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Abstract 

In this paper, we obtain a formula for the derivative of a determinant with respect to an eigenva-
lue in the modified Cholesky decomposition of a symmetric matrix, a characteristic example of a 
direct solution method in computational linear algebra. We apply our proposed formula to a tech-
nique used in nonlinear finite-element methods and discuss methods for determining singular 
points, such as bifurcation points and limit points. In our proposed method, the increment in arc 
length (or other relevant quantities) may be determined automatically, allowing a reduction in the 
number of basic parameters. The method is particularly effective for banded matrices, which al-
low a significant reduction in memory requirements as compared to dense matrices. We discuss 
the theoretical foundations of our proposed method, present algorithms and programs that im-
plement it, and conduct numerical experiments to investigate its effectiveness. 
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1. Introduction 

The increasing complexity of computational mechanics has created a need to go beyond linear analysis into the 
realm of nonlinear problems. Nonlinear finite-element methods commonly employ incremental techniques in-
volving local linearization, with examples including load-increment methods, displacement-increment methods, 
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and arc-length methods. Arc-length methods, which seek to eliminate the drawbacks of load-increment methods 
by choosing an optimal arc-length, are effective at identifying equilibrium paths including singular points. 

In previous work [1], we proposed a formula for the derivative of a determinant with respect to an eigenvalue, 
based on the trace theorem and the expression for the inverse of the coefficient matrix arising in the conju-
gate-gradient method. In subsequent work [2]-[4], we demonstrated that this formula is particularly effective 
when applied to methods of eigenvalue analysis. However, the formula as proposed in these works was intended 
for use with iterative linear-algebra methods, such as the conjugate-gradient method, and could not be applied to 
direct methods such as the modified Cholesky decomposition. This limitation was addressed in Reference [5], in 
which, by considering the equations that arise in the conjugate-gradient method, we applied our technique to the 
LDU decomposition of a nonsymmetric matrix (a characteristic example of a direct solution method) and pre-
sented algorithms for differentiating determinants of both dense and banded matrices with respect to eigenva-
lues. 

In the present paper, we propose a formula for the derivative of a determinant with respect to an eigenvalue in 
the modified Cholesky decomposition of a symmetric matrix. In addition, we apply our formula to the arc-length 
method (a characteristic example of a solution method for nonlinear finite-element methods) and discuss me-
thods for determining singular points, such as bifurcation points and limit points. When the sign of the derivative 
of the determinant changes, we may use techniques such as the bisection method to narrow the interval within 
which the sign changes and thus pinpoint singular values. In addition, solutions obtained via the New-
ton-Raphson method vary with the derivative of the determinant, and this allows our proposed formula to be 
used to set the increment. The fact that the increment in the arc length (or other quantities) may thus be deter-
mined automatically allows us to reduce the number of basic parameters exerting a significant impact on a non-
linear finite-element method. Our proposed method is applicable to the TLDL  decomposition of dense matrices, 
as well as to the TLDL  decomposition of banded matrices, which afford a significant reduction in memory re-
quirements compared to dense matrices. In what follows, we first discuss the theoretical foundations of our pro-
posed method and present algorithms and programs that implement it. Then, we assess the effectiveness of our 
proposed method by applying it to a series of numerical experiments on a three-dimensional truss structure. 

2. Derivative of a Determinant with Respect to an Eigenvalue in the Modified  
Cholesky Decomposition 

The derivation presented in this section proceeds in analogy to that discussed in Reference 5. The eigenvalue 
problem may be expressed as follows. If A  is a real-valued symmetric n n×  matrix (specifically, the tangent 
stiffness matrix of a finite-element analysis), then the standard eigenvalue problem takes the form 

Ax xλ= ,                                        (1) 
where λ  and x  denote the eigenvalue and eigenvector, respectively. In order for Equation (1) to have trivial 
solutions, the matrix A Iλ−  must be singular, i.e., 

det 0Α λΙ − = 
 .                                      (2) 

We will use the notation ( )f λ  for the left-hand side of this equation: 

( ) detf λ Α λΙ = − 
 .                                    (3) 

Applying the trace theorem, we find 

( )
( )
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In the case of TLDL  decomposition, we have 
TA LDL=                                       (6) 

with factors L and D of the form 
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The matrix 1L−  has the form 

( )
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Expanding the relation 1LL I− =  (where I  is the identity matrix) and collecting terms, we find 

( ) ( )2 2 3 3 1 1ij ij i j i j i i i jg g g g− −= − − − − −     .                   (10) 

Equation (10) indicates that ijg  must be computed for all matrix elements; however, for matrix elements 
outside the bandwidth, we have 0ij =

, and thus the computation requires only elements ij  within the band-
width. This implies that a narrower bandwidth gives a greater reduction in computation time. 

From Equation (4), we see that evaluating the derivative of a determinant requires only the diagonal elements  
of the inverse matrix (6). Upon expanding the product 

1T 1 1L D L
− − −    using Equations (7-9) and summing the  

diagonal elements, Equation (4) takes the form 

( )
( )
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i k iii kk
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λ = = +

′  
= − + 
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∑ ∑ .                         (11) 

This equation demonstrates that the derivative of the determinant may be computed from the elements of the 
inverses of the matrices D and L obtained from the modified Cholesky decomposition. As noted above, only 
matrix elements within the a certain bandwidth of the diagonal are needed for this computation, and thus com-
putations even for dense matrices may be carried out as if the matrices were banded. Because of this, we expect 
dense matrices not to require significantly more computation time than banded matrices. 

By augmenting an TLDL  decomposition program with an additional routine (which simply adds one addi-
tional vector), we easily obtain a program for evaluating the quantity f f′ . The value of this quantity may be 
put to effective use in Newton-Raphson approaches to the numerical analysis of bifurcation points and limit 
points in problems such as large-deflection elastoplastic finite-element analysis. Our proposed method is easily 
implemented as a minor additional step in the process of solving simultaneous linear equations. 

3. Algorithms Implementing the Proposed Method 

3.1. Algorithm for Dense Matrices 

We first present an algorithm for dense matrices. The arrays and variables appearing in this algorithm are as 
follows.  

1) Computation of the modified Cholesky decomposition of a matrix together with its derivative with respect 
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to an eigenvalue 
(1) Input data 
A : given symmetric coefficient matrix,2-dimension array as A(n,n) 
b : work vector, 1-dimension array as b(n) 
n : given order of matrix A and vector b 
eps : parameter to check singularity of the matrix output 
(2) Output data 
A : L matrix and D matrix, 2-dimension array as A(n,n) 
  fd : differentiation of determinant 
  ichg : numbers of minus element of diagonal matrix D (numbers of eigenvalue) 
  ierr : error code 
      =0, for normal execution 
      =1, for singularity 
(3) LDLT decomposition 
  ichg=0 
  do i=1,n 
<d(i,i)> 
  do k=1,i-1 
      A(i,i)=A(i,i)-A(k,k)*A(i,k)２ 
    end do 
  if (A(i,i)<0) ichg=ichg+1 
    if (abs(A(i,i))<eps) then 
     ierr=1 
     return 
    end if 
  <l(i,j)> 
    do j=i+1,n 
      do k=1,i-1 
        A(j,i)=A(j,i)-A(j,k)*A(k,k)*A(i,k) 
      end do 
      A(j,i)=A(j,i)/A(i,i) 
    end do 
  end do 
  ierr=0 
(4) Derivative of a determinant with respect to an eigenvalue (fd) 
  fd=0 
  do i=1,n 
<(i,i). 
    fd=fd-1/A(i,i) 
  <(i,j)> 
    do j=i+1,n 
      b(j)=-A(j,i) 
      do k=1,j-i-1 
        b(j)=b(j)-A(j,i+k)*b(i+k) 
      end do 
      fd=fd-b(j)２/A(j,j) 
    end do 
  end do 
2) Calculation of the solution 
(1) Input data 
A : L matrix and D matrix, 2-dimension array as A(n,n) 
  b : given right hand side vector, 1-dimension array as b(n) 
n : given order of matrix A and vector b 
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(2) Output data 
  b : work and solution vector, 1-dimension array 
(3) Forward substitution 
  do i=1,n 
    do j=i+1,n 
      b(j)=b(j)-A(j,i)*b(i) 
    end do 
  end do 
(4) Backward substitution 
  do i=1,n 
    b(i)=b(i)/A(i,i) 
  end do 
  do i=1,n 
    ii=n-i+1 
    do j=1,ii-1 
      b(j)=b(j)-A(ii,j)*b(ii) 
    end do 
  end do 

3.2. Algorithm for Banded Matrices 

We next present an algorithm for banded matrices. The banded matrices considered here are depicted schemati-
cally in Figure 1. In what follows, nq  denotes the bandwidth including the diagonal elements. 

1) Computation of the modified Cholesky decomposition of a matrix together with its derivative with respect 
to an eigenvalue 

(1) Input data 
A : given coefficient band matrix, 2-dimension array as A(n,nq) 
  b : work vector, 1-dimension array as b(n) 
  n : given order of matrix A 
  nq : given half band width of matrix A 
  eps : parameter to check singularity of the matrix 
(2) Output data 
  A : L matrix and D matrix, 2-dimension array 
  fd : differential of determinant 
  ichg : numbers of minus element of diagonal matrix D (numbers of eigenvalue) 
  ierr : error code 
      =0, for normal execution 
      =1, for singularity 
(3) LDLT decomposition 
  ichg=0 
  do i=1,n 
  <d(i,i)> 
    do j=max(1,i-nq+1),i-1 
      A(i,nq)=A(i,nq) -A(j,nq)*A(i,nq+j-i)２ 
    end do 
    if (A(i,nq)<0) ichg=ichg+1 
    if (abs(A(i,nq))<eps) then 
      ierr=1 
      return 
    end if 
<l(i,j)> 
    do j=i+1,min(i+nq-1,n) 
      aa=A(j,nq+i-j) 
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      do k=max(1,j-nq+1),i-1 
        aa=aa- A(i,nq+k-i)*A(k,nq)*A(j,nq+k-j) 
      end do 
      A(j,nq+i-j)=aa/A(i,nq) 
    end do 
  end do 
  ierr=0 
(4) Derivative of a determinant with respect to an eigenvalue (fd) 
  fd=0 
  do i=1,n 
<(i,i)> 
    fd=fd-1/A(i,nq) 
<(i,j)> 
    do j=i+1,min(i+nq-1,n) 
      b(j)=-A(j,nq-(j-i)) 
      do k=1,j-i-1 
        b(j)=b(j)-A(j,nq-(j-i)+k)*b(i+k) 
      end do 
      fd=fd-b(j)２/A(j,nq) 
    end do 
    do j=i+nq,n 
      b(j)=0 
      do k=1,nq-1 
        b(j)=b(j)-A(j,k)*b(j-nq+k) 
      end do 
      fd=fd-b(j)２/A(j,nq) 
    end do 
  end do 
2) Calculation of the solution 
(1) Input data 
  A : given decomposed coefficient band matrix,2-dimension array as A(n,nq) 
  b : given right hand side vector, 1-dimension array as b(n) 
  n : given order of matrix A and vector b 
  nq : given half band width of matrix A 
(2) Output data 
  b : solution vector, 1-dimension array 
(3) Forward substitution 
  do i=1,n 
    do j=max(1,i-nq+1),i-1 
      b(i)=b(i)-A(i,nq+j-i)*b(j) 
    end do 
  end do 
(4) Backward substitution 
  do i=1,n 
    ii=n-i+1 
    b(ii)=b(ii)/A(ii,nq) 
    do j=ii+1,min(n,ii+nq-1) 
      b(ii)=b(ii)-A(j,nq+ii-j)*b(j) 
    end do 
  end do 

4. Numerical Experiments 

To demonstrate the effectiveness of the derivative of a determinant in the context of TLDL  decompositions in 
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                          Figure 1. Banded matrix.                               

the arc-length method of nonlinear analysis, we conducted numerical experiments on a three-dimensional truss 
(Figure 1). We first describe the nonlinear FEM algorithms used in these numerical experiments. 

In nonlinear FEM methods [6] [7], the matrix determinant vanishes at singular points, indicating the presence 
of a zero eigenvalue. The existence of a formula for the derivative of the determinant with respect to an eigen-
value makes it easy to identify singular points, using the fact that the sign of the derivative changes in the vicin-
ity of a singular point. Within the context of the arc-length method, we apply a search technique (such as the bi-
section method) to narrow the interval within which the sign of f f′  changes and thus to pinpoint the location 
of the singular point. Of course, this calculation could also be performed by counting the number of negative 
elements of the diagonal matrix D arising from the TLDL  decomposition. Moreover, the solution obtained via 
Newton-Raphson varies as ( )1 f f′ , and hence we may use the quantity ( )1 f f′  as an increment. The fact 
that the increment in the arc length (or other quantities) may thus be determined automatically allows us to re-
duce the number of basic parameters exerting a significant impact on the nonlinear finite-element method. 
However, in the numerical experiments that we have conducted so far, we have found that accurate determina-
tion of singular points, such as bifurcation points or limit points, requires, in addition to values of the quantity 
( )1 f f′ , the imposition of constraints on the maximum values of the strain and/or the relative strain. For ex-

ample, if we are using steel, we impose a strain constraint. Choosing the smaller of ( )1 f f′  and this con-
straint value then allows the singular point to be determined accurately. Aggregating all the considerations dis-
cussed above, we arrive at the following arc-length algorithm for identifying singular points along the main 
pathway. 

{1} step=0 
(1) Configure or input data parameters (incremental convergence tolerance, maximum number of steps, 

maximum number of iterations at a single step, choice of elasticity or elastoplasticity analysis, number of subdi-
visions for the strain value constraint, threshold value for identifying singularity in the TLDL  decomposition, 
elasticity coefficients and plasticity parameters, node coordinates, characteristics of all elements, boundary con-
ditions, etc.) 

(2) Compute bandwidth 
(3) Initialize arrays and other variables 
(4) Configure or input external force vectors 
 
{2} step=1,2,3,··· 
 
 1) iteration=0 
  (5) Recall data from previous step (node coordinates, cross-sectional performance, displacement, strain, 

stress, f f′ , etc.). 
  (6) Compute tangent stiffness matrix. 
  
2) iteration=1,2,3,··· 
  (7) Compute the TLDL  decomposition (including the computation of f f′  and the number of negative 

elements of the diagonal matrix D ) and the solution to the simultaneous linear equations. 
  (8) Choose the new arc length to be the smaller of the absolute value of the following two quantities: (a) the 

value obtained from the arc-length method and (b) 1 f f′ . Within the iterative process, adjust as necessary to 
ensure that the maximum value of the strain satisfies the strain constraint. Compute the incremental strain and 
the total strain. 
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  (9) Use the constitutive equation to compute the material stiffness and the stress at arbitrary points. 
  (10) Compute the tangent stiffness matrix. 
  (11) Compute the residual (the extent to which the system is unbalanced) and assess convergence. 
  (12) If not converged, return to step 2). If converged and the sign of f f′  has changed, use the bisection 

method to search for the singular point. Once the singular point has been identified with sufficient accuracy, 
confirm it by counting the number of negative entries of the diagonal matrix D obtained from the TLDL de-
composition; then proceed to step (2) unless the maximum number of steps has been taken, in which case stop 
the calculation. 

Numerical Experiments 

As shown in Figure 2, the three-dimensional truss we considered consists of 24 segments and 13 nodes and is 
symmetric in the xy plane. To ensure that the load results in a symmetric displacement, the load is applied in the 
downward vertical direction to nodes 1 - 7, with the load at node 1 being half the load at the other nodes. All 
numerical experiments were carried out in double-precision arithmetic using the algorithm described above. 
Computations were performed on an Intel(R) Core™ i7 3.2 GHz machine with 12 GB of RAM, running Win-
dows 7 and gcc-4.7-20110723-64 Fortran. We analyzed three computational procedures: Equations (4) and (11) 
for dense matrices, and Equation (11) for banded matrices. All three procedures yielded identical results. We ve-
rified that our proposed formula allows accurate calculation of the quantity f f′ . In what follows, we will 
discuss results obtained for the banded-matrix case. 

The following parameter values were used. The incremental convergence tolerance was 810TOLER −= . The 
maximum number of steps was 2000NSTEP = . The maximum number of iterations at a single step was

30NITR = . We used elastoplasticity analysis ( )1IEP = . The threshold value for identifying singularity inthe 
modified Cholesky decomposition was 1210EPS −= . The elasticity coefficients and plasticity parameters 
were configured as follows: elasticity coefficient ( )5 22.058 10 N mmE = × , initial cross-sectional area 

 

 
                       Figure 2. A three-dimensional truss structure model.              
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( )2
0 1.0 mmA = , number of subdivisions for strain value constraint 250MD = , Poisson ratio 0.3ν =  (in the 

elastic regime) or 0.5ν =  (in the plastic regime), and yield stress ( )2235.2 N mmyσ = . To allow the stress to  

be computed directly from the strain, we adopted the Richard-Abbott model as the constitutive equation. The 
relationship between the stress σ  and the strain ε  is given by 

( )

( )
1

1

p
p

m m
p

y

E E
E

E E

ε
σ ε

ε
σ

−
= +
 − +  
 

,                            (12) 
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d
d
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E E
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E E
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+

−
= = +

 − +  
 

,                          (13) 

where pE  is the effective strain hardness, which is set to 0.01pE E=  in our numerical experiments; m  is a 
parameter that controls the degree of smoothness, which is set at 18m = , close to bilinear point; and tE  is the 
tangential stiffness at an arbitrary point [8]. 

The tangent stiffness matrix for the three-dimensional truss takes the form 

0 0

0 0

K K
K

K K
− 

=  − 
,                                    (14) 

where 

( ) T
0

1 2tE A NNK I cc
ν− + 

= + 
  

,                            (15) 

x

y

z

c
c c

c

 
 =  
 
 

,                                      (16) 

, ,j i j i j i
x y z

x x y y z z
c c c

− − −
= = =

  

.                          (17) 

Here N  is the axial force, i  and j  are the indices of the nodes at the segment endpoints, ( ),i ix y  and 
( ),j jx y  are the ,x y  coordinates of nodes ,i j , and   is the segment length. 

Figure 3 plots the load-displacement curve obtained using the proposed method. Figures 3 and 4 indicate the 
correct count of eigenvalues. A total of six eigenvalues appear before the limit point, with the sixth eigenvalue 
corresponding to the limit point itself. 1λ  through 5λ  are bifurcation buckling points, and 6λ  is the limit 
point. The pair ( )2 3,λ λ  is a pair of multiple roots, as is the pair ( )4 5,λ λ . If the number MD  of subdivisions 
for the strain value constraint is too small, discrepancies in the number of zero eigenvalues detected by the pro-
posed method can arise, causing some singular points to be overlooked. For this reason, we have here chosen 

250MD = , but high-precision nonlinear analyses require large numbers of steps. The method that we have 
proposed is a simple addition to the process of solving simultaneous linear equations and may be put to effective 
use in nonlinear analysis. 

5. Conclusions 

We have presented a formula for computing the derivative of a determinant with respect to an eigenvalue. Our 
computation proceeds simultaneously with the modified Cholesky ( )TLDL  decomposition of the matrix, a 
characteristic example of a direct solution method. We applied our proposed formula to the determination of 
singular points, such as branch points and breaking points, in the arc-length method in a nonlinear finite-element 
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                            Figure 3. Vertical displacement and load level.        

 
Figure 4. Vertical displacement and numbers of ei- 
genvalue.                                      

method. In this application, we detect changes in the sign of the derivative of the determinant and then use the 
bisection method to narrow the interval containing the singular point. 

Moreover, because the solution obtained via the Newton-Raphson method varies with the derivative of the 
determinant, it is possible to use this quantity as the arc length. This then allows the arc-length increment to be 
determined automatically, which in turn allows a reduction in the number of basic parameters impacting the 
nonlinear analysis. However, as our numerical experiments demonstrated, when using the proposed method, it is 
necessary to impose a constraint on the absolute value of the maximum values of the strain or the relative strain, 
and to use the strain constraint to control the increment. The proposed method is designed to work with the 

TLDL  decomposition and exhibits a significant reduction in memory requirements when applied to the TLDL  
decomposition of banded matrices instead of dense matrices. 

Numerical experiments on a three-dimensional truss structure demonstrated that the proposed method is able 
to identify singular points (bifurcation points and limit points) accurately using the derivative with respect to an 
eigenvalue of the characteristic equation of the stiffness matrix. This method does not require the time-con- 
suming step of solving the eigenvalue problem and makes use of the solution to the simultaneous linear equa-
tions arising in incremental analysis, thus making it an extremely effective technique. 
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