
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=uaai20

Applied Artificial Intelligence
An International Journal

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/uaai20

Quadrotor Attitude Dynamics Identification Based
on Nonlinear Autoregressive Neural Network with
Exogenous Inputs

Alexander Avdeev, Khaled Assaleh & Mohammad A. Jaradat

To cite this article: Alexander Avdeev, Khaled Assaleh & Mohammad A. Jaradat (2021)
Quadrotor Attitude Dynamics Identification Based on Nonlinear Autoregressive Neural
Network with Exogenous Inputs, Applied Artificial Intelligence, 35:4, 265-289, DOI:
10.1080/08839514.2021.1877480

To link to this article: https://doi.org/10.1080/08839514.2021.1877480

Published online: 22 Feb 2021.

Submit your article to this journal

Article views: 477

View related articles

View Crossmark data

Citing articles: 1 View citing articles

https://www.tandfonline.com/action/journalInformation?journalCode=uaai20
https://www.tandfonline.com/loi/uaai20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/08839514.2021.1877480
https://doi.org/10.1080/08839514.2021.1877480
https://www.tandfonline.com/action/authorSubmission?journalCode=uaai20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=uaai20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/08839514.2021.1877480
https://www.tandfonline.com/doi/mlt/10.1080/08839514.2021.1877480
http://crossmark.crossref.org/dialog/?doi=10.1080/08839514.2021.1877480&domain=pdf&date_stamp=2021-02-22
http://crossmark.crossref.org/dialog/?doi=10.1080/08839514.2021.1877480&domain=pdf&date_stamp=2021-02-22
https://www.tandfonline.com/doi/citedby/10.1080/08839514.2021.1877480#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/08839514.2021.1877480#tabModule

Quadrotor Attitude Dynamics Identification Based on
Nonlinear Autoregressive Neural Network with Exogenous
Inputs
Alexander Avdeeva, Khaled Assalehb, and Mohammad A. Jaradatc,d

aDivision of Engineering, NYU Abu Dhabi, Abu Dhabi, UAE; bDepartment of Electrical Engineering, Ajman
University, Ajman, UAE; cDepartment of Mechanical Engineering, American University of Sharjah,
Sharjah, UAE; dDepartment of Mechanical Engineering, Jordan University of Science & Technology, Irbid,
Jordan

ABSTRACT
In the case of quadrotors, system identification is a challenging
task because quadrotors are inherently unstable exhibit non-
linear behavior and significant coupling. In addition to this,
quadrotors’ behavior is greatly influenced by characteristics
and coefficients, which are very hard to measure directly or
determine analytically. However, all the difficulties listed above
are known to be successfully overcome by the use of artificial
intelligence. In this paper, two system identification techniques
were applied and compared to model quadrotor attitude
dynamics. These techniques are Nonlinear Autoregressive
Network with Exogenous Inputs (NARX) and continuous-time
transfer function.

ARTICLE HISTORY
Received 31 July 2020
Revised 1 January 2021
Accepted 13 January 2021

Introduction

The last decade has seen a great increase in the use of machine learning
techniques. They have been successfully used to solve a huge range of
engineering and scientific problems. Over the past couple of years, it was
shown that artificial neural networks can successfully control systems as
complicated as pneumatic artificial muscles (Nguyen, Cao, and Huy Anh
2017). Machine learning managed to improve post-processing of sensor
array readings for speed measurements of an underwater vehicle (Wilmer
et al. 2020). Jaradat and Mamoun (2016) used neural networks for sensor
fusion in their INS/GPS navigation system. At the same time, Gharajeh
and Jond (2020) relied on ANFIS for global positioning in their autono-
mous mobile robot. In their work, Sezginer and Kasnakoglu (2019) have
used NARX artificial neural networks to control an aircraft during take-off
and landing, which are known to be the most critical control problem in
aircraft navigation. Altan, Aslan, and Hacioglu (2018) showed that NARX
can be used to achieve a better path tracking performance for a hexarotor

CONTACT Mohammad A. Jaradat mjaradat@aus.edu Department of Mechanical Engineering, American
University of Sharjah, Sharjah, UAE.

APPLIED ARTIFICIAL INTELLIGENCE
2021, VOL. 35, NO. 4, 265–289
https://doi.org/10.1080/08839514.2021.1877480

© 2021 Taylor & Francis

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/08839514.2021.1877480&domain=pdf&date_stamp=2021-02-26

UAV. A lot of these advancements relate in one way or another to UAVs,
their control and navigation. This should not come as a surprise given the
rate of growth of this field. Days when launching a drone was exclusively
an academic activity are long gone. Today their applications are extremely
diverse and include things like delivering goods, vessel emission monitor-
ing (Yuan et al. 2020) and volcano observation (Granados-Bolanos,
Quesada-Roman, and Alvarado 2020). Such a wide range of applications
presents engineers with ever-increasing demand for more complex control
algorithms. However, designing and testing a control algorithm for a UAV
is not a trivial task. The most obvious problem is that a failure of
a controller to stabilize the system will immediately result in a UAV
crashing. This results in damage or complete destruction of expensive
equipment and slows down the design process. Such challenges are usually
overcome by use of computer modeling techniques because a model can
run a lot faster than a real experiment and it cannot damage itself. Due to
these remarkable advantages, there is always a demand for new, better
methods to model dynamic systems in general and aerial vehicles in
particular. There are several publications related to this topic. Xiaodong
et al. (2014) present a comprehensive survey of different approaches to
quadrotor modeling, including white, gray and black box models. In his
master thesis, Bresciani (2008) shows the process of designing and build-
ing a quadrotor. The author relies on first principles and measurements of
the required parameters to model the system and design a controller. To
reinforce this approach many researchers have shown how rotorcraft
parameters can be measured (Bergamasco and Lovera 2014; Elsamanty
et al. 2013). However, most of the literature focuses on gray-box approach
(Kim, Kang, and Park 2009; Pounds, Mahony, and Corke 2006, 2010). In
these cases, authors derive equations of the system from first principles
but use data-driven techniques to estimate parameters of the system. In
the end, they obtain three continuous transfer functions to represent the
system. In his work Qianying (2014) used linear transfer functions in
combination with a Kalman filter to identify system parameters. However,
most authors point out that modeling an aerial vehicle is made hard by its
nonlinear behavior and significant amount of coupling present. At the
same time, it had been shown that machine learning techniques are very
efficient at capturing such dynamics. Parvaresh and Moosavian (2019)
have successfully used NARX to model a continuum robotic arm.
Neural networks were used to create a black box model of buckling-
restrained braces (Assaleh, AlHamaydeh, and Choudhary 2015). Bayat,
Pishkenari, and Salarieh (2019) designed an observer for a nano-
positioning system based on ANFIS ANN, while Hosovsky et al. (2016)
have to use NARX to model a two-link robot with pneumatic muscles. In
their work, Kislitsyna and Malykhina (2017) propose a method for

266 A. AVDEEV ET AL.

determining the motion parameters of the module de-orbiting upon the
lunar surface, which is based on a recursive neural network. Authors of
this paper propose a method of modeling quadrotor UAVs using NARX
artificial neural networks and presents experimental results obtained.

This paper is structured as follows: Section 1 provides an introduction and
an outline of the paper. Section 2 provides the necessary background knowl-
edge. Section 3 describes the system layout and experimental setup. Section 4
provides an overview of the methods used to obtain the models. At last, section
5 presents experimental results.

Quadrotor Reference Frame and Control

Reference Frame

First of all, the coordinate frame has to be established. There are several
coordinate systems used in aviation. Each one of them has its own advantages
and disadvantages and is used accordingly. However, this project uses only
one such system, namely the body axis system (Yechout et al. 2003). It is
defined as follows:

● The coordinate system is fixed to the aircraft with its origin at the air-
craft’s center of gravity (CG).

● The x axis is defined out of the nose of the aircraft.
● The y axis is defined out of the right wing of the aircraft.
● The z axis is defined as down through the bottom of the aircraft.

Figure 1 shows an example of a body axis coordinate system.

Figure 1. Body axis coordinate system.

APPLIED ARTIFICIAL INTELLIGENCE 267

Quadrotor Control

A quadrotor is comprised of a thin cross structure with four propellers at its
ends. Unlike a helicopter, the quadrotor does not require a tail rotor, due to
the four-propeller cross configuration. Front and rear propellers rotate in
a clockwise direction, while right and left propellers spin in the opposite
(counter-clockwise) direction. Control of a quadrotor is performed by chan-
ging the rotation rate and thus the thrust of each rotor individually. Although
control is achieved through changing rotation rates of individual motors, this
approach is very counterintuitive for humans. Due to this reason, four so-
called channels are used, namely throttle, roll, pitch, and yaw.

Throttle (U1): The throttle channel controls the overall amount of thrust
generated by all four motors combined. Thus, changes in it result in
a proportional change in the rotation rates of all four propellers. This is the
only channel that controls the quadrotor’s linear acceleration and is mostly
used to change altitude.

Roll (U2): The roll channel provides a means to create and control a tilt
between the right and left rotors. This is achieved by increasing the rotation
speed of the left propeller and decreasing the speed of the right one by exactly
the same amount or vice versa. It is important to notice that overall thrust
remains the same; thus, there is no linear acceleration produced.

Pitch (U3): The pitch channel is similar to roll, the difference being that it
controls the tilt between the front and rear propellers. Everything else is the same.

Yaw (U4): The yaw channel allows the quadrotor to rotate in the horizontal
plane. This is achieved by increasing the rotation rates of two propellers which
either rotate clockwise or counter-clockwise, depending on the desired direc-
tion of rotation. To maintain overall thrust, this action has to be accompanied
by an equivalent decrease in the remaining two propellers.

Experimental Setup and Procedure

This section presents the approach used to identify quadrotor attitude
dynamics.

System Overview

The main goal of this paper is to identify pitch, roll and yaw dynamics of
a quadrotor. Figure 2 shows the quadrotor used for this purpose.

The most common practice is to find a relationship between input commands
and angular rates, as done in Bresciani (2008). Thus, the output of a model should
be the rate of change of the angles rather than the angles themselves. Dynamics of
the fourth degree of freedom (DOF), namely z-axis acceleration, present little
interest, because they correspond to a first-order linear system and are decoupled

268 A. AVDEEV ET AL.

from the other DOFs. Identifying angle rates separately from z acceleration has
one more advantage. Quadrotors are inherently unstable, so flying them without
any control loops is impossible. However, if the goal is to identify only the angular
dynamics, a quadrotor can be placed on a test stand with a spherical joint. Such
a joint eliminates three DOFs, namely translational motion in all three axes.
Nevertheless, if certain conditions are met, the motion in the remaining three
DOFs remains unaffected. Obviously, the first condition is friction is kept as small
as possible. The second one is that axis of rotation of the joint must be placed as
close to the CG of the quadrotor as possible. Failing to meet this condition results
in identifying a completely different system, because the moment of inertia
changes in accordance with the parallel axis theorem. The red circle in Figure 3
shows the joint and its connection to the quadrotor.

The most important part of system identification is clearly defining the inputs
and outputs of the system. To do that, a good understanding of the general flow
of information in the system is required. From this point of view, a quadrotor can
be viewed in the following way: First of all, a human pilot generates a command,
which he would like to send. After that, he inputs this command into a remote

Figure 2. Quadrotor.

Figure 3. Spherical joint.

APPLIED ARTIFICIAL INTELLIGENCE 269

control (RC) transmitter, usually, by manipulating control sticks of the RC. The
transmitter is linked to an RC receiver onboard the quadrotor. Receiving a radio
signal results in the receiver generating an output electrical signal. This electrical
signal is read by a microcontroller which performs the channel mixing operation
described previously. The result of the operation is an individual rate for each
propeller. Later, these rates are sent to electrical speed controllers (ESCs), which
in turn regulates the voltage applied to the motors. Changes in the voltage applied
result in changes in the propellers’ angular rates. Finally, this leads to a change in
the quadrotor’s motion. The diagram shown in Figure 4 illustrates the whole

Figure 4. Inputs/outputs diagram.

270 A. AVDEEV ET AL.

process inputs and outputs of the system. Ideally one would like to record the
commands as the pilot inputs them into the RC transmitter. However, this is
rather complicated and unnecessary. The radio communications are much faster
than the mechanical part of the system. Neglecting it does not result in
a noticeable loss of accuracy. Due to this, it is possible to record received
commands on board the quadrotor. In contrast to the inputs of the system,
outputs are much easier to define. As it was mentioned above, outputs are three
angular rates. To summarize, the inputs are three commands (pitch, roll, yaw)
received by the microcontroller and the outputs are three angular rates _p_r _q.

According to the basic principles of system identification, the input signal
has to be independent of the output. Unfortunately, in the case of a quadrotor,
this is impossible. The problem comes from the instability mentioned above.
Quadrotors are inherently unstable and react to the inputs so quickly that even
an experienced pilot will not be able to keep it upright even when it is fixed to
a test stand. This also causes big challenges for a controller design. Due to this,
it is a common practice to add dumping to the quadrotor axis. This is achieved
by adding a feedback loop for angular rates. Figure 5 shows the feedback loop
structure.

The red rectangle encloses the quadrotor’s raw dynamics. Meanwhile, the
green rectangle shows raw dynamics with a feedback loop, which slows the
quadrotor enough for a human to operate it. At this point, it is important to
understand that a model is never a goal in itself, it is just a tool that allows
certain goals to be achieved. In the case of an aircraft, a model is most
commonly used to ease a controller design procedure. As long as gain K is
not changed, one can use a new system defined by the green rectangle. This
approach has been used and proven to be efficient in aviation and other fields
(Menezes and Barreto 2008; Wu et al. 2014). The last part of this section
describes the nature and characteristics of the input signals used to excite the

Figure 5. Axis damping feedback loop.

APPLIED ARTIFICIAL INTELLIGENCE 271

system. As mentioned above, the receiver outputs four electrical signals, each
one representing a control channel. This project is only concerned with three
of them, namely pitch, roll and yaw. Each signal looks like a train of pulses and
pulse width represents an angle of a control stick. Pulse width can vary from
1 ms to 2 ms. This is not ideal for mathematical manipulations and control
applications because there is no negative region. Thus, the pulse width is
shifted by −1.5 ms and ends up having values from −0.5 to 0.5. These are
the values being recorded.

Hardware

This section provides the necessary description of the hardware used in the
project. Most of the hardware used came from an Arducopter quadrotor.
However, the microcontroller which comes with it has very limited data logging
capabilities, due to a small amount of memory. In addition, the default telemetry
can transmit data with a maximum rate of 15 Hz which is not good enough for
system identification, which is the goal. Due to these reasons, a Beagle Bone White
(BBW) embedded PC as a microcontroller is used. Unfortunately, replacing the
ardupilot means losing its navigation system, so it is replaced by a MIDG IIC,
which provides a full navigation solution. In addition to that, the arducopter does
not include any radio controls. Thus, a Futaba 8 channel radio transmitter and
receiver are used. Below is a complete list of hardware used in the project.

Arducopter components:

● The frame
● Four 12 V DC brushless motors
● 4 ESC
● Battery 12 V
● Power distribution board (Provides +12 V and +5 V output)
● Newly introduced components:
● BBW

a) Processor 720MHz AM 3359 ARM (Texas Instruments)
b) Power supply 5V (which is provided by the PDB mentioned above)
c) 4 serial communication ports (1 required for MIDG)
d) 66 GPIO pins (7 required for radio receiver, 4 required for ESCs)
e) Easy 4GB uSD card access (useful for data logging)

● MIDG IIC
a) Sampling rate 50 Hz
b) Communication via serial RS-232 max 50 Hz
c) Power supply 10-32V (can be handled by the battery)

● Futaba RC Tx and Rx
a) 8 channel
b) 2.4 GHz

272 A. AVDEEV ET AL.

The last component needed for the project is a printed circuit board (PCB) that
provides interfacing between the BBW and the rest of the electronics involved.
BBW utilizes the TTL 3.3 standard. This means the maximum voltage for any
input/output pin is 3.3 V. Older electronics utilize the TTL 5 standard, meaning
logic levels are between 0 and +5 V. The PCB relies on the use of signal isolators to
shift logic levels. On top of that, PCB has three LEDs connected to BBW GPIOs
for a basic HMI. Figure 6 presents a pin diagram of the entire system.

Software

A BBW is an embedded PC. The default OS shipped with the BBW is Linux
Angstrom; a distribution of Linux specifically designed for embedded applica-
tions. Due to that, it is lighter and optimized for lower power consumption.
This means that coding for a BBW is slightly different from coding for an
ordinary microprocessor with no OS. However, the basic concepts are the
same. There is a list of basic things one needs to be able to do for any
embedded project. The list includes pin muxing, GPIO manipulation, PWM
generation and acquisition. First of all, one has to be able to manipulate the
pins’ mux settings. Most of the pins in a microprocessor are multiplexed.
Thus, they can be used in several different ways, and a programmer has to
specify how a pin should be used. Usually, this is done by putting some value
into a specific register responsible for muxing. When working with an OS, one
does not have direct access to registers or interrupts. However, Linux has

Figure 6. Pin diagram.

APPLIED ARTIFICIAL INTELLIGENCE 273

directories to which values can be written and then passed to the registers by
the OS itself. Actually, every single pin has a directory associated with it. Each
one of those directories can be assigned a value, which determines the mode of
a particular pin. A full list of all available modes can be found in the Beagle
Bone manual. A more detailed description of the value computation proce-
dure is provided in the AM335x technical manual.

The second step is to manipulate the GPIO pins. When working
directly with hardware, all that needs to be done is configured the mux
register to put a pin into a GPIO mode and then simply put the required
values into in/out and high/low bits of configuration registers. As men-
tioned previously, an OS does not give direct access to the registers.
Assuming muxing was done previously, the first thing that has to be
done is to export the pin by sending the pin number to the export
directory. The procedure tells the kernel that the OS wants to work with
this particular GPIO pin. After a pin is exported, its directory appears in
the GPIO class directory and can be accessed. Inside the pin’s directory,
one can find directories corresponding to the pin’s direction (in/out) and
value (high/low), thus achieving the goal.

The first two parts are rather easy. However, when one attempting to
acquire a high-frequency signal, the problem of latency arises. When an
application needs to communicate with a hardware, it has to commu-
nicate with the OS first. The OS in turn has to communicate with the
kernel, which has direct access to the hardware. Then, all have to go all
the way back. This causes a significant delay, making even an acquisition
of a 50 Hz PWM signal impossible. However, there is a way around this
issue. The microprocessor used in a BBW is an AM 3359 ARM. These
types of microprocessors have an internal subdivision into several pro-
cessors. While the main part of the microprocessor runs at 720 MHz and
has an OS installed on it, there are two other parts called programmable
real-time units (PRUs). These parts run only at 200 MHz, but they do
not have any OS installed. This allows them direct access to the hard-
ware and thus makes them much faster when it comes to hardware
manipulation. This is different from both the physical and logical
separations in ordinary computers and does not allow full-scale multi-
processing. Unfortunately, there is a drawback. Since there is no OS on
either of the PRUs, they cannot run executable files. This means that one
cannot compile a C code and make a PRU run it. Due to this, one has to
provide a PRU with a .bin file. There are several ways to make it. For
example, one can code it in C and then use an IDE which has the tools
to turn it into machine code. That is exactly what MPLAB does for PIC
microcontrollers. However, each family of microprocessor requires
a different set of tools, which are quite expensive and difficult to acquire.
Due to that, a simpler approach was used. An assembly code was written

274 A. AVDEEV ET AL.

in a text editor (like a notepad) and then compiled using the PASM
software, provided by Texas Instruments. Communication between all
three parts of the microprocessor is achieved through shared memory.
Figure 7 depicts a portion of the AM335x technical manual (Texas
Instruments [2013]) showing PRU memory location in a memory map.

As a matter of fact, access to the memory is controlled internally and the
programmer does not have to bother implementing any kind of protocol. On
top of that, Texas Instruments provides a C library specially created to work
with PRUs. It is called prussdrv.c, prussdrv.h.

Input Signal Specifications

The data gathering process consists of applying an input to the system and
observing the output. All inputs and outputs were discussed earlier. However,
it was not specified what shape the input signal should have. Initially, the input
used in the experiment consisted only of a command being sent by a pilot.
However, there is a problem with that, namely the frequency content of the
input signal. For good system identification, all of the system’s frequencies
have to be exited. But, no matter how good the pilot is, a signal with frequen-
cies higher than 2–3 Hz cannot be produced. This was solved by adding
a pseudo-random component to the signal in the software. With a pseudo-
random component, the input signal has all the frequencies from DC to 25 Hz.
At the same time, all the pilot has to do is to keep a quadrotor upright to
prevent it from hitting the boundaries of the spherical joint. As discussed
previously, all the inputs and outputs are recorded onboard and then down-
loaded to the host PC. Because the MIDG output hardly has any noise in it, the
obtained data is not filtered. However, sometimes the packets sent by the
MIDG get lost or corrupted. The amount of information loss due to this is very
small and can be neglected. Nevertheless, this results in data not being equally
sampled, while most system identification algorithms rely on the assumption
that it is. So, a MATLAB script was written to find such places in the log file
and restore them by interpolating the data.

Figure 7. Part of AM335x family memory map (AM335x ARM cortex – A8 microprocessors (MPUs)
technical reference manual 2013, 176).

APPLIED ARTIFICIAL INTELLIGENCE 275

Quadrotor System Identification

Continuous Time Transfer Functions

The most common approach toward creating a model in avionics is gray-box
modeling (Bresciani 2008). This method assumes that the structure of a model
is known; it can either be derived from the first principles or determined by
trial and error. However, the parameters of the model have to be found
through the use of some estimation algorithm (Bosch and Van der Klauw
1994). The most basic way to represent a system is to acquire its transfer
function by taking the Laplace transform of differential equations describing
the system. Transfer function models describe the relationship between the
inputs and outputs of a system using a ratio of polynomials (Franklin, Powell,
and Emami-Naeini 2009). The model order is equal to the order of the
denominator polynomial. The roots of the denominator polynomial are
referred to as the model poles, and the roots of the numerator polynomial
are referred to as the model zeros. The parameters of a transfer function model
are its poles and zeros (Close, Frederick, and Newell 2002). It is very common
to assume that the relation between pilot commands and Euler angles’ rates is
that of a second-order underdamped system. This assumption is based on the
following facts. First of all, it can be shown that the speed of any propeller
connected to a DC-motor can be described by the following first-order
differential equation (Bresciani 2008):

_ωp ¼ Apωp þ Bpvþ Cp (1)

where:
ωp – propeller speed
v – voltage applied to the motor
Ap;Bp;Cp – linearization coefficients
It is important to point out that voltage applied to the motor is a result of an

operation called channel mixing. The operation consists only of linear equa-
tions. Thus, the relation between pilot commands and voltages applied to the
motors are linear and not differential. It has to be mentioned that this is only
true if one assumes that ESCs have no dynamics. At the same time, the
difference in the propellers’ angular velocities produces torque acting on the
quadrotor. Thus, if one defines a generalized force vector (Λ) as:

Λ ¼ FxFyFzτxτyτz
� �

(2)

It can be shown that generic dynamics of 6 DOF can be written in a matrix
form as follows (Bresciani 2008):

MB _V þ CBV ¼ Λ (3)

where:

276 A. AVDEEV ET AL.

_V – generalized acceleration of a body
MB – system inertia matrix
CB – Coriolis-centripetal matrix
If one combines (1) and (3) making use of (2), a set of second-order

differential equations is obtained. Due to this fact, it makes sense to assume
a second-order relation between pilot commands and angle rates. Thus, the
transfer function should have the form shown by (4).

H sð Þ ¼
Y sð Þ
X sð Þ

¼
K

1þ 2Tωζsþ T2
ωs2

� � (4)

where:
Y sð Þ – angle rate
X sð Þ – pilot command
K – DC gain
Tω- inverse of corner frequency
ζ – damping factor
However, parameters K, Tω, ζ remain unknown and have to be estimated.

Some obvious drawbacks of the approach are linearization and decoupling.
A classical Laplace transform used to obtain transfer functions from differential
equations assumes a system is linear and time-invariant. Thus, a transfer function
obtained through an estimation process will be a linearization of a system around
some point of operation (Bresciani 2008; Ge et al. 2009). In this particular case, it
will be the hovering point, because during the experiment the quadrotor was
mostly kept upright. The second issue mentioned is decoupling. This happens
because, by definition, transfer functions represent a relation between one parti-
cular input and one particular output. Thus, to obtain a truly MIMO system, one
has to find all possible transfer functions. However, this is out of this project scope.
The method being discussed is mostly used to show that the system is nonlinear
and has a significant amount of coupling.

Nonlinear Autoregressive Network with Exogenous Inputs (NARX)

The nonlinear autoregressive network with exogenous inputs (NARX) is a type of
recurrent dynamic network that is frequently used for estimating time-series
(Menezes and Barreto 2008; Wang and Song 2014; Wong and Worden 2007).
The most distinctive feature of a NARX network is that it has a feedback enclosing
several layers of the network. Thus, the equation describing a NARX network is:

y tð Þ ¼ f ðy t � 1ð Þ; y t � 2ð Þ; . . . ; y t � my
� �

;

u tð Þ; u t � 1ð Þ; . . . ; u t � kuð ÞÞ (5)

where: y tð Þ – network output at time t and u tð Þ – network input at time t.

APPLIED ARTIFICIAL INTELLIGENCE 277

As can be seen, every value of the dependent output signal y(t) is regressed on
previous values of the output signal and previous values of an independent
(exogenous) input signal. This makes NARX networks capable of nonlinear
dynamic system modeling (Pisoni et al. 2009; Zemouri, Gouriveau, and

Figure 8. NARX series-parallel architecture (MATLAB 2013a. 2013. MathWorks).

Figure 9. NARX parallel architecture (MATLAB 2013a. 2013. MathWorks).

278 A. AVDEEV ET AL.

Zerhouni 2010). However, using the feedback feature of NARX networks during
the training phase is unjustified (Menezes and Barreto 2008; Wang and Song
2014). First of all, the true output is available during training. Thus, the network
can be supplied with much more accurate inputs. In addition to that, a static
backpropagation learning algorithm cannot be used. Due to these two facts,
NARX networks are usually converted from parallel, shown in Figure 8 to series-
parallel, shown in Figure 9 architecture for training.

As mentioned above, Series-Parallel architecture allows using static learning
algorithms. One of such algorithms is Levenberg-Marquardt backpropagation.
As well as quasi-Newton methods, the Levenberg-Marquardt algorithm can
approach second-order training speed, while not needing to compute the
Hessian matrix (Menezes and Barreto 2008). The algorithm relies on the fact
that if a performance function has the form of a sum of squares, then the
Hessian matrix H can be approximated as:

H ¼ JTJ (6)

and the gradient Ñ can be computed as:

Ñ ¼ JTe (7)

In (6) and (7) J is the Jacobian matrix. This matrix consists of the first derivatives of the
errors with respect to weights and biases. e is simply a network error vector.
Approximations mentioned above are then used in a Newton-like update of the weights:

wnþ1 ¼ wn � JTJ þ μI
� �� 1JTe (8)

As explained previously, this method relies on the assumption that perfor-
mance is a mean or sum of squared errors. Thus, a NARX trained with this
method has to have either the MSE or SSE performance function. This project
used the MSE function which is calculated using the following formula:

MSE ¼
1
N

XN

k¼1
y � ŷð Þ

2 kð Þ (9)

The NARX network was trained in the Series-Parallel mode and then con-
verted to Parallel architecture for testing.

Experimental Results

The system identification of the quadrotor dynamics has been performed using a data set
of 12500 samples, equally spaced over a period of 250 seconds. The following transfer
functions were obtained:

Pitch Rate:

APPLIED ARTIFICIAL INTELLIGENCE 279

H1;1 sð Þ ¼
_p sð Þ

up sð Þ
¼

334
0:009467s2 þ 0:06256sþ 1

Roll Rate:

H2;2 sð Þ ¼
_rðsÞ

ur sð Þ
¼

299:8
0:01426s2 þ 0:07517sþ 1

Yaw Rate:

H3;3 sð Þ ¼
_q sð Þ

uq sð Þ
¼

350
0:01823s2 þ 1:015sþ 1

Figures 10, 11 and 12 below, show measure and modeled angle rates of the
quadrotor.

Figure 10. Modeling performance of pitch rate transfer function.

Figure 11. Modeling performance of roll rate transfer function.

280 A. AVDEEV ET AL.

Table 1 summarizes the results of using continuous time transfer function
to model the quadrotor dynamics.

The same data set is used to train and validate a NARX network. Below,
measured and predicted outputs are shown in Figures 13, 14 and 15.

Table 1. CTTF results.
Angle rate MSE VAF (%) Correlation Coefficient Outlier ratio

Pitch rate 0.0106 18.6 0.75 0.07
Roll rate 0.0054 65.1 0.77 0.04
Yaw rate 0.0772 5.33 0.61 0.04

Figure 12. Modeling performance of yaw rate transfer function.

Figure 13. Modeling performance of the NARX model of pitch rate during testing.

APPLIED ARTIFICIAL INTELLIGENCE 281

Figure 14. Modeling performance of the NARX model of roll rate during testing.

Figure 15. Modeling performance of the NARX model of yaw rate during testing.

282 A. AVDEEV ET AL.

Table 2 summarizes the results of using continuous time transfer function
to model the quadrotor dynamics.

As it was stated in the theory section, the number of delays used in the
network has to be found experimentally. This is done by increasing the number
of delays until the improvement becomes insignificant. Figures 16, 17 and 18
show the relation between the number of delays used and network performance.

The results presented above show that the NARX network managed to model the
system. NARX model performance is much better than that of a transfer function.
This is mostly because NARX can easily incorporate any kind of coupling.

Results Validation

Data Set Dependency

Results obtained from data-driven techniques heavily depend on the data provided.
Thus, it is a common practice to perform some kind of validation after the results
are obtained to show that they are not data-dependent. Usually, this is done by

Table 2. NARX results.
Angle rate MSE VAF (%) Correlation Coefficient Outlier ratio

Pitch rate 0.0077 54.4 0.74 0.07
Roll rate 0.0047 72.9 0.87 0.04
Yaw rate 0.0112 69.3 0.86 0.08

Figure 16. Number of delays vs MSE for pitch rate.

APPLIED ARTIFICIAL INTELLIGENCE 283

shifting the testing window while using the same data set. As mentioned above,
initially 200 seconds of data were divided into a training set (50–200 seconds), and
a testing set (200–250) seconds. The results obtained with this division are reported
in Section 5. Later, the training set was changed to 100–250 seconds, and the testing
set was changed to 50–100 seconds, and the whole procedure was repeated.
Needless to say, this is not required for classical CTTF, because windows of

Figure 17. Number of delays vs MSE for roll rate.

Figure 18. Number of delays vs MSE for yaw rate.

284 A. AVDEEV ET AL.

3 seconds were used to estimate their coefficients. Thus, the coefficients are average
values already. The results obtained with the new data set division are presented in
Table 3.

It can be seen that the change caused by using a different data division is rather
insignificant and most importantly inconsistent, leading to a slight improvement
in some cases and deterioration in others. This illustrates the independence of the
results obtained earlier from a particular portion of data being used.

Data Set Size Dependency

Another important criterion is the amount of data provided. It is obvious that
for the techniques used in this project, the size of the data set is of major
importance. It is also obvious that after a certain point, further increases in the
amount of data will not yield a significant improvement in the model accuracy.
Thus, a check can be performed to see if the data set size was sufficiently big.
This is done by increasing the amount of training data and monitoring the
performance of the obtained models. In this project, the MSE was used for
performance evaluation. Table 4 shows the change in MSE due to the increase
in the training data set for NARX.

The three plots below show a relation between MSE and the amount of data
used for training for each output of the model.

It can be seen that in each case MSE shows a rapid improvement in the
beginning followed by a huge decrease in sensitivity to an increase in
training set size. This illustrates that further increases in the amount of
data provided to the network for training will not result in any significant
improvement.

Table 3. NARX results.
Angle rate MSE VAF (%) Correlation Coefficient Outlier ratio

Pitch rate 0.0064 54.17% 0.77 0.06
Roll rate 0.0048 73.8% 0.86 0.06
Yaw rate 0.0050 50.6% 0.72 0.07

Table 4. NARX MSE.
Data Used 1250 2500 3750 5000 6250 7500

Pitch Rate 0.02 0.015 0.014 0.012 0.008 0.008
Roll Rate 0.014 0.011 0.007 0.005 0.004 0.004
Yaw Rate 0.024 0.013 0.012 0.012 0.007 0.006

APPLIED ARTIFICIAL INTELLIGENCE 285

Figure 19. MSE for yaw rate vs training set size.

Figure 20. MSE for roll rate vs training set size.

286 A. AVDEEV ET AL.

Conclusion

This paper has presented an experimental setup that allowed to acquire
data for system identification purposes. We have successfully modeled the
system using NARX ANN. Observing the relation between MSE and
number of data points, shown in Figure 19, 20, 21, allows to conclude
that sufficient amount of data was gathered to train the networks. Figures
16, 17 and 18 show that the number of delays was adequate and allowed
networks to capture the system dynamics. From Figures 13, 14 and 15, we
can observe that the identified dynamic model performs well. At the same
time, Tables 1 and 2 show that using NARX results in lower MSE and
higher correlation coefficient than the transfer function model. It is
important to point out that improvement is consistent among all three
angle rates. The model obtained can be used in controllers that require
a system model. We expect this approach to be adoptable to any kind of
rotary-wing UAVs, like hexarotors etc. The future work will be focused on
improving the experimental setup to obtain higher quality data sets.
Moreover, an attempt should be made to use the model for controller
design or in a model predictive controller.

References

Altan, A., O. Aslan, and R. Hacioglu. 2018. Real-time control based on NARX neural network
of hexarotor UAV with load transporting system for path tracking. 6th International
Conference on Control Engineering & Information Technology (CEIT), Istanbul, Davutpasa
Convention Center.

Figure 21. MSE for pitch rate vs training set size.

APPLIED ARTIFICIAL INTELLIGENCE 287

Assaleh, K., M. AlHamaydeh, and I. Choudhary. 2015. Modeling nonlinear behavior of
buckling-restrained braces via different artificial intelligence methods. Applied Soft
Computing 37:923–38. doi:10.1016/j.asoc.2015.09.014.

Bayat, S., H. N. Pishkenari, and H. Salarieh. 2019. Observer design for a nano-positioning
system using neural, fuzzy and ANFIS networks. Mechatronics 59:10–24. doi:10.1016/j.
mechatronics.2019.02.007.

Bergamasco, M., and M. Lovera. 2014. Identification of linear models for the dynamics of
a hovering quadrotor. Control System Technology 22(5):1696–1707.

Bosch, P. P., and A. C. Van der Klauw. 1994. Modeling, identification and simulation of
dynamical systems. Florida: CRC Press.

Bresciani, T. 2008. Modelling, identification and control of a quadrotor helicopter. Master
thesis, Lund University.

Close, C. M., D. K. Frederick, and J. C. Newell. 2002. Modeling and analysis of dynamic systems.
3 ed. New York: Wiley.

Elsamanty, M., A. Khalifa, M. Fanni, A. Ramadan, and A. Abo-Ismail. 2013. Methodology for
identifying quadrotor parameters, attitude estimation and control. Advanced Intelligent
Mechatronics (AIM), 2013 IEEE/ASME International Conference, Wollongong, University
of Wollongong.

Franklin, G. F., J. D. Powell, and A. Emami-Naeini. 2009. Feedback control of dynamic systems.
Addison-Wesley Reading. : New Jersey: Pearson Prentice Hall.

Ge, H.-W., W.-L. Du, F. Qian, and Y.-C. Liang. 2009. Identification and control of nonlinear
systems by a time-delay recurrent neural network. Neurocomputing 72:2857–64.
doi:10.1016/j.neucom.2008.06.030.

Gharajeh, M. S., and H. J. Jond. 2020. Hybrid global positioning system-adaptive neuro-fuzzy
inference system based autonomous mobile robot navigation. Robotics and Autonomous
Systems 134:103669. doi:10.1016/j.robot.2020.103669.

Granados-Bolanos, S., A. Quesada-Roman, and G. E. Alvarado. 2020. Low-cost UAV applica-
tions in dynamic tropical volcanic landforms. Journal of Volcanology and Geothermal
Research 107143. doi:10.1016/j.jvolgeores.2020.107143.

Hosovsky, A., J. Pitel, K. Zidek, M. Tothova, J. Sarosi, and L. Cveticanin. 2016. Dynamic
characterization and simulation of two-link soft robot arm with pneumatic muscles.
Mechanism and Machine Theory 103:98–116. doi:10.1016/j.mechmachtheory.2016.04.013.

Jaradat, M. A. K., and F. A. H. Mamoun. 2016. Non-linear autoregressive delay-dependent
INS/GPS navigation system using neural networks. IEEE Sensors Journal 17 (4):1105–15.
doi:10.1109/JSEN.2016.2642040.

Kim, J., M. S. Kang, and S. Park. 2009. Accurate modeling and robust hovering control for a
quad-rotor VTOL aircraft. Selected Papers from the 2nd International Symposium on UAVs
20:9–26.

Kislitsyna, A. I., and G. F. Malykhina. 2017. Simulation of an on-the-fly measuring system of
a descent module under uncertainty of the lunar-surface composition. St. Petersburg
Polytechnical University Journal: Physics and Mathematics 3:199–209. doi:10.1016/j.
spjpm.2017.09.003.

MATLAB. 2013a. 2013. MathWorks.
Menezes, J. M. P., and G. A. Barreto. 2008. Long-term time series prediction with the NARX

network: An empirical evaluation. Neurocomputing 71:3335–43. doi:10.1016/j.
neucom.2008.01.030.

Nguyen, N. S., V. K. Cao, and H. P. Huy Anh. 2017. A novel adaptive feed-forward-PID
controller of a SCARA parallel robot using pneumatic artificial muscle actuator based on
neural network and modified differential evolution algorithm. Robotics and Autonomous
Systems 96:65–80. doi:10.1016/j.robot.2017.06.012.

288 A. AVDEEV ET AL.

https://doi.org/10.1016/j.asoc.2015.09.014
https://doi.org/10.1016/j.mechatronics.2019.02.007
https://doi.org/10.1016/j.mechatronics.2019.02.007
https://doi.org/10.1016/j.neucom.2008.06.030
https://doi.org/10.1016/j.robot.2020.103669
https://doi.org/10.1016/j.jvolgeores.2020.107143
https://doi.org/10.1016/j.mechmachtheory.2016.04.013
https://doi.org/10.1109/JSEN.2016.2642040
https://doi.org/10.1016/j.spjpm.2017.09.003
https://doi.org/10.1016/j.spjpm.2017.09.003
https://doi.org/10.1016/j.neucom.2008.01.030
https://doi.org/10.1016/j.neucom.2008.01.030
https://doi.org/10.1016/j.robot.2017.06.012

Parvaresh, A., and S. A. A. Moosavian. 2019. Linear vs. Nonlinear Modeling of Continuum
Robotic Arms Using Data-Driven Method. 7th International Conference on Robotics and
Mechatronics (ICRoM), Iran, Tehran 457–62, Nov.

Pisoni, E., M. Farina, C. Carnevale, and L. Piroddi. 2009. Forecasting peak air pollution levels
using NARX models. Engineering Applications of Artificial Intelligence 22:593–602.
doi:10.1016/j.engappai.2009.04.002.

Pounds, P., R. Mahony, and P. Corke. 2006. Modelling and control of a quad-rotor robot.
Proceedings Australasian Conference on Robotics and Automation 2006, New Zealand,
Auckland.

Pounds, P., R. Mahony, and P. Corke. 2010. Modelling and control of a large quadrotor robot.
Control Engineering Practice 18:691–99. doi:10.1016/j.conengprac.2010.02.008.

Qianying, L. 2014. Grey-box system identification of a quadrotor unmanned aerial vehicle.
Sezginer, K., and C. Kasnakoglu. 2019. Autonomous navigation of an aircraft using a NARX

recurrent neural network. 11th International Conference on Electrical and Electronics
Engineering (ELECO), Turkey, Bursa 895–99 November.

Texas Instruments. 2013. AM335x ARM cortex –A8 microprocessors (MPUs) technical refer-
ence manual. 176.

Wang, H., and G. Song. 2014. Innovative NARX recurrent neural network model for ultra-thin
shape memory alloy wire. Neurocomputing 134:289–95. doi:10.1016/j.neucom.2013.09.050.

Wilmer, A. R., Z. Q. Leong, H. D. Nguyen, and S. G. Jayasinghe. 2020. Machine learning post
processing of underwater vehicle pressure sensor array for speed measurement. Ocean
Engineering 213:107771. doi:10.1016/j.oceaneng.2020.107771.

Wong, C., and K. Worden. 2007. Generalised NARX shunting neural network modelling of
friction. Mechanical Systems and Signal Processing 21:553–72. doi:10.1016/j.
ymssp.2005.08.029.

Wu, J., H. Peng, Q. Chen, and X. Peng. 2014. Modeling and control approach to a distinctive
quadrotor helicopter. ISA transactions 53:173–85. doi:10.1016/j.isatra.2013.08.010.

Xiaodong, Z., L. Xiaoli, W. Kang, and L. Yanjun. 2014. A survey of modelling and identification
of quadrotor robot. Abstract and Applied Analysis 2014:1–16.

Yechout, T. R., S. L. Morris, D. E. Bossert, and W. F. Hallgren. 2003. Introduction to aircraft
flight mechanics: Performance, static stability, dynamic stability, and classical feedback con-
trol. Reston, VA: American Institute of Aeronautics and Astronautics.

Yuan, H., C. Xiao, Y. Wang, X. Peng, Y. Wen, and Q. Li. 2020. Maritime vessel emission
monitoring by an UAV gas sensor system. Ocean Engineering 128:108206. doi:10.1016/j.
oceaneng.2020.108206.

Zemouri, R., R. Gouriveau, and N. Zerhouni. 2010. Defining and applying prediction perfor-
mance metrics on a recurrent NARX time series model. Neurocomputing 73:2506–21.
doi:10.1016/j.neucom.2010.06.005.

APPLIED ARTIFICIAL INTELLIGENCE 289

https://doi.org/10.1016/j.engappai.2009.04.002
https://doi.org/10.1016/j.conengprac.2010.02.008
https://doi.org/10.1016/j.neucom.2013.09.050
https://doi.org/10.1016/j.oceaneng.2020.107771
https://doi.org/10.1016/j.ymssp.2005.08.029
https://doi.org/10.1016/j.ymssp.2005.08.029
https://doi.org/10.1016/j.isatra.2013.08.010
https://doi.org/10.1016/j.oceaneng.2020.108206
https://doi.org/10.1016/j.oceaneng.2020.108206
https://doi.org/10.1016/j.neucom.2010.06.005

	Abstract
	Introduction
	Quadrotor Reference Frame and Control
	Reference Frame
	Quadrotor Control

	Experimental Setup and Procedure
	System Overview
	Hardware
	Software
	Input Signal Specifications

	Quadrotor System Identification
	Continuous Time Transfer Functions
	Nonlinear Autoregressive Network with Exogenous Inputs (NARX)

	Experimental Results
	Results Validation
	Data Set Dependency
	Data Set Size Dependency

	Conclusion
	References

