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Scheduling of Virtual Cellular Manufacturing Systems: A
Biogeography-Based Optimization Algorithm
M. Zandieh

Department of Industrial Management, Management and Accounting Faculty, Shahid Beheshti
University, G.C., Tehran, Iran

ABSTRACT
Virtual cellular manufacturing system (VCMS) is one of the mod-
ern strategies in the production facilities layout, which has
attracted considerable attention in recent years. In this system,
machines are located in different positions on the shop floor and
virtual cells are a logical grouping of machines, jobs, and workers
from the viewpoint of the production control system. These
features not only enhance the system’s agility but also allow
a dynamic reassignment of cells as demand changes. This paper
addresses the VCMS scheduling problems where the jobs have
different orders on machines and the objective is to simulta-
neously minimize the weighted sum of the makespan and total
traveling distance in order to create a balance between criteria.
The research methodology firstly consists of a mathematical pro-
gramming model with regard to the production constraints in
order to describe the characteristics of the VCMS. Secondly,
a basic genetic algorithm (GA), a biogeography-based optimiza-
tion (BBO) algorithm, an algorithm based on hybridization of BBO
and GA, and the BBO algorithm accompanied by restart phase are
developed to solve the VCMS scheduling problems. The devel-
oped algorithms have been compared to each other and their
performance are evaluated in terms of their best solution and
computational time as effectiveness and efficiency criteria,
respectively. Consequently, the performance of the best algo-
rithm has been evaluated by the state-of-the-art algorithm, GA,
in the literature. The results show that the best algorithm based
on BBO could find solutions at least as good as the last famous
algorithm, GA, in the literature.

Introduction

In the competitive industrial environment, it is imperative that production
systems be controlled optimally. This is enforcing manufacturing firms to
reduce production costs and to meet the production schedules. This presents
the need for costly and time-consuming reorganization of the shop floor and
allows for quick response to changing environment and demands (Nomden,
Slomp, and Suresh 2006).
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The latest facility layouts such as product layout and process layout
sequentially limit the flexibility and efficiency of the production systems. So
in the 1960s, cellular manufacturing system (CMS) based on group technol-
ogy (GT) principles, was introduced to cope with the drawbacks of product
and process layouts. The advantages of CMS are emphasized in the literature
including the reduction in cycle time, number of setups, work-in-process,
and delivery time along with increasing flexibility, production control, and
improving product quality, which results in the reduction in production costs
(Mansouri, Moattar Husseini, and Newman 2000). Although the CMS com-
bines the efficiency of flow shop environment with the flexibility of job shop
manufacturing, the efficiency of cellular layout tends to decline drastically as
soon as changes occur in the pattern of products’ demand (Wemmerlow and
Hyer 1989). A relative new alternative has been considered in recent years,
namely virtual cellular manufacturing system (VCMS).

The virtualmanufacturing cell (VMC) is specified as data files and processors in
a controller, not as a fixed physical grouping ofmachines. It means that when a job
order needs a group of machines, a virtual cell controller takes over the control of
these machines and makes feasible interrelations between them. The controller
will then control the machines in the newly formed cell until the job is completed.
At the completion of the job, the VMC is terminated, and the machines will be
released for other production orders. The logical grouping of machines, jobs, and
workers is based on predefined logic, and it is only resident in the production
control system and in the minds of the workers (Slomp, Chowdary, and Suresh
2005). In the VCMS, each job has an individual processing order with more than
one route, so that the problem resembles a flexible job-shop scheduling problem
(FJSP). Although in the FJSP, it is assumed that individual machines are working
in parallel, the distance between machines is ignored (Kessen, Sanchoy, and
Gungor 2010).

In this paper, a mathematical programming model is developed to describe
the characteristics of a VCMS, while several algorithms based on biogeogra-
phy concepts are developed to solve the production scheduling of jobs in the
VCMS. The biogeography-based optimization (BBO) algorithm is a new
evolutionary algorithm for global optimization that was firstly introduced
by Simon (2008). Mathematical modeling of biogeography concept describes
how species migrate from one habitat to another habitat, how new species
arise, and how species become extinct. In addition, the new BBO algorithm,
an algorithm based on hybridization of BBO and genetic algorithm (GA),
and the BBO algorithm along with a restart phase are developed to find good
quality solutions in a shorter time, compared to the last famous heuristic
algorithm, GA, of the literature, which is considered as the research gap.

The rest of the paper is organized as follows: Section 2 reviews the literature
mostly dealing with the problem of interest, i.e., the VCMS. The problem is well
described in section 3 with the help of the detailed mathematical programming
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model. Section 4 introduces the fundamental of the BBO algorithm and its
implementation to solve production scheduling problems. The proposed search
algorithms are comprehensively described in this section. Section 5 represents
the experimental results obtained from both the GA and three algorithms based
on BBO and the comparison of the performance of these algorithms. Apart from
this, a comparison between the best BBO algorithm and the state-of-the-art
algorithm in the literature is represented in this section. Finally, in section 6,
a concise conclusion about the research along with some suggestions for future
works are presented.

Literature Review

The virtual manufacturing concept was first developed at National Bureau of
Standards to address specific control problems encountered in the design phase
of automatedmanufacturing of small batches of machined parts (McLean, Bloom,
andHopp1982). Rheault,Drolet, andAbdulnour (1995) introduced the concept of
a dynamic cellularmanufacturing system (DCMS) for solving the cell reconfigura-
tion problem. They developed an integer programming model to determine the
location of workstations with the objective of minimizing the total material hand-
ling costs. The DCMS has been investigated by many researchers with respect to
dynamic cell reconfiguration, even over a multi-period planning horizon
(Ahkioon, Bulgak, and Bektas 2009; Balakrishnan and Cheng 2005; Defersha
and Chen 2006; Kia et al. 2012; Mahdavi et al. 2010).

Vakharia, Moily, and Huang (1999) compared the performance of virtual
cells and multi-stage flow shops through analytical approximations. They
stated that virtual cells need for the dedication of individual machines within
the current departments to a specific sort of part families. The results indicate
that the ratio of setup time to run time per batch is a major factor that
influences the decision to implement virtual cells. Saad, Baykasoglu, and
Gindy (2002) explored the feasibility of virtual cells as a strategy to solve
the cell configuration problem. They were developed a tabu search algorithm
to reconfigure the manufacturing cells without physical relocation and
a simulation package was used to appraise the performance of the integrated
manufacturing system.

Ko and Egbelu (2003) proposed an algorithm to solve the machine cell
creation problem by determining optimal component routing. They stated
the number of the VMC was depended on the components’ attributes. Also,
they demonstrated the concept of sharing workstations in manufacturing
cells among multiple part families. Ko and Egbelu (2000) proposed
a methodology for designing the VMC. They compared dynamic and static
manufacturing systems at the intent of examining the influence of variations
in the product mix on the shop performance. The performance measures
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were considered as total setup time and total material handling distances.
They illustrate the superiority of a dynamic CMS to a static CMS.

Kannan and Ghosh (1996a, 1996b) and Kannan (1998) studied many part
family-based scheduling rules in process layout. They represented the perfection
of VMCs due to the ability to combine setup time efficiency of cellular layout
and routing flexibility of process layout. They also stated that a machine can be
altered without significant modification on the shop floor, and consequently,
VMCs are able to respond to demand changes quickly. Drolet, Marcoux, and
Abdulnour (2008) developed a linear programmingmodel for schedulingVMCs
with the objective function of minimizing total traveling distance. In this study,
the planning horizon is divided into periods and the solution time of the model
is susceptible to the number of periods, because successive operations must start
at the beginning of periods. If the number of periods is selected too large,
unnecessary waiting times appear. On the other hand, if selected too small,
solution time hikes rapidly.

Mak et al. (2009) developed a non-linear programming formulation for
scheduling VMCs with respect to time period structure. Because of the
intractability of the non-linear model, they suggested a solution by using
ant colony optimization (ACO). Kessen et al. (2009) developed an ant colony
optimization-based meta-model to reflect the behaviors of virtual cells, pro-
cess layout, and cellular layout. They addressed the virtual cells by using
family-based scheduling rule and compared these three systems by simula-
tion package. They also developed a multi-objective mixed integer program-
ming formulation to characterize the scheduling of the VCMS problem. The
objective function was the weighted sum of makespan and total traveling
distance. Since the nature of the problem was too complex, they have
developed a GA approach finding good quality solutions.

Recently, Baykasoglu and Gorkemli (2017) addressed a new VCMS with
dynamic demand arrivals with the help of agent-based modeling approach.
The proposed approach is able to form a part family, cell formation, and
scheduling phase, simultaneously. Aalaei and Davoudpour (Aalaei 2016) pro-
posed a bi-objective model for a dynamic VCMS and supply chain design with
respect to important manufacturing features such as multi-market allocations,
multi-period production planning, multi-plants, and facility locations under
uncertainty conditions. Hamedi and Esmaeilian (2015) studied the effectiveness
of functional and distributed layouts on capability-based VCMS performance
with the help of a multi-objective mathematical model and a multi-objective
tabu search. Yang et al. (2016) proposed an exploratory study of a virtual cell
design for thin-film-transistor-liquid crystal display (TFT-LCD) array manufac-
turing. The virtual cell design is dynamically reconfigured based on the product
mix changes to retain the efficiency and effectiveness of the system. Tambuskar,
Narkhede, and Mahapatra (2015) proposed a novel algorithm using discrete
particle swarm optimization technique to design virtual cells by considering
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processing time, operation sequence, routing flexibility, machine capacity,
machine flexibility, and demand. Fu and Murata (2016) studied the configura-
tion design of the VCMS with batch splitting operations. They proposed an
effective methodology to form novel virtual cells and operation take care of
allocation of shared machines and batch size of parts.

Problem Description and Formulation

We consider the problem of scheduling n jobs N ¼ 1; 2; . . . ; nf g with
different processing orders on m machines M ¼ 1; 2; . . . ;mf g including
L types I ¼ 1; 2; . . . ;Lf g (L � m) in the VCMS. Each machine type i 2 I
has one or more individual machine V ¼ 1; 2; . . . ; vif g (vi <m; i 2 I). siv
(i 2 I and v 2 V) indicates vth machine of machine type i 2 I and vi is the
total number of machine type i 2 I (

P
i2I vi ¼ m). All the machines

belonging to the machine type i 2 I are located at different positions on
the shop floor and have the same machine capabilities. Figure 1 shows the
schematic representation of the VCMS.

Each job j 2 N has one or more fixed operation H ¼ 1; 2; . . . ; hj
� �

, where
Oj;h represents the pre-determined operation h 2 H of the job j 2 N. Each
operation Oj;h has a processing time Pj;h;i on machine type i (j 2 N, i 2 I, and
h 2 H). Jobs are produced as batches without batch splitting and Njrepresent
the batch size of the job j 2 N. A transportation cost Dsiv;si0v0 (i; i

0 2 I; i�i0

and v; v0 2 V) is incurred based on traveling distance between machines

Figure 1. Schematic representation of the VCMS concept and design.
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whenever each job j 2 N is carried from machine siv to machine si0v0 .
Processing times, batch sizes, and traveling distance between machines are
pre-determined. All jobs are available at the beginning of the planning
horizon. Since each machine k 2 M processes a job at a time, the jobs
assigned to a machine are processed in an order. Thus, each machine k 2
M can process at most ,iv jobs L ¼ 1; 2; . . . ; ,ivf g so that each job j 2 N is
processed in the order l (l 2 L). ,iv indicates the maximum number of jobs
which can be processed by vth machine of machine type i 2 I. All machines
are immobile and breakdown, as well as maintenance activities are ignored.
Preemption in the model is not allowed.

Programming Formulation

Define the following binary variables for j 2 N; h 2 H; i 2 I; v 2 V and
l 2 L. The variable Ysiv;j;h ¼ 1 if the machine siv is assigned for operation
oj;h of the job j; Ysiv;j;h ¼ 0, otherwise. The variable Xsiv;j;h;l ¼ 1 if the
operation oj;h is performed on the machine siv in the order l; Xsiv;j;h;l ¼ 0,
otherwise. Cmax is makespan which is equal to the completion time of the
last job processed on the current planning horizon. Tsiv;l is the starting
time of any job processed in the order l on machine siv, while tj;h is the

starting time of the processing hth operation of the job j. In the following
programming model, two main decisions including machine assignment
and operation sequencing on machines are integrated for solving a job
scheduling problem in the VCMS.

The objective function is a linear combination of makespan and the
total traveling distance of jobs with the aim of creating a balance between
two criteria. Both objectives favor the producer’s interest by minimizing
the production cost including work-in-process (WIP) inventory, inventory
holding costs, energy consumption, and jobs’ movements. Based on man-
ufacturing companies’ policy, two criteria might have different impor-
tance. Particularly, the second criterion considers the operation
assignment of the jobs to machines in terms of the traveling distance of
the jobs between machines. Therefore, these two criteria are combined
with the help of normalized importance/weighted coefficients; α and β are
weights attributed to the first and second criterion of the objective func-
tion, respectively. As they are assumed to be normalized, α and β should
add to 1.

minðαCmax þ β
X
jN

X
h

X
iI

X
i0�I
i0�i

X
v2V

X
v02V

Ysiv;j;hYsi0v0 ;j;hþ1Dsiv;si0v0NjÞ
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and the operational constraints of the research problem are explained as
follows:

Cmax � tj;h þ
X
i2I

X
v2V

Ysiv;j;hPj;h;iNj; "j 2 N; h 2 H (1)

Constraint set (1) relates to the makespan value of the system. This con-
straint guarantees that Cmax must be equal or greater than the completion
time of all operations of all jobs.

tj;h þ
X
i2I

X
v2V

Ysiv;j;hPj;h;iNj � tj;hþ1; "j 2 N; h 2 H (2)

Constraint set (2) is incorporated into the precedent relationship of jobs.
This constraint ensures that the operation of each job in a machine cannot be
started until it has been completely processed on a prior machine, where the
job had its latest operation.

Tsiv;l þ Xsiv;j;h;lPj;h;iNj � Tsiv;lþ1; "j 2 N; h 2 H; i 2 I; v 2 V; l 2 L (3)

Constraint set (3) is incorporated in the processing order of jobs on
a machine. This constraint ensures that successive operations of any machine
must wait until the preceding one has been completely processed.

tj;h þM 1� Xsiv;j;h;l
� � � Tsiv;l; "j 2 N; h 2 H; i 2 I; v 2 V; l 2 L (4)

Tsiv;l þM 1� Xsiv;j;h;l
� � � tj;h; "j 2 N; h 2 H; i 2 I; v 2 V; l 2 L (5)

Constraint (4) together with constraint (5) guarantee that if Xsiv;j;h;l ¼ 1, then
the starting time of Oj;h and lth order on the machine siv must be the same. If
Xsiv;j;h;l ¼ 0, then the large constant M renders the constraint redundant.X

j2N

X
h2H

Xsiv;j;h;l � 1; "i 2 I; v 2 V; l 2 L (6)

Constraint set (6) guarantees that each order of any machine is assigned to at
most one operation of all jobs.X

i2I

X
v2V

Ysiv;j;h ¼ 1; "j 2 N; h 2 H (7)

Constraint set (7) restricts that each operation of each job is assigned to
exactly one machine among competitive ones.X

l2L
Xsiv;j;h;l ¼ Ysiv;j;h; "j 2 N; h 2 H; i 2 I; v 2 V (8)

Constraint set (8), known as a balance constraint, is incorporated into the
model to establish a balance between machine assignment and order assign-
ment of jobs on machines. In other words, an operation of a job is processed
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by a machine only when this operation is positioned on any order l 2 L of
the machine.

Cmax � 0; tj;h � 0; Tsiv;l � 0; Xsiv;j;h;l 2 0; 1f g; Ysiv;j;h 2 0; 1f g (9)

Finally, constraint set (9) defines integer and binary variables. Although
the second part of the objective function makes the model non-linear, with
the help of the following new variable shown by Equation (10) as well as
some extra constraint shown by Equations (11) and (12), the non-linearity of
the model can be eliminated.

Zsiv;si0v0 ;j;h;hþ1 ¼ Ysiv;j;h:Ysi0v0 ;j;hþ1 (10)

Zsiv;si0v0 ;j;h;hþ1 � Ysiv;j;h � Ysi0v0 ;j;hþ1 þ 1 � 0; oj;h; siv
� �! oj;hþ1; si0v0

� �
(11)

2: Zsiv;si0v0 ;j;h;hþ1 � Ysiv;j;h � Ysi0v0 ;j;hþ1 � 0; oj;h; siv
� �! oj;hþ1; si0v0

� �
(12)

Meta-Heuristic Algorithm in the VCMS Problem

Since the problem is NP-hard, heuristic optimization is an approach to
solving complex problems. A basic population-based meta-heuristic such as
GA or Artificial Bee Colony (ABC) (Garg 2014), a basic local search meta-
heuristic such as Tabu Search (TS) (Shahvari and Logendran 2015; Shahvari,
Salmasi, and Logendran 2009; Shahvari et al. 2012), a robust version of basic
meta-heuristic algorithms such as stage-based TS (Shahvari and Logendran
2016a, 2017), and a hybridization of two local search structures, two popula-
tion-based structures such as Particle Swarm Optimization and GA (PSO/
GA) (Garg 2016a) or local search and population-based structures such as
Tabu Search/Path-Relinking (TS/PR), Genetic Algorithm/Gravitational
Search Algorithm (GA/GSA), and PSO/TS (Garg 2015a; Shahvari and
Logendran 2016b) can be implemented to find the optimal/near optimal
solution for the research problem.

Based on the characteristics of the research problem along with prelimin-
ary experiments, a basic local search algorithm cannot present good quality
solutions compared to a basic population-based algorithm. Apart from this,
a hybridization of a local search and population-based structures is an
inefficient algorithm compared to a hybridization of two population-based
structures. As a result, a population-based algorithm or a hybridization of
two population-based algorithms can present better results. This being the
case, we decided to develop an appropriate basic population-based algorithm
in terms of the characteristics of the search problem, i.e., BBO along with the
other derivatives of the BBO algorithm such as a robust BBO, i.e., BBO
accompanied by a restart phase (BBO/RF), and a hybrid of two population-
based algorithms, i.e., BBO/GA. Then, in order to show the superiority of
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developed BBO algorithms, they are compared with another well-known
population-based algorithm, GA, and the results of all developed algorithms
are evaluated with the help of the best solutions obtained by all algorithms.

BBO is an evolutionary algorithm for global optimization that is based on the
science of biogeography. Biogeography is the study of the distribution of species
(animals and plants) over time and space (Du 2009). The environment of BBO
corresponds to an archipelago, where every possible solution for the optimiza-
tion problem is an island. The island is a habitat that is geographically separated
from other habitats. In this paper, island and habitat are considered the same.
BBO is modeled after the immigration and emigration of species between these
habitats. The application of this idea for optimization problems allows informa-
tion sharing between candidate solutions (Garg 2015b, 2016b; Rajasomashekar
and Aravindhababu 2012; Simon, Shah, and Scheidegger 2013).

BBO Algorithm in General

In each generation of BBO, the initial population generated randomly is not
discarded. As another distinction, for each generation, BBO uses the fitness
of each solution to determine its migration (immigration and emigration)
rates (Ma and Simon 2011). Each solution feature is called a suitability index
variable (SIV), while the goodness of each solution is called a habitat suit-
ability index (HSI). The value of HSI, which is the same as fitness in other
population-based algorithms, depends on many features of the habitat, where
a high and low HSI of a habitat represent a good and bad performance on the
optimization problem, respectively. In fact, in any optimization problem, the
objective function is considered as HSI. The BBO algorithm considers two
main operators: migration operator, which includes both emigration and
immigration; and the mutation operator.

BBO Algorithm Formation

In the following, the characteristics of the BBO algorithm are explained:

Habitat Modification and Mutation Probabilities along with Elitism
Parameter
Habitat modification probability is similar to crossover probability in GA.
Mutation probability and elitism parameter are the same as in GA. For BBO,
the mutation probability, inversely proportional to the solution probability, is
defined as follows:

mi ¼ mmax 1� i

Pmax

� �
(13)
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Where mmax is the user-defined maximum mutation probability,
Pmax ¼ argmaxPi, and Pi is the solution probability. With probability Pmod,
each solution is modified based on other solutions. The mutation is
a probabilistic operator that is used randomly for modifying solution’s SIV
based on its prior probability of existence. Mutation tends to increase
diversity among the population. Therefore, the mutation probability obtained
by Equation (13) gives a chance of not only improving for low HSI solutions
but also more improving for high HSI solutions. The steady-state value for
the solution probability is given by follows:

Pi ¼ viPnþ1
i¼1 vi

and v ¼ ½v1; v2; � � �; vðnþ1Þ�T (14)

Where v and vi are the functions of the population size. v and vi are
defined by the next equations;

vi ¼
n!

nþ1�ið Þ! i�1ð Þ! ; i ¼ 1; 2; . . . ; i0

vnþ2�i; i ¼ i0 þ 1; . . . ; nþ 1

�
(15)

Where i0 is the smallest integer that is greater than or equal to nþ 1ð Þ=2.

Solution Representation and Decoding of Habitats
The initial population of habitats is randomly generated. In the VCMS, each
habitat is a combination of two decisions; the operation assignment of the jobs
on machines as well as the processing sequence of operations on the machines.
With respect to the solution representation developed by Gao, Sun, and Gen
(2008), a combination of machine assignment vector, v1 rð Þ, and operation
sequence vector, v2 sð Þ, represents a solution. An example solution related to
six jobs (n ¼ 6) including 15 operations (

P
j2N hj ¼ 15) and nine machines

(m ¼ 9) including three machine types (L ¼ 3;
P

i2I vi ¼ 9) is depicted by
Figures 2 and 3. For simplicity, themachine and job operation indices are shown
without the machine type and operation number, respectively.

Figure 2. Illustration for permutation type machine assignment vector.

Figure 3. Illustration for permutation type operation sequence vector.
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Figure 2 depicts a machine assignment vector. In each machine assignment
vector, v1 rð Þ represents the machine assigned for the operation that is ordered in
the position r. And in each operation sequence vector depicted in Figure 3, v2 sð Þ
represents the number of jobs that are ordered in the priority s. Each job j 2 N
emerges hj times to represent its hj ordered operations.

To increase the comprehension of the VCMS concept, assume that the
scheduling horizon is divided into time periods, so when the first operation
of any job starts in a period, its next operation must start in the next period
and so forth. Apart from this, operations can only be started at the beginning
of the time period even if preceding operations finished early. Because of
these precedence constraints among operations of the same job, idle time
may exist between operations on a machine. Therefore, it is necessary to
process decoding habitats into the VCMS schedules.

When the operation Oj;h is scheduled on machine siv, the aim is to search
for the earliest time interval on the machine siv with respect to the prece-
dence constraint. This being the case, the operations that have already been
scheduled on machine siv must be evaluated from left to right to find the

earliest time interval tBsiv ; t
E
siv

h i
for Oj;h, beginning from tBsiv and ending at tEsiv

on machine siv. If there exists such an available time interval for Oj;h, it is
allocated there; otherwise, it is allocated at the end of the machine siv. This
decoding process for the habitat, represented by Figures 2 and 3, is depicted
schematically by a Gantt chart in Figure 4.

Calculate the Immigration Rate (λi) and Emigration Rate (μj)
These migration rates (i.e., immigration and emigration rates) of a habitat
can be modeled as Figure 5 and variation of immigration and emigration
rates for different species abundance in a habitat are functions of the fitness
or HSI of the solution which can be calculated as follows:

Figure 4. Decoding Gantt chart for the habitat related to Figures 2 and 3.
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λi ¼ I 1� k ið Þ
n

� �
(16)

μj ¼ E
k ið Þ
n

� �
(17)

Where I and E are the maximum possible immigration and emigration rates,
respectively. k ið Þ is the fitness rank of the ith individual (1 is worst and n is
best) and n is the number of candidate solutions in the population. I and E
are often set equal to 1 or slightly less than 1.

Smax defines the largest number of species in each habitat, while So defines
equilibrium position which these two migration rates are equal. A habitat
with high HSI is a good solution, while the one with low HSI is a poor
solution. High HSI solutions tend to share their features with low HSI
solutions (emigration process) so that low HSI solutions accept new features
from high HSI solutions (immigration process). Therefore, migration opera-
tors which are emigration and immigration are used to improve and evolve
a solution to the optimization problem. Each habitat has an immigration rate
λi and emigration rate μj for itself. The habitats with high HSI have a high

emigration rate, while the habitats with low HSI have a high immigration
rate. Figure 5 illustrates the relationship between species abundance, immi-
gration rate λi, and emigration rate μj in a single habitat. Both the immigra-

tion rate λi and the emigration rate μj are a function of the number of species

in the habitat, i.e., λi decreases and μj increases as the number of species are

increased. Therefore, according to the above argument, it is expected that
a high-HSI solution has high μj and low λi, while a low-HSI solution has low

μj and high λi. It means that SIVs of a high-HSI solution tend to emigrate to

low-HSI solutions.

Number of species

Rate

Figure 5. Variation of migration rates for different species abundance in a habitat.
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Operator Structure
An immigration habitat Hi is selected probabilistically based on the immi-
gration rate λi and then select an emigration habitat Hj for emigrating to Hi.
In this paper, the roulette wheel selection method is used in order to select
the migration habitats and solution features in the developed BBO algorithm.

Migration Operator
Migrate randomly selected SIVs based on the selected habitats in the previous
step. The probability that the solution Hi is selected as the immigrating/
emigrating habitat is proportional to its immigration/emigration rate λi/μj.

Migration operator can be expressed as:

Hi SIVð Þ  Hj SIVð Þ

This equation means that a feature of the solution Hi is replaced by
a feature from solution Hj. In fact, in the migration process, each solution
Hi should be modified by sharing features between other solutions Hj. This
procedure is performed in two vectors: machine assignment and operation
sequencing. Part (a) of Figure 6 shows two habitats which are selected
probabilistically and two SIVs which would be replaced. And part (b) of
Figure 6 shows these two habitats after performing the migration operator.
The migration operator is performed similarly to the crossover operator
in GA.

Likewise, part (a) of Figure 7 shows two operation sequencing vectors with
selected SIVs, while part (b) of Figure 7 shows these two operation sequen-
cing vectors after performing the migration operator. Since the number of
jobs will be changed after implementing the migration operator,
a modification process should be applied to this vector. In the modification
process, firstly, the job number replaced by an SIV is selected out of an
emigration habitat. Next, the earliest job existed after this position should be

(a 

(b 

Figure 6. Illustration for migration operator on machine assignment vector.
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found. And then it is changed to the job number which was selected in the
immigration habitat. Part (c) of Figure 7 illustrates this modification process.

The proposed migration framework is shown in Figure 8 as follows:

Mutation Operator on Habitats
Probabilistically, the mutation is performed based on the mutation probability
for each habitat. Mutation is a probabilistic operator that randomly modifies
a solution’s SIV on its prior probability of existence Pi. In this paper, the SIV-
based mutation is used. In other words, for a machine assignment vector,
a mutation operator decides whether an SIV should be selected for mutation
with a certain probability, and then a newly available machine is assigned for
the operation indicated by the selected SIV. Likewise, for an operation
sequence vector, it randomly decides whether to mutate an SIV on a certain
probability. If an SIV is to be mutated, then v2 s� 1ð Þ and v2 sð Þ are swapped.

(a 

(b 

(c 

Figure 7. Illustration for migration operator on operation sequence vector.

Figure 8. Illustration for coding migration operator in the BBO algorithm.
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Figures 9 and 10 show a simple example of implementing a mutation operator
on a machine assignment and operation sequence vectors, respectively.

The proposed mutation framework is shown in Figure 11.
It is worth noting that in the BBO algorithm, the next generation is

produced by immigrating solution features to other habitats and receiving
solution features by emigrating from other habitats. The mutation is per-
formed for the whole population in a manner similar to the mutation in GA.
The steps of the developed BBO algorithm is described with the help of the
pseudo-code shown in Figure 12.

Hybridization of the BBO and GA Algorithms

A combination of two population-based algorithms, i.e., BBO and GA, is
considered as a hybrid algorithm. The variables and parameters of the hybrid
algorithm are the same as basic GA and BBO. In this algorithm, firstly, the
BBO algorithm is conducted for a problem until the stop criterion is satisfied.
Then, the best-recorded solution along with a new population again will be
conducted this time by GA. This proposed algorithm structure allows each
solution to be conducted with two optimization algorithm sequentially.

Figure 9. Illustration for mutation operator on machine assignment vector.

Figure 10. Illustration for mutation operator on operation sequence vector.

Figure 11. Illustration for coding mutation operator in the BBO algorithm.
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Higher solution quality and low computational time are as a result of the
hybridization of these two population-based algorithms compared to a basic
BBO or GA. In the following, the crossover and mutation operators of GA, as
the important futures of GA, are explained. These operators are implemented
by both the basic GA and GA accompanied by basic BBO.

GA is a robust adaptive and stochastic evolutionary algorithm. Two types
of operators are participated in GA: mutation which creates new individuals
by making changes in a single individual; and crossover which creates new
individuals by combining two or more individuals. Since a large amount of
population is updated with the help of the crossover operator, the order-
crossover-related move (OX) is applied for implementing the crossover
operator. At first, two distinct integers, χ1 and χ2, randomly generate between
2 and (

P
j2N hj � 1) as cutting points, where

P
j2N hj is the total number of

operations belonging to the jobs. The orders between χ1 � 1 and χ2 þ 1

Initialize maxm , maximum migration rates E and I, number of iteration, and an elitism parameter;

Initialize a random set of habitats (population) nHHH ,...,, 21 ;

Compute the HSI for each habitat;
For i=1 to number of iteration

Sort the population according to their HSI
For j=1 to n do

Calculate the immigration rate iλ and the emigration rate iμ for each habitat;

End-For

Select non-elite iH with probability proportional to iλ

If iH is selected

For j=1 to n do

Select non-elite jH with probability proportional to iμ

If jH is selected

Execute migration operator 
End-If

End-For
End-If

Calculate jp and mutation rate jm for each habitat

Select a habitat with probability proportional to im

If non-elite iH is selected

Execute mutation operator 
End-If
For i=1 to n do

Evaluate habitats in the population
End-For

End-For

Figure 12. Pseudo-code for the developed BBO algorithm.
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belonging to the first parent are inserted into the same position (of the first
parent) on the first offspring. Likewise, the orders between χ1 � 1 and χ2 þ 1
belonging to the second parent are inserted into the same position (of
the second parent) on the second offspring. Finally, the other orders (i.e.,
the orders before and after χ1 and χ2, respectively) of the first parent are put
in the empty positions of the second offspring and vice versa. In this step, the
iterative order should be changed to the one which is not appeared in the
offspring, if an order is repeated.

The mutation operator in GA is usually used for improving the diversity of
the algorithm. The swap-related move is applied for mutation operator. In other
words, two genes are randomly chosen and their positions are exchanged.

BBO Algorithm with Restart Phase

The BBO/RF algorithm represents the BBO algorithm with a restart on each
iteration of the search algorithm. In other words, in the first start of each iteration,
the BBO algorithm is performed on a problem until a stop criterion is satisfied.
Then, in the second restart, the BBO algorithm applies the best solution along with
the previous population as its initial population. The aim of this restart phase in
each iteration is that the best solution obtained in the first start of BBOwould allow
to improve more and enhance its quality in a shorter time.

All types of the BBO algorithms must be continued until they reach the
number of pre-determined iterations. In this paper, the upper bound of the
number of iteration is set to 800. For the evaluation of the proposed algo-
rithms, their performance is examined over benchmark problems from the
literature (Kessen, Sanchoy, and Gungor 2010) and compared with the last
published GA of the literature in terms of the efficiency and effectiveness.

Computational Results

All algorithms are allowed to run on identical computers with Intel(R)
Core(TM) 2 Duo, 2.00 GHz processors & 4.00 GB RAM in order to conduct
the numerical experiments. Apart from this, all algorithms are programmed
in MATLAB 7.10.0 (R2010b). Algorithm solutions are compared based on
a set of test problems. With regard to the data generation mechanism in the
literature, for each test problem, the processing time of jobs on each machine
corresponds to a uniform distribution, i.e., Pj;h ¼ unif 2; 10½ �. The distance
between each pair of machines belonging to different machine types corre-
sponds to a uniform distribution, i.e., Dsiv;si0v0 ;j;h ¼ unif 5; 40½ �. The weights
attributed to the makespan and the total traveling distance in the objective
function are considered as α ¼ 0:95 and β ¼ 0:05, respectively.

The parameters employed in the BBO and GA algorithms are selected experi-
mentally to obtain a satisfactory solution quality in an acceptable time span. In
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relation to both BBO and GA, the population size is 100 and the maximum
iterations of the algorithms are 800. The crossover rate and mutation rate in GA
are 0.45 and 0.30, respectively, while the migration rate and the mutation rate in
BBO are 0.90 and 0.10, respectively. Due to the deterministic nature of the BBO
andGA algorithms, they are conducted withmultiple runs on each problem to get
coherent results. In other words, with the help of Taguchi design and several
scenarios for each parameter, the algorithms are run five times for each combina-
tion of parameters related to a problem. Then, after each run, those obtained
results in terms of the best solution which has the minimum cost and computa-
tional time to get the best solution are recorded.

Figures 13-15 demonstrate the convergence speed and best value of the
objective function of basic GA (AlgGA), BBO (AlgBBO), the Hybrid algorithm
(AlgBBO=GA), and the BBO/RF algorithm (AlgBBO=RF) with regard to computa-
tional time, in large, medium, and small size of a sample problem, respec-
tively. The performance of algorithms is compared with solid and dotted
lines related to the best and the mean values, respectively. Figures suggest
a good quality solution with the fast convergence speed for the BBO algo-
rithms compared to AlgGA. Apart from this, the hybrid algorithm and
AlgBBO=RF present the better results compared to AlgGA and AlgBBO.

All algorithms are compared with each other based on their effectiveness and
efficiency. Algorithm effectiveness and efficiency are determined in terms of the
best solution and related computational time, respectively. With the help of an
individual set of test problems, the performance of developed algorithms is
evaluated based on the best solution and related computational time obtained
by all algorithms for each test problem.

1 

2 

3 4 

1. GA 
2. BBO 
3. Hybrid 
4. Restart phase 

Figure 13. Illustration for the convergence speed and best solution in a large problem.
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Figures 16 and 17 illustrate the interval plot for PD value and computa-
tional time of algorithms, respectively. In the effectiveness point of view, the
performance of algorithms sorts from the best to worst as
AlgBBO=RF ! AlgBBO=GA ! AlgBBO ! AlgGA, while in the efficiency point of
view, they rank as AlgBBO=RF ! AlgBBO ! AlgBBO=GA ! AlgGA. It can be
concluded that not only GA has a significant difference with the BBO
algorithms, but also the BBO algorithms, particularly AlgBBO=RF, are more
effective and converge faster than GA.

1 

2 
3 4 

1. GA 
2. BBO 
3. Hybrid 
4. Restart phase 

Figure 15. Illustration for the convergence speed and best solution in a small problem.

1 

2 
3 

4 

1. GA 
2. BBO 
3. Hybrid 
4. Restart phase 

Figure 14. Illustration for the convergence speed and best solution in a medium problem.
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Table 1 shows the performance of all algorithms are evaluated based on
the best solution and related computational time obtained by all algorithms
for each test problem. The results indicate that the solutions obtained by
AlgBBO=RF are very effective and converges faster compared to those obtained
by AlgGA and other BBO algorithm. The relative percentage deviation (RPD)
is applied to evaluate the performance of the developed algorithms by each
other. RPD Value represents the gap between each solution obtained by an
algorithm and the best solution obtained by all algorithms. RPD is calculated
as follows:

RPD ¼ Algi � AlgBest
AlgBest

� 100; "i 2 GA;BBO;BBO=GA;BBO=RFf g; (18)

where Algi is a solution obtained by ith algorithm and AlgBest is the best
solution obtained by all algorithms. The average of RPD values shows
AlgBBO=RF and AlgGA have the minimum deviation (3.3%) and maximum
deviation (106.7%) from the best solutions, respectively. Also, AlgBBO=RF has

Figure 16. The interval plot for the best solution.

Figure 17. The interval plot for the CPU time.
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the best performance amongst the developed BBO algorithms and AlgBBO=GA
represents the better performance compared to the basic BBO algorithm, i.e.,
AlgBBO. The principal result of a paired t-test performed to compare different
search algorithms based on solution and computation time are shown in
Tables 2 and 3, respectively.

Based on Pvalue at significant level of 5% for each comparison of solutions,
it can be concluded that there is a significant difference between the results of
these algorithms except AlgBBO=GA and AlgBBO=RF. Since the average objective
function value of AlgBBO=RF is less than all other search algorithms, it can be
concluded that AlgBBO=RF provides better solutions for the proposed research
problem. Likewise, AlgBBO=GA presents a better performance compared to
AlgBBO and AlgGA. Based on Pvalue at significant level of 5% for each compar-
ison of computational times, there is no difference between developed search
algorithms except AlgBBO=GA and AlgBBO=RF.

Performance of AlgBBO=RF vs. the state-of-the-Art Algorithm

In order to show the superiority performance of the best BBO algorithm, i.e.,
AlgBBO=RF a benchmark of the VCMS scheduling problems with the same

Table 2. Paired t-test between solutions of developed search algorithms.

Pair

Paired differences

t df
Sig.

(2-tailed)Mean
Std.

deviation
Std. error
mean

95% confidence
interval of the
difference

Lower Upper

AlgGA � AlgBBO 110.900 96.926 17.696 73.862 147.938 6.267 29 < 0.00001
AlgGA � AlgBBO=GA 181.067 116.160 21.208 136.679 225.455 8.538 29 < 0.00001
AlgGA � AlgBBO=RF 192.167 128.409 23.444 143.098 241.235 8.197 29 < 0.00001
AlgBBO � AlgBBO=GA 70.167 92.744 16.933 34.727 105.607 4.144 29 0.00027
AlgBBO � AlgBBO=RF 81.267 94.671 17.285 45.090 117.443 4.702 29 0.000058
AlgBBO=GA � AlgBBO=RF 11.100 39.155 7.149 −3.862 26.062 1.553 29 0.13127

Table 3. Paired t-test between computational times of developed search algorithms.

Pair

Paired differences

t df
Sig.

(2-tailed)Mean Std. deviation Std. error mean

95% confidence
interval of the
difference

Lower Upper

AlgGA � AlgBBO −9.205 40.360 7.369 −24.628 6.218 −1.249 29 0.221653
AlgGA � AlgBBO=GA −7.972 33.959 6.200 −20.949 5.005 −1.286 29 0.208617
AlgGA � AlgBBO=RF 3.977 30.065 5.489 −7.512 15.466 0.725 29 0.474262
AlgBBO � AlgBBO=GA 1.233 33.178 6.057 −11.445 13.911 0.204 29 0.839778
AlgBBO � AlgBBO=RF 13.182 37.187 6.789 −1.028 27.392 1.942 29 0.61907
AlgBBO=GA � AlgBBO=RF 11.949 29.068 5.307 0.841 23.057 2.252 29 0.032065
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objective functions is considered. This benchmark is to compare the two
algorithms, i.e. AlgBBO=RF and the GA algorithm in the literature (Kessen,
Sanchoy, and Gungor 2010), i.e., Alg�GA. It consists of 30 available test
problems developed by Kessen, Sanchoy, and Gungor (2010). Similar to the
procedure mentioned in the literature (Kessen, Sanchoy, and Gungor 2010)
and in order to keep consistency in the comparison, we conduct multiple
runs (five times) on each problem to get coherent results and, consequently,
the best result is reported to each problem. Table 4 shows the comparative
results obtained for AlgBBO=RF and Alg�GA.

Although AlgBBO=RF and Alg�GA are coded by two different machines with
very close configurations, AlgBBO=RF reduces the computational time of Alg�GA
up to 7.3% in average. The deviation between the two aforementioned
algorithms is calculated for each test problem as follows:

Table 4. Performance of AlgBBO=RF with respect to the benchmark in the literature (Kessen,
Sanchoy, and Gungor 2010).

Test Problem

# of jobs # of M|Cs Alg�GA AlgBBO=RF Percentage deviation

n m OFV CPU* OFV CPU Δ%

1 4 3 523 <1 523 1.08 0.00%
2 4 3 420 <1 420 0.99 0.00%
3 4 4 757 <1 757 0.83 0.00%
4 6 2 836 <1 836 1.24 0.00%
5 6 3 706 2 706 3.70 0.00%
6 6 3 497 2 497 2.93 0.00%
7 6 3 549 2 549 2.69 0.00%
8 8 3 906 4 906 4.02 0.00%
9 8 3 1047 5 1047 3.99 0.00%
10 8 4 967 7 967 34.54 0.00%
11 8 4 1084 6 1084 23.12 0.00%
12 8 4 1207 9 1207 13.45 0.00%
13 10 3 1119 10 1121 19.55 −0.18%
14 10 3 1299 13 1299 13.31 0.00%
15 10 4 1227 13 1227 11.10 0.00%
16 10 5 1387 16 1387 41.45 0.00%
17 10 6 1666 20 1631 7.44 2.10%
18 12 2 1089 13 1067 8.34 2.02%
19 12 3 1442 17 1425 10.01 1.18%
20 12 3 672 13 672 13.78 0.00%
21 12 4 1841 19 1803 41.73 2.06%
22 12 6 1572 36 1528 11.97 2.80%
23 12 6 1710 38 1715 13.23 −0.29%
24 15 3 1669 33 1643 40.07 1.56%
25 15 3 1061 29 1059 23.76 0.19%
26 15 4 2247 40 2229 39.21 0.80%
27 15 4 1549 36 1521 43.01 1.81%
28 15 5 1821 54 1821 45.23 0.00%
29 20 4 1768 70 1719 53.56 2.77%
30 20 5 2714 194 2671 123.86 1.58%

*The average CPU time of all five runs for each test problem reported in the literature (Kessen, Sanchoy, and
Gungor 2010).
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Δ% ¼ OFVAlg�GA � OFVAlgBBO=RF

OFVAlg�GA

� 100

where OFVi indicate the best objective function value obtained by algorithm i
over five runs. Similar to Alg�GA, AlgBBO=RF was able to solve 14 out of 30 test
problems, optimally, shown by bold values in Table 4. For the rest of the
problems, AlgBBO=RF was able to find the same or better results compared to
Alg�GA except for 2 out of 16 problems (i.e., problems 13 and 23). The
improvement percentages in the objective function value in AlgBBO=RF pre-
sented in the last column of Table 4 show up to 2.8% improvement in the
objective function value obtained from Alg�GA. As a result, AlgBBO=RF guaran-
tees to give the solution that is at least as good as the solution obtained
from Alg�GA.

Conclusion and Future Works

This paper has presented some effective and efficient schedules for the VCMS
problems with the help of the BBO algorithm. In the VMC configuration,
machines with different processing abilities are located in close proximity to
enhance the entire system’s ability against the other changes, thereby provid-
ing more than one alternative routes for the jobs. Makespan is one of the most
popular performance criteria because it reflects the utilization of machines.
Separation of machines with similar processing abilities raises the issue of total
traveling distance. Heavily, utilized shortest routes for each job affect the
makespan value adversely. This being the case, the objective function is to
minimize the weighted sum of the makespan and total traveling distance.

Since the problem is among NP-hard problems, the computational time
dramatically increases from small-size to medium- and large-size problems.
Hence, meta-heuristic techniques must be applied to find good quality
solutions. Therefore, several meta-heuristics in terms of the GA and BBO
algorithm are developed for the VCMS scheduling problem. The perfor-
mance of developed algorithms, i.e., the basic GA algorithm, the basic BBO
algorithm, the hybridization of BBO and GA, and the BBO/RF algorithm, are
compared with the help of 30 test problems. Apart from this, the perfor-
mance of the best-developed algorithm is compared to the performance of
the state-of-the-art algorithm in the literature, with the help of 30 available
test problems developed in the literature. The results clearly show that the
BBO/RF algorithm has the best performance based on efficiency and effec-
tiveness of solutions between amongst algorithms. In addition, the BBO/RF
algorithm and a basic GA have the minimum deviation (3.3%) and max-
imum deviation (106.7%) from the best solutions obtained by all algorithms,
respectively, and all developed BBO algorithms present superior performance
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compared to GA. Finally, the BBO/RF algorithm presents a superior perfor-
mance compared to the state-of-the-art algorithm in the literature.

Some directions for future research are to consider the scheduling con-
straints such as machine failure, sequence-dependent setup times, workload
balancing, batch splitting. Also, incorporation of other effective meta-
heuristic algorithms, multi-objective algorithms, and learning procedures
can be considered in the VCMS scheduling problems. Finally, a fuzzy version
of the BBO algorithm through fuzzy fitness or fuzzy processing time and
handling time can be developed in the future research.
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