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Abstract

The exp(—¢(§)) method is employed to find the exact traveling wave solutions involving para-

meters for nonlinear evolution equations. When these parameters are taken to be special values,
the solitary wave solutions are derived from the exact traveling wave solutions. It is shown that

the exp (—¢(§ )) method provides an effective and a more powerful mathematical tool for solving

nonlinear evolution equations in mathematical physics. Comparison between our results and the
well-known results will be presented.
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1. Introduction

The nonlinear partial differential equations of mathematical physics are major subjects in physical science [1].
Exact solutions for these equations play an important role in many phenomena in physics such as fluid
mechanics, hydrodynamics, Optics, Plasma physics and so on. Recently many new approaches for finding these
solutions have been proposed, for example, tanh-sech method [2]-[4], extended tanh-method [5], extended
jacobain method [6], modified simple equation method [7] [8], sine-cosine method [9] [10], homogeneous
balance method [11] [12], F-expansion method [13]-[15], exp-function method [16] [17], trigonometric function
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’

series method [18], (%) -expansion method [19]-[22], Jacobi elliptic function method [23]-[26], the
exp(—¢(£))-expansion method [27]-[29] and so on.

The objective of this article is to investigate more applications than obtained in [27]-[29] to justify and
demonstrate the advantages of the exp(—¢(§)) method. Here, we apply this method to (2+1)-dimensional

soliton breaking equation [30] and (3+1)-dimensional Kadomstev-Petviash-vili.

2. Description of Method
Consider the following nonlinear evolution equation
F (U, U, Uy, Uy, Uy, ) =0, 1)

tr Uxo Yt Uxxs

where F is a polynomial in u(x,t) and its partial derivatives in which the highest order derivatives and
nonlinear terms are involved. In the following,we give the main steps of this method
Step 1. We use the wave transformation

u(xt)y=u(é), &E=x-ct, 2
where c is a positive constant, to reduce Equation (1) to the following ODE:
P(u,u’,u”,u",--)=0, ®)

where P is a polynomial in u(¢) and its total derivatives,while :d%' .

Step 2. Suppose that the solution of ODE (3) can be expressed by a polynomial in exp(—go(f)) as follows

u(§)=am(exp(—(p(§)))m+---, a, #0, 4)
where ¢(¢&) satisfies the ODE in the form
9 (&) =exp(-p(&))+ uexp(p(£))+ 4, )

the solutions of ODE (5) are
when A% —4u>0,u#0,

2

N tanh{\'/lz_d'ﬂ(&rcl)]—/l

p(&)=In 2 , (6)

when A% —44>0, =0,

A
(p(g)=_In[exp(ﬂ(§+cl))—1j’ 0
when A% —41=0,u#0,4%0,

21A(&E+C))+2
when A°-44=0,14=0,1=0,
p(¢)=In(5+Cy), ©

when A% —4u<0,
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@(&)=In , (10)

where a_,---, 4, are constants to be determined later,

Step 3. Substitute Equation (4) along Equation (5) into Equation (3) and collecting all the terms of the same
power exp(—m¢(<§)), m=0,1,2,3,--- and equating them to zero, we obtain a system of algebraic equations,
which can be solved by Maple or Mathematica to get the values of &, .

Step 4. substituting these values and the solutions of Equation (5) into Equation (3) we obtain the exact
solutions of Equation (1).

3. Application

Here, we will apply the exp(—¢(§)) method described in Section 2 to find the exact traveling wave solutions
and then the solitary wave slutions for the following nonlinear systems of evolution evolution equations.

3.1. Example 1: The (2+1)-Dimensional Breaking Soliton Equations

Let us consider the (2+1)-dimensional breaking soliton equations [30]:

U, +au,,, +4auv, +4au,v =0,
(11)

U, =V,,

where « is known constant. Equation (11) describes the (2+1)-dimensional interaction of a Riemann wave

propagating along the y-axis with along wave along the x-axis. In the past years, many authors have studied

Equation (11). For instance, Zhang has successfully extended the generalized auxiliary equation method of

the (2+1)-dimensional breaking soliton equations in [31]. Some soliton-like solutions were obtained by the

generalized expansion of Riccati equation in [32]. Recently, a class of periodic wave solutions were obtained by

the mapping method in [33]. Two classes of new exact solutions were obtained by the singular manifold method

in [34].

Using the wave variable &=x+y—ct and proceeding as before we find

—cu'+au"” +4auv’ +4au'v =0,

{ "y “ “ “ (12)

u'=v,

Integrating the second equation in the system and neglecting constant of integration we find
u=v. (13)

Substituting (13) into the first equation of the system and integration we find

—CU +4au® +au" =0. (14)
Balancing u®? and u” in Equation (14) yields, 2m=m+2=m=2. Consequently, we get the formal
solution
u(&)=a,+a exp(-o(&))+a,exp(-20(¢)). (15)
where a,, &, a, areconstantsto be determined, such that A, =0. Itis easy to see that
Ve al &

() S _2(e¢<:> i

(16)
HH i

e (e )2 '
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2

o By au at al a U
u _2(e¢(5))3 +2e¢(§) +3(e¢(§))2 +adu+ e +6(e¢(;)4 +8(e¢é))2

a,A aLuA A’ ()
+10—2"— +2a,u° +6 Z;ZZ) +4——.
e (e¢(§))

( #é) )3

Substituting (15) and (17) into Equation (14) and equating all the coefficients of exp(—4(p(§)),
exp(-3p(£)), exp(—20(&)), exp(-9(£)), exp(—0p(&)) to zero, we deduce respectively

4ad’ +6aa, =0, (18)
8aaa, +2aa, +10ca,A =0, (19)
-a,C+8aa,a, +4adl +3aad +8ad,u+4aa,A’ =0, (20)
—a,C+8aaya, +2aau+aald’ +6aa,ul =0, (21)
-a,C+4ad +aadu+2aa,u’ =0. (22)
From Equations (18)-(22), we have the following results:
Case 1.
c=—aldu-2*) 8 =_73ﬂ, 3 =_?3Z, a, :_?3
Case 2.

2 -1 1, -3 -3
c=a(4u-2") a L R L
So that the exact solution of Equation (14)
Case 1.
when A% —4u>0,u#0,

-3 3ul
U=—pu— u
2 2 _
_rz_wnh(wgml)j_a
(23)
B, 32
2 [17
—\/ﬂz—4ytanh[124y(§+cl)J—ﬂ
when A% —4u>0, =0,
-3 32? 3 2 ’
=—u- - , 24
A 2(exp(4(&+C,))-1) 2[exp(ﬂ(§+cl))—1] (24)
when A% —4u=0,u#0,1%0,
uz__3ﬂ+3(z(§+c1)+2) 3 2(A(£+Cy)+2) 25)
2 A(E+C)) 2 A%(&+C)
when A% -4u=0,4=0,1=0,
3 32 3 1 Y
U—?ﬂ_2(§+cl)_§[§+clj , (29)

when A% -4u<0,
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(27)
_3 24
2 (4., 22 ’
1/4u—/12tan(4ﬂzl(§+CI)J—/1
Case 2.
when A% —4u>0,u#0,
W= 3
2 4 2 12—4y
—J A% —4u tanh #(&Cl) -2
2
(28)
_3 24
2 [2_
P —4,utanh[/124#(§+CI)J—/1
when A% —4u>0,u=0,
2
-1 1, 317 3 A
U=—pu-=27- -2 , 29
247y 2(exp(/1(§+c1))_1) Z(exp(i(§+cl))—1J (29)
when A% —4u=0,u#0,1%0,
2
_ 3(A(é+C)+2 2(A(é+C)+2
b, 1, 3A(ExC)+2) 3f2( (f+ 1)+2) (30)
2" 4 A(E+C) 2| AF(£+C)
when A% —4u=0,14=0,1=0,
2
101 34 3 1
iy -2 , 31
TN (e 2[§+C1J 1)
when A% -4u<0,
1 1, 3ud
Us—pu—=A%-
27 4 .2
JAu— 2% tan {W(@q)}-z
2
(32)
_3 24
2 1

JAu— 2% tan ["4“2_/12(5 + Cl)] ~A

3.2. Example 2: The (3+1)-Dimensional KP Equation

We next consider the (3+1)-dimensional KP equation
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Uy, +BUZ +BUU, — U, —U,, — U, =0. (33)

XXXX

Xie et al. [35] obtained non-traveling wave solutions by the improved tanh function method, in which they
introduced a generalized Riccati equation and gained its 27 new solutions. In this paper, we will construct new
non-traveling wave solution of Equation (33). As a result, new non-traveling wave solutions including soliton-
like solutions and periodic solutions of Equation (1) are obtained. A generalized variable-coefficient algebraic
method with computerized symbolic computation is developed to deal with (3+1)-dimensional KP equation with
variable coefficients in [36]. Chen et al. [37] study (3+1)-dimensional KP equation by using the new generalized
transformation in homogeneous balance method.

Using the wave variable &=x+y+z—ct, the Equation (33) is carried to an ODE of the form

—(c+2)u”+6(u’)2+6uu”—u"’:0. (34)
Integrating twice and setting the constants of integration to zero, we obtain
—(c+2)u+3u*-u"=0. (35)
Balancing u” and u? in Equation (35) yields, m+2=2m=m=2. Consequently, we get the formal
solution (15).
Substituting (15)-(17) into Equation (35) and equating the coefficients of exp(—4¢(¢)), exp(-3¢(&)),
exp(—20(£)), exp(—9(£)), exp(-0p(£)) to zero, we respectively obtain

3aZ -6a, =0, (36)
6aa, —2a, —10a,4 =0, (37)
—(c+2)a, +6a,a, +3a/ —3a,4—8a,u—4a,1% =0, (38)
—(c+2)a, +6ay3, —2a,u—a,A* —6a,Au =0, (39)
—(c+2)a, +3ag —aAu—2a,u° =0. (40)
From Equations (36)-(40), we have the following results:
Case 1.
C=—2+4u—-2%a,=2u,8 =21,a,=2.
Case 2.

c=—4,u+/12—2,a0=§y+%/12,31=2/1, a,=2.

So that the exact solution of equation
Case 1.
when A2 —44>0,u#0,

Uu=2u+ Bl
2
A4 tanh(”z_‘”’(g + Cl)j—ﬁ
2
(41)
2u
+2 ,
2
—JA* —4utanh [\sz‘”‘(gwl)]—/z
when A% —44>0,1=0,
2
2% A
u=2u+ +2 , (42)
exp(A(£+C,))-1 (exp(l(§+cl))—1]
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when A% —4u=0,u#0,1%0,

2
4(1 C,)+2 2(4 C)+2
U=2u- (A(e+C)+ )+2 ( (2§+ )+2) , (43)
A(&+C)) 2*(&+C)
when A% -4u=0,14=0,1=0,
2
24 1
=2 2 , 44
u 'u+§+C1+ {§+C1] (44)
when A% -4u<0,
2
4ui 2u
u=2u+ +2 , (45)
2 2
Jap— 2% tan {W(&q)}-a JAp— 2% tan {"4”2_’1(@(:1)}—/1
Case 2.
when A% —4u>0,u#0,
2
2 1., 4ul 2u
U=—u+—-A"+ +2 ,  (46)
3 3 2 2
- ,12—4ﬂtanh[\';t “(§+01)J—/1 —\//12—4ytanh[v ﬂ(§+C1)]—/1
when A% —4u>0, =0,
2
2 1., 212 A
= u+=1 2 , 47
Um3473 Jrexp(ﬂ(f+Cl))—lJr [exp(i(§+C1))—1] “n
when A% —4u=0,u#0,1%0,
2
4(A C,)+2 2(A4 C,)+2
u=§ﬂ+l/12_ (A(¢+C)+ )+2 ( (2§+ 1)+2) (48)
3" 3 A(E+C)) A*(&+Cy)
when A% —4u=0,14=0,1=0,
2
u:gu+£iz+ 2ol 1 : (49)
3 3 E+C, &E+C;
when A% -4u<0,
2
u =§#+%/’tz+ il +2 2 , (50)

Jau—27 tan [W(g + cl)J—/l Jau—27 tan (\'4“2"’12(5 +C1)]—/1

4. Conclusion

The exp(—¢(§)) method has been successfully used to find the exact traveling wave solutions of nonlinear
evolution equations. As an application, the traveling wave solutions for (2+1)-dimensional soliton breaking
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equation and (3+1)-dimensional Kadomstev-Petviash-vili which have been constructed using the modified
simple equation method. Let us compare between our results obtained in the present article with the well-known
results obtained by other authors using different methods as follows: Our results of (2+1)-dimensional soliton
breaking equation and (3+1)-dimensional Kadomstev-Petviash-viliare are new and different from those obtained
in [38] [39]. Figures 1-4 show the solitary wave solutions of equations. It can be concluded that this method is

X 4 4 2 t
Equation (23)

S

RS
XRKX

X
&K

ole]
%0

/
45
gté
%

Equation (25)

Figure 1. Solution of Equations (23)-(25).
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Equation (26)

Equation (27)

Figure 2. Solution of Equations (26) and (27).
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Equation (41)

Equation (42)

Equation (43)

Figure 3. Solution of Equation (41)-(43).
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Equation (45)

Figure 4. Solution of Equation (44) and (45).

reliable and propose a variety of exact solutions NPDEs. The performance of this method is effective and can be
applied to many other nonlinear evolution equations.
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