. by using the short

exact sequence:
0→ KerA1 = Ω2Λ→ Q1 A1→ ΩΛ→ 0,

we get the following sequence:

0→ Hom(ΩΛ,Λ)→ Hom(Q1,Λ)→ Hom(Ω2Λ,Λ)→ HH2(Λ)→ 0, (3.2)

where HH2(Λ) = Ext1Λe(ΩΛ,Λ).
We also have the short exact sequence that contains Ω2Λ:

0→ KerA2 = Ω3Λ→ Q2 A2→ Ω2Λ→ 0.

But KerA2 = Ω3Λ = 0, so Q2 ∼= Ω2Λ. Now substitute it in (3.2) to get:

0→ Hom(ΩΛ,Λ)→ Hom(Q1,Λ)→ Hom(Q2,Λ)→ HH2(Λ)→ 0. (3.2a)

If we make the assumption that Hom(Q2,Λ) = 0 then it follows directly from equation (3.2a) that
Hom(ΩΛ,Λ) ∼= Hom(Q1,Λ) and HH2(Λ) = 0.

Now if we assume Hom(Q2,Λ) 6= 0 and Im d2 = 0, then HH2(Λ) = Ker d3/Im d2
∼= Hom(Q2,Λ).

Again it follows directly from (3.2a) that Hom(ΩΛ,Λ) ∼= Hom(Q1,Λ).
Now in sequence (3.1), we know that Hom(Λ,Λ) ∼= Z(Λ) = HH0(Λ) and that Hom(ΩΛ,Λ) ∼=

Hom(Q1,Λ), so we get:

0→ HH0(Λ)→ Hom(Q0,Λ)→ Hom(Q1,Λ)→ HH1(Λ)→ 0. (3.1a)

So dim HH0(Λ)−dim Hom(Q0,Λ)+dim Hom(Q1,Λ)−dim HH1(Λ) = 0. Therefore, dim HH1(Λ) =
dim HH0(Λ)− dim Hom(Q0,Λ) + dim Hom(Q1,Λ).

The next results describe Hom(Qi,Λ), for i = 0, 1, 2.

Theorem 3.2. There is an isomorphism of vector spaces Hom(Λe⊗ fΛ,Λ) ∼= eΛf.

Proof. Let α : Hom(Λe⊗ fΛ,Λ)→ eΛf be defined by φ 7→ φ(e⊗ f), where φ : Λe⊗ fΛ→ Λ. Then
it is direct to show that α is an isomorphism.

Theorem 3.3. With the notation of this section and section 1,
i) Hom(Q0,Λ) =

⊕
v,vertex o(v)Λt(v).

ii) Hom(Q1,Λ) =
⊕

a,arrow o(a)Λt(a).

iii) Hom(Q2,Λ) =
⊕

x∈g2 o(x)Λt(x).
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Proof. i) Hom(Q0,Λ) = Hom(
⊕

v,vertex Λo(v) ⊗ t(v)Λ,Λ) =
⊕

v,vertex Hom(Λo(v) ⊗ t(v)Λ,Λ) ∼=⊕
v,vertex o(v)Λt(v) by Theorem 3.2. Similarly, we can prove ii) and iii).

Remarks: i) dim Hom(Q0,Λ) =
∑
v,vertex dim o(v)Λt(v).

ii) dim Hom(Q1,Λ) =
∑
a,arrorw dim o(a)Λt(a).

iii) dim Hom(Q2,Λ) =
∑
x∈g2 dim o(x)Λt(x).

Theorem 3.4. IfQ is connected and has no oriented cycles then dim Im d1 = n−1, where n=number
of vertices.

Proof. Since d1 : Hom(Q0,Λ)→ Hom(Q1,Λ), then we get the exact sequence:

0→ Ker d1 → Hom(Q0,Λ)→ Im d1 → 0.

Then by Theorem 2.2 we have dim Im d1 = dim Hom(Q0,Λ) − dim Ker d1, and Hom(Q0,Λ) ∼=⊕
v,vertix o(v)Λt(v). So dim Hom(Q0,Λ) = n, since Q has no oriented cycles. Also HH0(Λ) ∼= K.

Therefore dim HH0(Λ) = 1. On the other hand, HH0(Λ) = Ext0(Λ,Λ) = Ker d1 by Definition 2.1.
Hence, dim Ker d1 = 1. Therefore, dim Im d1 = n− 1.

We know that HH1(Λ) = Ker d2/Im d1. By using Theorem 3.4 we can find dim Im d1. To find
dim Ker d2, Theorem 3.6 below has been identified. A definition of a monomial algebra is needed
first.

Definition 3.5. ([1], Definition 1.17) Let Λ = KQ/I. Then Λ is a monomial algebra if I is generated
by a set of paths in KQ each of length at least 2.

Theorem 3.6. Suppose that Q is connected and ha s no oriented cycles. Let Λ = KQ/I be a finite-
dimensional monomial algebra.Suppose also whenever a1 · · · an is a minimal generator of I then
dim o(ai)Λt(ai)=number of arrows from o(ai)to t(ai) for i = 1, . . . , n.

i) If Λ has only one relation, namely a1 · · · an, then dim Ker d2 = dim Hom(Q1,Λ) −Σnk=1mk

where mk = dim o(ak)Λt(ak)− 1.
ii) If the minimal set of generators of I is precisely the set of paths from o(a1) to t(an). Then

Ker d2 = Hom(Q1,Λ).
iii) Special case: if dim o(ai)Λt(ai) = 1 for all arrows ai inQ then dim Ker d2 = number of arrows.

Proof. Since we have the map d1 : Hom(Q0,Λ)→ Hom(Q1,Λ), then we get the exact sequence:

0→ Ker d2 → Hom(Q1,Λ)→ Im d2 → 0.

Therefore,
dim Ker d2 = dimHom(Q1,Λ) − dim Im d2 and Hom(Q1,Λ) ∼=

⊕
(a,arrow) o(a)Λt(a). Since Λ is a

monomial algebra, I is generated by monomial relations. Fix a minimal generation set of monomials
for I. Suppose that r = a1 · · · an is one of these minimal relations. Then a typical element of
o(ai)Λt(ai) is a linear combination of paths from o(ai) to t(ai). By hypothesis, a path from o(ai) to
t(ai) is an arrow from o(ai) to t(ai). So o(ai)Λt(ai) has typical element of the form caiai+ Σ

mk
j=1cijβij

, for some cai , cij ∈ K and arrows βij from o(ai) to t(ai) (βij 6= ai). Now let g ∈ Hom(Q1,Λ). Then
g : Q1 → Λ is given by o(a)⊗ t(a) 7→ o(a)λat(a) for each arrow a. Also

gA2(o(r)⊗ t(r)) = g(o(a1)⊗ a2 · · · an + a1 ⊗ a3 · · · an + . . .+ a1 · · · an−1 ⊗ t(an))

= g(o(a1)⊗ t(a1))a2 · · · an + a1g(o(a2)⊗ t(a2))a3 · · · an + . . .
+a1 · · · an−1g(o(an)⊗ t(an))

= (o(a1)λa1 t(a1))a2 · · · an + a1(o(a2)λa2 t(a2))a3 · · · an + . . .
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+a1 · · · an−1(o(an)λan t(an)).
So if λai = caiai + Σ

mk
j=1cijβij then gA2(o(r) ⊗ t(r)) = (ca1a1 + Σm1

j=1c1jβ1j )a2 · · · an + a1(ca2a2 +
Σm2
j=1c2jβ2j )a3 · · · an + . . .+ a1 · · · an−1(canan + Σmn

j=1cnjβnj ). (3.3)
For i) assume that Λ has only one relation, say r = a1 · · · an. Since βij 6= ai, so β1ja2 · · · an 6=

0, a1β2ja3 · · · an 6= 0, etc. Moreover, they are all linearly independent. Let g ∈ Ker d2, then gA2 = 0
and g ∈ Hom(Q1,Λ). Hence from (3.3), cij = 0, for all i. Therefore, g(o(ai) ⊗ t(ai)) = caiai for i =
1, . . . , n and g(o(a) ⊗ t(a)) = o(a)λt(a) for a 6= a1, . . . , an. Hence dim Ker d2 = dim Hom(Q1,Λ) −
Σnk=1mk, where mk = dim o(ak)Λt(ak)− 1.

For ii) suppose each minimal generator of I is of the form r = γ1 · · · γn, where γi is some ai or
βij . Recall that βij is an arrow from o(ai) to t(ai). By using similar process to the one used in i) we
get for g ∈ Hom(Q1,Λ) that gA2(o(r)⊗t(r)) = (o(γ1)λγ1 t(γ1))γ2 · · · γn+γ1(o(γ2)λγ2 t(γ2))γ3 · · · γn+
. . . + γ1 · · · γn−1(o(γn)λγn t(γn)). Since λγi ∈ o(γi)Λt(γi) = o(ai)Λt(ai) we may write λγi = cγiγi +
Σ
mk
j=1cijβij , for some cγi , cij ∈ K. Then as in equation (3.3) we have gA2(o(r) ⊗ t(r)) = (cγ1γ1 +

Σm1
j=1c1jβ1j )γ2 · · · γn + γ1(cγ2γ2 + Σm2

j=1c2jβ2j )γ3 · · · γn + . . .+ γ1 · · · γn−1(cγnγn + Σmn
j=1cnjβnj ) = 0.

Therefore, g ∈ Ker d2 so Ker d2 = Hom(Q1,Λ).
iii) Special case: assume dim o(ai)Λt(ai) = 1 for all arrows ai ∈ Q. Then o(ai)λai t(ai) = caiai,

where cai ∈ K. So, for g ∈ Hom(Q1,Λ) and any relation r = a1 · · · an, the equation (3.3) becomes

gA2(o(r)⊗ t(r)) = ca1a1 · · · an + a1ca2a2 · · · an + . . .+ a1 · · · an−1canan

= (ca1 + ca2 + . . .+ can)(a1 · · · an) = 0.

Therefore, g ∈ Ker d2 so Ker d2 = Hom(Q1,Λ). Since dim o(ai)Λt(ai) = 1, then dim Hom(Q1,Λ) =
number of arrows. Hence dim Ker d2 = number of arrows.

Note that once we have described Ker d2, then we can find Im d2. Thus we can describe HH1(Λ)
and HH2(Λ), in the cases Qi = 0 ∀i ≥ 3, i.e., where Ker d3 = Hom(Q2,Λ).

An Example. Let Λ = KQ/I where Q is the quiver with two arrows α and β from the vertex
1 to the vertex 2, an arrow γ from the vertex 2 to the vertex 3 and I = 〈αγ〉. The algebra
Q is connected and has no oriented cycles and Λ has only one relation. From Theorem 3.6(i),
dim Ker d2 = Hom(Q1,Λ)− (m1 +m2), where m1 = (number of arrows from o(α) to t(α))− 1, so
m1 = 1, and m2 = (number of arrows from o(γ) to t(γ)) − 1, so m2 = 0. By using Theorem 3.3,
dim Hom(Q1,Λ) = Σa,arrow dim o(a)Λt(a) = dim e1Λe2 + dim e1Λe2 + dim e2Λe3 = 2 + 2 + 1 = 5.
Hence, dim Ker d2 = 5 − 1 = 4. Therefore, dim HH1(Λ) = dim Ker d2 − dim Im d1 = 4 − 2 = 2,
since dim Im d1 = n− 1 = 3− 1 = 2 from Theorem 3.4.

Now we will find HH2(Λ). Since d3 : Hom(Q2,Λ) → 0, then Ker d3 = Hom(Q2,Λ). Again by
using Theorem 3.3, dim Hom(Q2,Λ) = Σr∈g2 dim o(r)Λt(r) = dim e1Λe3 = 1, since g2 = {αγ}.
On the other hand, dim Im d2 = m1 + m2 = 1, since dim Ker d2 = dim Hom(Q1,Λ) − dim Im d2.
Hence, dim HH2(Λ) = dim Ker d3 − dim Im d2 = 1− 1 = 0.

4 Conclusion
We have introduced in Section 3 some results to help in computing the low-dimensional Hochschild
cohomology groups for some finite-dimensional monomial algebra Λ over an algebraically closed
field K.
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