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ABSTRACT
In the case of quadrotors, system identification is a challenging 
task because quadrotors are inherently unstable exhibit non
linear behavior and significant coupling. In addition to this, 
quadrotors’ behavior is greatly influenced by characteristics 
and coefficients, which are very hard to measure directly or 
determine analytically. However, all the difficulties listed above 
are known to be successfully overcome by the use of artificial 
intelligence. In this paper, two system identification techniques 
were applied and compared to model quadrotor attitude 
dynamics. These techniques are Nonlinear Autoregressive 
Network with Exogenous Inputs (NARX) and continuous-time 
transfer function.
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Introduction

The last decade has seen a great increase in the use of machine learning 
techniques. They have been successfully used to solve a huge range of 
engineering and scientific problems. Over the past couple of years, it was 
shown that artificial neural networks can successfully control systems as 
complicated as pneumatic artificial muscles (Nguyen, Cao, and Huy Anh 
2017). Machine learning managed to improve post-processing of sensor 
array readings for speed measurements of an underwater vehicle (Wilmer 
et al. 2020). Jaradat and Mamoun (2016) used neural networks for sensor 
fusion in their INS/GPS navigation system. At the same time, Gharajeh 
and Jond (2020) relied on ANFIS for global positioning in their autono
mous mobile robot. In their work, Sezginer and Kasnakoglu (2019) have 
used NARX artificial neural networks to control an aircraft during take-off 
and landing, which are known to be the most critical control problem in 
aircraft navigation. Altan, Aslan, and Hacioglu (2018) showed that NARX 
can be used to achieve a better path tracking performance for a hexarotor 
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UAV. A lot of these advancements relate in one way or another to UAVs, 
their control and navigation. This should not come as a surprise given the 
rate of growth of this field. Days when launching a drone was exclusively 
an academic activity are long gone. Today their applications are extremely 
diverse and include things like delivering goods, vessel emission monitor
ing (Yuan et al. 2020) and volcano observation (Granados-Bolanos, 
Quesada-Roman, and Alvarado 2020). Such a wide range of applications 
presents engineers with ever-increasing demand for more complex control 
algorithms. However, designing and testing a control algorithm for a UAV 
is not a trivial task. The most obvious problem is that a failure of 
a controller to stabilize the system will immediately result in a UAV 
crashing. This results in damage or complete destruction of expensive 
equipment and slows down the design process. Such challenges are usually 
overcome by use of computer modeling techniques because a model can 
run a lot faster than a real experiment and it cannot damage itself. Due to 
these remarkable advantages, there is always a demand for new, better 
methods to model dynamic systems in general and aerial vehicles in 
particular. There are several publications related to this topic. Xiaodong 
et al. (2014) present a comprehensive survey of different approaches to 
quadrotor modeling, including white, gray and black box models. In his 
master thesis, Bresciani (2008) shows the process of designing and build
ing a quadrotor. The author relies on first principles and measurements of 
the required parameters to model the system and design a controller. To 
reinforce this approach many researchers have shown how rotorcraft 
parameters can be measured (Bergamasco and Lovera 2014; Elsamanty 
et al. 2013). However, most of the literature focuses on gray-box approach 
(Kim, Kang, and Park 2009; Pounds, Mahony, and Corke 2006, 2010). In 
these cases, authors derive equations of the system from first principles 
but use data-driven techniques to estimate parameters of the system. In 
the end, they obtain three continuous transfer functions to represent the 
system. In his work Qianying (2014) used linear transfer functions in 
combination with a Kalman filter to identify system parameters. However, 
most authors point out that modeling an aerial vehicle is made hard by its 
nonlinear behavior and significant amount of coupling present. At the 
same time, it had been shown that machine learning techniques are very 
efficient at capturing such dynamics. Parvaresh and Moosavian (2019) 
have successfully used NARX to model a continuum robotic arm. 
Neural networks were used to create a black box model of buckling- 
restrained braces (Assaleh, AlHamaydeh, and Choudhary 2015). Bayat, 
Pishkenari, and Salarieh (2019) designed an observer for a nano- 
positioning system based on ANFIS ANN, while Hosovsky et al. (2016) 
have to use NARX to model a two-link robot with pneumatic muscles. In 
their work, Kislitsyna and Malykhina (2017) propose a method for 
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determining the motion parameters of the module de-orbiting upon the 
lunar surface, which is based on a recursive neural network. Authors of 
this paper propose a method of modeling quadrotor UAVs using NARX 
artificial neural networks and presents experimental results obtained.

This paper is structured as follows: Section 1 provides an introduction and 
an outline of the paper. Section 2 provides the necessary background knowl
edge. Section 3 describes the system layout and experimental setup. Section 4 
provides an overview of the methods used to obtain the models. At last, section 
5 presents experimental results.

Quadrotor Reference Frame and Control

Reference Frame

First of all, the coordinate frame has to be established. There are several 
coordinate systems used in aviation. Each one of them has its own advantages 
and disadvantages and is used accordingly. However, this project uses only 
one such system, namely the body axis system (Yechout et al. 2003). It is 
defined as follows:

● The coordinate system is fixed to the aircraft with its origin at the air
craft’s center of gravity (CG).

● The x axis is defined out of the nose of the aircraft.
● The y axis is defined out of the right wing of the aircraft.
● The z axis is defined as down through the bottom of the aircraft.

Figure 1 shows an example of a body axis coordinate system.

Figure 1. Body axis coordinate system.
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Quadrotor Control

A quadrotor is comprised of a thin cross structure with four propellers at its 
ends. Unlike a helicopter, the quadrotor does not require a tail rotor, due to 
the four-propeller cross configuration. Front and rear propellers rotate in 
a clockwise direction, while right and left propellers spin in the opposite 
(counter-clockwise) direction. Control of a quadrotor is performed by chan
ging the rotation rate and thus the thrust of each rotor individually. Although 
control is achieved through changing rotation rates of individual motors, this 
approach is very counterintuitive for humans. Due to this reason, four so- 
called channels are used, namely throttle, roll, pitch, and yaw.

Throttle (U1): The throttle channel controls the overall amount of thrust 
generated by all four motors combined. Thus, changes in it result in 
a proportional change in the rotation rates of all four propellers. This is the 
only channel that controls the quadrotor’s linear acceleration and is mostly 
used to change altitude.

Roll (U2): The roll channel provides a means to create and control a tilt 
between the right and left rotors. This is achieved by increasing the rotation 
speed of the left propeller and decreasing the speed of the right one by exactly 
the same amount or vice versa. It is important to notice that overall thrust 
remains the same; thus, there is no linear acceleration produced.

Pitch (U3): The pitch channel is similar to roll, the difference being that it 
controls the tilt between the front and rear propellers. Everything else is the same.

Yaw (U4): The yaw channel allows the quadrotor to rotate in the horizontal 
plane. This is achieved by increasing the rotation rates of two propellers which 
either rotate clockwise or counter-clockwise, depending on the desired direc
tion of rotation. To maintain overall thrust, this action has to be accompanied 
by an equivalent decrease in the remaining two propellers.

Experimental Setup and Procedure

This section presents the approach used to identify quadrotor attitude 
dynamics.

System Overview

The main goal of this paper is to identify pitch, roll and yaw dynamics of 
a quadrotor. Figure 2 shows the quadrotor used for this purpose.

The most common practice is to find a relationship between input commands 
and angular rates, as done in Bresciani (2008). Thus, the output of a model should 
be the rate of change of the angles rather than the angles themselves. Dynamics of 
the fourth degree of freedom (DOF), namely z-axis acceleration, present little 
interest, because they correspond to a first-order linear system and are decoupled 
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from the other DOFs. Identifying angle rates separately from z acceleration has 
one more advantage. Quadrotors are inherently unstable, so flying them without 
any control loops is impossible. However, if the goal is to identify only the angular 
dynamics, a quadrotor can be placed on a test stand with a spherical joint. Such 
a joint eliminates three DOFs, namely translational motion in all three axes. 
Nevertheless, if certain conditions are met, the motion in the remaining three 
DOFs remains unaffected. Obviously, the first condition is friction is kept as small 
as possible. The second one is that axis of rotation of the joint must be placed as 
close to the CG of the quadrotor as possible. Failing to meet this condition results 
in identifying a completely different system, because the moment of inertia 
changes in accordance with the parallel axis theorem. The red circle in Figure 3 
shows the joint and its connection to the quadrotor.

The most important part of system identification is clearly defining the inputs 
and outputs of the system. To do that, a good understanding of the general flow 
of information in the system is required. From this point of view, a quadrotor can 
be viewed in the following way: First of all, a human pilot generates a command, 
which he would like to send. After that, he inputs this command into a remote 

Figure 2. Quadrotor.

Figure 3. Spherical joint.
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control (RC) transmitter, usually, by manipulating control sticks of the RC. The 
transmitter is linked to an RC receiver onboard the quadrotor. Receiving a radio 
signal results in the receiver generating an output electrical signal. This electrical 
signal is read by a microcontroller which performs the channel mixing operation 
described previously. The result of the operation is an individual rate for each 
propeller. Later, these rates are sent to electrical speed controllers (ESCs), which 
in turn regulates the voltage applied to the motors. Changes in the voltage applied 
result in changes in the propellers’ angular rates. Finally, this leads to a change in 
the quadrotor’s motion. The diagram shown in Figure 4 illustrates the whole 

Figure 4. Inputs/outputs diagram.
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process inputs and outputs of the system. Ideally one would like to record the 
commands as the pilot inputs them into the RC transmitter. However, this is 
rather complicated and unnecessary. The radio communications are much faster 
than the mechanical part of the system. Neglecting it does not result in 
a noticeable loss of accuracy. Due to this, it is possible to record received 
commands on board the quadrotor. In contrast to the inputs of the system, 
outputs are much easier to define. As it was mentioned above, outputs are three 
angular rates. To summarize, the inputs are three commands (pitch, roll, yaw) 
received by the microcontroller and the outputs are three angular rates _p_r _q.

According to the basic principles of system identification, the input signal 
has to be independent of the output. Unfortunately, in the case of a quadrotor, 
this is impossible. The problem comes from the instability mentioned above. 
Quadrotors are inherently unstable and react to the inputs so quickly that even 
an experienced pilot will not be able to keep it upright even when it is fixed to 
a test stand. This also causes big challenges for a controller design. Due to this, 
it is a common practice to add dumping to the quadrotor axis. This is achieved 
by adding a feedback loop for angular rates. Figure 5 shows the feedback loop 
structure.

The red rectangle encloses the quadrotor’s raw dynamics. Meanwhile, the 
green rectangle shows raw dynamics with a feedback loop, which slows the 
quadrotor enough for a human to operate it. At this point, it is important to 
understand that a model is never a goal in itself, it is just a tool that allows 
certain goals to be achieved. In the case of an aircraft, a model is most 
commonly used to ease a controller design procedure. As long as gain K is 
not changed, one can use a new system defined by the green rectangle. This 
approach has been used and proven to be efficient in aviation and other fields 
(Menezes and Barreto 2008; Wu et al. 2014). The last part of this section 
describes the nature and characteristics of the input signals used to excite the 

Figure 5. Axis damping feedback loop.
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system. As mentioned above, the receiver outputs four electrical signals, each 
one representing a control channel. This project is only concerned with three 
of them, namely pitch, roll and yaw. Each signal looks like a train of pulses and 
pulse width represents an angle of a control stick. Pulse width can vary from 
1 ms to 2 ms. This is not ideal for mathematical manipulations and control 
applications because there is no negative region. Thus, the pulse width is 
shifted by −1.5 ms and ends up having values from −0.5 to 0.5. These are 
the values being recorded.

Hardware

This section provides the necessary description of the hardware used in the 
project. Most of the hardware used came from an Arducopter quadrotor. 
However, the microcontroller which comes with it has very limited data logging 
capabilities, due to a small amount of memory. In addition, the default telemetry 
can transmit data with a maximum rate of 15 Hz which is not good enough for 
system identification, which is the goal. Due to these reasons, a Beagle Bone White 
(BBW) embedded PC as a microcontroller is used. Unfortunately, replacing the 
ardupilot means losing its navigation system, so it is replaced by a MIDG IIC, 
which provides a full navigation solution. In addition to that, the arducopter does 
not include any radio controls. Thus, a Futaba 8 channel radio transmitter and 
receiver are used. Below is a complete list of hardware used in the project.

Arducopter components:

● The frame
● Four 12 V DC brushless motors
● 4 ESC
● Battery 12 V
● Power distribution board (Provides +12 V and +5 V output)
● Newly introduced components:
● BBW

a) Processor 720MHz AM 3359 ARM (Texas Instruments)
b) Power supply 5V (which is provided by the PDB mentioned above)
c) 4 serial communication ports (1 required for MIDG)
d) 66 GPIO pins (7 required for radio receiver, 4 required for ESCs)
e) Easy 4GB uSD card access (useful for data logging)

● MIDG IIC
a) Sampling rate 50 Hz
b) Communication via serial RS-232 max 50 Hz
c) Power supply 10-32V (can be handled by the battery)

● Futaba RC Tx and Rx
a) 8 channel
b) 2.4 GHz
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The last component needed for the project is a printed circuit board (PCB) that 
provides interfacing between the BBW and the rest of the electronics involved. 
BBW utilizes the TTL 3.3 standard. This means the maximum voltage for any 
input/output pin is 3.3 V. Older electronics utilize the TTL 5 standard, meaning 
logic levels are between 0 and +5 V. The PCB relies on the use of signal isolators to 
shift logic levels. On top of that, PCB has three LEDs connected to BBW GPIOs 
for a basic HMI. Figure 6 presents a pin diagram of the entire system.

Software

A BBW is an embedded PC. The default OS shipped with the BBW is Linux 
Angstrom; a distribution of Linux specifically designed for embedded applica
tions. Due to that, it is lighter and optimized for lower power consumption. 
This means that coding for a BBW is slightly different from coding for an 
ordinary microprocessor with no OS. However, the basic concepts are the 
same. There is a list of basic things one needs to be able to do for any 
embedded project. The list includes pin muxing, GPIO manipulation, PWM 
generation and acquisition. First of all, one has to be able to manipulate the 
pins’ mux settings. Most of the pins in a microprocessor are multiplexed. 
Thus, they can be used in several different ways, and a programmer has to 
specify how a pin should be used. Usually, this is done by putting some value 
into a specific register responsible for muxing. When working with an OS, one 
does not have direct access to registers or interrupts. However, Linux has 

Figure 6. Pin diagram.

APPLIED ARTIFICIAL INTELLIGENCE 273



directories to which values can be written and then passed to the registers by 
the OS itself. Actually, every single pin has a directory associated with it. Each 
one of those directories can be assigned a value, which determines the mode of 
a particular pin. A full list of all available modes can be found in the Beagle 
Bone manual. A more detailed description of the value computation proce
dure is provided in the AM335x technical manual.

The second step is to manipulate the GPIO pins. When working 
directly with hardware, all that needs to be done is configured the mux 
register to put a pin into a GPIO mode and then simply put the required 
values into in/out and high/low bits of configuration registers. As men
tioned previously, an OS does not give direct access to the registers. 
Assuming muxing was done previously, the first thing that has to be 
done is to export the pin by sending the pin number to the export 
directory. The procedure tells the kernel that the OS wants to work with 
this particular GPIO pin. After a pin is exported, its directory appears in 
the GPIO class directory and can be accessed. Inside the pin’s directory, 
one can find directories corresponding to the pin’s direction (in/out) and 
value (high/low), thus achieving the goal.

The first two parts are rather easy. However, when one attempting to 
acquire a high-frequency signal, the problem of latency arises. When an 
application needs to communicate with a hardware, it has to commu
nicate with the OS first. The OS in turn has to communicate with the 
kernel, which has direct access to the hardware. Then, all have to go all 
the way back. This causes a significant delay, making even an acquisition 
of a 50 Hz PWM signal impossible. However, there is a way around this 
issue. The microprocessor used in a BBW is an AM 3359 ARM. These 
types of microprocessors have an internal subdivision into several pro
cessors. While the main part of the microprocessor runs at 720 MHz and 
has an OS installed on it, there are two other parts called programmable 
real-time units (PRUs). These parts run only at 200 MHz, but they do 
not have any OS installed. This allows them direct access to the hard
ware and thus makes them much faster when it comes to hardware 
manipulation. This is different from both the physical and logical 
separations in ordinary computers and does not allow full-scale multi
processing. Unfortunately, there is a drawback. Since there is no OS on 
either of the PRUs, they cannot run executable files. This means that one 
cannot compile a C code and make a PRU run it. Due to this, one has to 
provide a PRU with a .bin file. There are several ways to make it. For 
example, one can code it in C and then use an IDE which has the tools 
to turn it into machine code. That is exactly what MPLAB does for PIC 
microcontrollers. However, each family of microprocessor requires 
a different set of tools, which are quite expensive and difficult to acquire. 
Due to that, a simpler approach was used. An assembly code was written 

274 A. AVDEEV ET AL.



in a text editor (like a notepad) and then compiled using the PASM 
software, provided by Texas Instruments. Communication between all 
three parts of the microprocessor is achieved through shared memory. 
Figure 7 depicts a portion of the AM335x technical manual (Texas 
Instruments [2013]) showing PRU memory location in a memory map.

As a matter of fact, access to the memory is controlled internally and the 
programmer does not have to bother implementing any kind of protocol. On 
top of that, Texas Instruments provides a C library specially created to work 
with PRUs. It is called prussdrv.c, prussdrv.h.

Input Signal Specifications

The data gathering process consists of applying an input to the system and 
observing the output. All inputs and outputs were discussed earlier. However, 
it was not specified what shape the input signal should have. Initially, the input 
used in the experiment consisted only of a command being sent by a pilot. 
However, there is a problem with that, namely the frequency content of the 
input signal. For good system identification, all of the system’s frequencies 
have to be exited. But, no matter how good the pilot is, a signal with frequen
cies higher than 2–3 Hz cannot be produced. This was solved by adding 
a pseudo-random component to the signal in the software. With a pseudo- 
random component, the input signal has all the frequencies from DC to 25 Hz. 
At the same time, all the pilot has to do is to keep a quadrotor upright to 
prevent it from hitting the boundaries of the spherical joint. As discussed 
previously, all the inputs and outputs are recorded onboard and then down
loaded to the host PC. Because the MIDG output hardly has any noise in it, the 
obtained data is not filtered. However, sometimes the packets sent by the 
MIDG get lost or corrupted. The amount of information loss due to this is very 
small and can be neglected. Nevertheless, this results in data not being equally 
sampled, while most system identification algorithms rely on the assumption 
that it is. So, a MATLAB script was written to find such places in the log file 
and restore them by interpolating the data.

Figure 7. Part of AM335x family memory map (AM335x ARM cortex – A8 microprocessors (MPUs) 
technical reference manual 2013, 176).
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Quadrotor System Identification

Continuous Time Transfer Functions

The most common approach toward creating a model in avionics is gray-box 
modeling (Bresciani 2008). This method assumes that the structure of a model 
is known; it can either be derived from the first principles or determined by 
trial and error. However, the parameters of the model have to be found 
through the use of some estimation algorithm (Bosch and Van der Klauw 
1994). The most basic way to represent a system is to acquire its transfer 
function by taking the Laplace transform of differential equations describing 
the system. Transfer function models describe the relationship between the 
inputs and outputs of a system using a ratio of polynomials (Franklin, Powell, 
and Emami-Naeini 2009). The model order is equal to the order of the 
denominator polynomial. The roots of the denominator polynomial are 
referred to as the model poles, and the roots of the numerator polynomial 
are referred to as the model zeros. The parameters of a transfer function model 
are its poles and zeros (Close, Frederick, and Newell 2002). It is very common 
to assume that the relation between pilot commands and Euler angles’ rates is 
that of a second-order underdamped system. This assumption is based on the 
following facts. First of all, it can be shown that the speed of any propeller 
connected to a DC-motor can be described by the following first-order 
differential equation (Bresciani 2008): 

_ωp ¼ Apωp þ Bpvþ Cp (1) 

where:
ωp – propeller speed
v – voltage applied to the motor
Ap;Bp;Cp – linearization coefficients
It is important to point out that voltage applied to the motor is a result of an 

operation called channel mixing. The operation consists only of linear equa
tions. Thus, the relation between pilot commands and voltages applied to the 
motors are linear and not differential. It has to be mentioned that this is only 
true if one assumes that ESCs have no dynamics. At the same time, the 
difference in the propellers’ angular velocities produces torque acting on the 
quadrotor. Thus, if one defines a generalized force vector (Λ) as: 

Λ ¼ FxFyFzτxτyτz
� �

(2) 

It can be shown that generic dynamics of 6 DOF can be written in a matrix 
form as follows (Bresciani 2008): 

MB _V þ CBV ¼ Λ (3) 

where:
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_V – generalized acceleration of a body
MB – system inertia matrix
CB – Coriolis-centripetal matrix
If one combines (1) and (3) making use of (2), a set of second-order 

differential equations is obtained. Due to this fact, it makes sense to assume 
a second-order relation between pilot commands and angle rates. Thus, the 
transfer function should have the form shown by (4). 

H sð Þ ¼
Y sð Þ
X sð Þ

¼
K

1þ 2Tωζsþ T2
ωs2

� � (4) 

where:
Y sð Þ – angle rate
X sð Þ – pilot command
K – DC gain
Tω- inverse of corner frequency
ζ – damping factor
However, parameters K, Tω, ζ remain unknown and have to be estimated. 

Some obvious drawbacks of the approach are linearization and decoupling. 
A classical Laplace transform used to obtain transfer functions from differential 
equations assumes a system is linear and time-invariant. Thus, a transfer function 
obtained through an estimation process will be a linearization of a system around 
some point of operation (Bresciani 2008; Ge et al. 2009). In this particular case, it 
will be the hovering point, because during the experiment the quadrotor was 
mostly kept upright. The second issue mentioned is decoupling. This happens 
because, by definition, transfer functions represent a relation between one parti
cular input and one particular output. Thus, to obtain a truly MIMO system, one 
has to find all possible transfer functions. However, this is out of this project scope. 
The method being discussed is mostly used to show that the system is nonlinear 
and has a significant amount of coupling.

Nonlinear Autoregressive Network with Exogenous Inputs (NARX)

The nonlinear autoregressive network with exogenous inputs (NARX) is a type of 
recurrent dynamic network that is frequently used for estimating time-series 
(Menezes and Barreto 2008; Wang and Song 2014; Wong and Worden 2007). 
The most distinctive feature of a NARX network is that it has a feedback enclosing 
several layers of the network. Thus, the equation describing a NARX network is: 

y tð Þ ¼ f ðy t � 1ð Þ; y t � 2ð Þ; . . . ; y t � my
� �

;

u tð Þ; u t � 1ð Þ; . . . ; u t � kuð ÞÞ (5) 

where: y tð Þ – network output at time t and u tð Þ – network input at time t.
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As can be seen, every value of the dependent output signal y(t) is regressed on 
previous values of the output signal and previous values of an independent 
(exogenous) input signal. This makes NARX networks capable of nonlinear 
dynamic system modeling (Pisoni et al. 2009; Zemouri, Gouriveau, and 

Figure 8. NARX series-parallel architecture (MATLAB 2013a. 2013. MathWorks).

Figure 9. NARX parallel architecture (MATLAB 2013a. 2013. MathWorks).
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Zerhouni 2010). However, using the feedback feature of NARX networks during 
the training phase is unjustified (Menezes and Barreto 2008; Wang and Song 
2014). First of all, the true output is available during training. Thus, the network 
can be supplied with much more accurate inputs. In addition to that, a static 
backpropagation learning algorithm cannot be used. Due to these two facts, 
NARX networks are usually converted from parallel, shown in Figure 8 to series- 
parallel, shown in Figure 9 architecture for training.

As mentioned above, Series-Parallel architecture allows using static learning 
algorithms. One of such algorithms is Levenberg-Marquardt backpropagation. 
As well as quasi-Newton methods, the Levenberg-Marquardt algorithm can 
approach second-order training speed, while not needing to compute the 
Hessian matrix (Menezes and Barreto 2008). The algorithm relies on the fact 
that if a performance function has the form of a sum of squares, then the 
Hessian matrix H can be approximated as: 

H ¼ JTJ (6) 

and the gradient Ñ can be computed as: 

Ñ ¼ JTe (7) 

In (6) and (7) J is the Jacobian matrix. This matrix consists of the first derivatives of the 
errors with respect to weights and biases. e is simply a network error vector. 
Approximations mentioned above are then used in a Newton-like update of the weights: 

wnþ1 ¼ wn � JTJ þ μI
� �� 1JTe (8) 

As explained previously, this method relies on the assumption that perfor
mance is a mean or sum of squared errors. Thus, a NARX trained with this 
method has to have either the MSE or SSE performance function. This project 
used the MSE function which is calculated using the following formula: 

MSE ¼
1
N

XN

k¼1
y � ŷð Þ

2 kð Þ (9) 

The NARX network was trained in the Series-Parallel mode and then con
verted to Parallel architecture for testing.

Experimental Results

The system identification of the quadrotor dynamics has been performed using a data set 
of 12500 samples, equally spaced over a period of 250 seconds. The following transfer 
functions were obtained:

Pitch Rate: 
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H1;1 sð Þ ¼
_p sð Þ

up sð Þ
¼

334
0:009467s2 þ 0:06256sþ 1 

Roll Rate: 

H2;2 sð Þ ¼
_rðsÞ

ur sð Þ
¼

299:8
0:01426s2 þ 0:07517sþ 1 

Yaw Rate: 

H3;3 sð Þ ¼
_q sð Þ

uq sð Þ
¼

350
0:01823s2 þ 1:015sþ 1 

Figures 10, 11 and 12 below, show measure and modeled angle rates of the 
quadrotor.

Figure 10. Modeling performance of pitch rate transfer function.

Figure 11. Modeling performance of roll rate transfer function.
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Table 1 summarizes the results of using continuous time transfer function 
to model the quadrotor dynamics.

The same data set is used to train and validate a NARX network. Below, 
measured and predicted outputs are shown in Figures 13, 14 and 15.

Table 1. CTTF results.
Angle rate MSE VAF (%) Correlation Coefficient Outlier ratio

Pitch rate 0.0106 18.6 0.75 0.07
Roll rate 0.0054 65.1 0.77 0.04
Yaw rate 0.0772 5.33 0.61 0.04

Figure 12. Modeling performance of yaw rate transfer function.

Figure 13. Modeling performance of the NARX model of pitch rate during testing.
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Figure 14. Modeling performance of the NARX model of roll rate during testing.

Figure 15. Modeling performance of the NARX model of yaw rate during testing.
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Table 2 summarizes the results of using continuous time transfer function 
to model the quadrotor dynamics.

As it was stated in the theory section, the number of delays used in the 
network has to be found experimentally. This is done by increasing the number 
of delays until the improvement becomes insignificant. Figures 16, 17 and 18 
show the relation between the number of delays used and network performance.

The results presented above show that the NARX network managed to model the 
system. NARX model performance is much better than that of a transfer function. 
This is mostly because NARX can easily incorporate any kind of coupling.

Results Validation

Data Set Dependency

Results obtained from data-driven techniques heavily depend on the data provided. 
Thus, it is a common practice to perform some kind of validation after the results 
are obtained to show that they are not data-dependent. Usually, this is done by 

Table 2. NARX results.
Angle rate MSE VAF (%) Correlation Coefficient Outlier ratio

Pitch rate 0.0077 54.4 0.74 0.07
Roll rate 0.0047 72.9 0.87 0.04
Yaw rate 0.0112 69.3 0.86 0.08

Figure 16. Number of delays vs MSE for pitch rate.
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shifting the testing window while using the same data set. As mentioned above, 
initially 200 seconds of data were divided into a training set (50–200 seconds), and 
a testing set (200–250) seconds. The results obtained with this division are reported 
in Section 5. Later, the training set was changed to 100–250 seconds, and the testing 
set was changed to 50–100 seconds, and the whole procedure was repeated. 
Needless to say, this is not required for classical CTTF, because windows of 

Figure 17. Number of delays vs MSE for roll rate.

Figure 18. Number of delays vs MSE for yaw rate.
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3 seconds were used to estimate their coefficients. Thus, the coefficients are average 
values already. The results obtained with the new data set division are presented in 
Table 3.

It can be seen that the change caused by using a different data division is rather 
insignificant and most importantly inconsistent, leading to a slight improvement 
in some cases and deterioration in others. This illustrates the independence of the 
results obtained earlier from a particular portion of data being used.

Data Set Size Dependency

Another important criterion is the amount of data provided. It is obvious that 
for the techniques used in this project, the size of the data set is of major 
importance. It is also obvious that after a certain point, further increases in the 
amount of data will not yield a significant improvement in the model accuracy. 
Thus, a check can be performed to see if the data set size was sufficiently big. 
This is done by increasing the amount of training data and monitoring the 
performance of the obtained models. In this project, the MSE was used for 
performance evaluation. Table 4 shows the change in MSE due to the increase 
in the training data set for NARX.

The three plots below show a relation between MSE and the amount of data 
used for training for each output of the model.

It can be seen that in each case MSE shows a rapid improvement in the 
beginning followed by a huge decrease in sensitivity to an increase in 
training set size. This illustrates that further increases in the amount of 
data provided to the network for training will not result in any significant 
improvement.

Table 3. NARX results.
Angle rate MSE VAF (%) Correlation Coefficient Outlier ratio

Pitch rate 0.0064 54.17% 0.77 0.06
Roll rate 0.0048 73.8% 0.86 0.06
Yaw rate 0.0050 50.6% 0.72 0.07

Table 4. NARX MSE.
Data Used 1250 2500 3750 5000 6250 7500

Pitch Rate 0.02 0.015 0.014 0.012 0.008 0.008
Roll Rate 0.014 0.011 0.007 0.005 0.004 0.004
Yaw Rate 0.024 0.013 0.012 0.012 0.007 0.006
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Figure 19. MSE for yaw rate vs training set size.

Figure 20. MSE for roll rate vs training set size.
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Conclusion

This paper has presented an experimental setup that allowed to acquire 
data for system identification purposes. We have successfully modeled the 
system using NARX ANN. Observing the relation between MSE and 
number of data points, shown in Figure 19, 20, 21, allows to conclude 
that sufficient amount of data was gathered to train the networks. Figures 
16, 17 and 18 show that the number of delays was adequate and allowed 
networks to capture the system dynamics. From Figures 13, 14 and 15, we 
can observe that the identified dynamic model performs well. At the same 
time, Tables 1 and 2 show that using NARX results in lower MSE and 
higher correlation coefficient than the transfer function model. It is 
important to point out that improvement is consistent among all three 
angle rates. The model obtained can be used in controllers that require 
a system model. We expect this approach to be adoptable to any kind of 
rotary-wing UAVs, like hexarotors etc. The future work will be focused on 
improving the experimental setup to obtain higher quality data sets. 
Moreover, an attempt should be made to use the model for controller 
design or in a model predictive controller.
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