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ABSTRACT
Automated inspection using deep-learning has been attracting 
attention for visual inspection at the manufacturing site. 
However, the inability to obtain sufficient abnormal product 
data for training deep- learning models is a problem in practical 
application. This study proposes an anomaly detection method 
based on the Siamese network with an attention mechanism for 
a small dataset. Moreover, attention branch loss (ABL) is pro-
posed for Siamese network to render more task-specific atten-
tion maps from attention mechanism. Experimental results 
confirm that the proposed method with the attention mechan-
ism and ABL is effective even with limited abnormal data.
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Introduction

Visual inspection is an integral part of the manufacturing process that pre-
vents the release of defective products into the market. Manual inspection 
requires time, resources, and costs and lengthy visual inspections are burden-
some for the inspectors. In addition, abnormalities in product appearance are 
difficult to identify clearly, and unification of judgment criteria among multi-
ple inspectors is difficult. Therefore, to solve these problems, there is a need to 
develop a nonmanual visual inspection method for anomaly detection 
(Mumtaz, Mansoor, and Masood 2012).

Automation of visual inspection, such as defect inspection and anomaly 
detection of industrial products, is a crucial task in the field of computer 
vision. Detection of anomalies, such as micro-scratches on product sur-
faces, in image data are critical in many industries. With the development 
and popularization of convolutional neural networks (CNNs) (Lecun et al. 
1998) based on deep learning, the practical application of CNN-based 
anomaly detection has been extensively studied in the past few years 
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(Akcay et al., 2018, 2019; Andrews et al. 2016; Bergmann et al. 1993; Cha, 
Choi, and Buyukzturk 2017; Eisenbach et al. 2017; Gong et al. 2019; 
Haselmann and Gruber 2019; Haselmann, Gruber, and Tabatabai 2018; 
Katafuchi et al., 2021; Ma, Xie, and Zhang 2019; Masci et al. 2012; Mei, 
Yang, and Yin 2018; Ren, Hung, and Tan 2017; Sakurada et al., 2014; 
Schlegl et al. 2017; Soukup and Huber-Mork 2014; Tang et al. 2020; 
Weimer, Scholz-Reiter, and Shpitalni 2016; Zenati et al. 2018). CNN- 
based anomaly detection can be divided into two approaches: classifica-
tion-based and reconstruction-based.

Based on supervised learning, the classification-based method is a simple 
categorization task applied for anomaly detection. The model is generally 
a binary classification task that outputs a two-class classification result 
(normal or abnormal) for the input evaluation image. Although this 
approach is simple and can be applied in various areas, it requires large 
quantities of data including not only normal data, but considerable abnor-
mal data as well. However, it is difficult to collect a large quantity of 
abnormal data as training images in a real environment, leading to 
a severe imbalanced dataset problem with more normal data than anomaly 
data. Moreover, it is also difficult to apply a classification-based method using 
a CNN for anomaly detection because it does not perform well in the low- 
data regime. On the other hand, research on unsupervised anomaly detection 
using generative models has attracted attention. This approach is the most 
popular method for anomaly detection because it does not require labeled 
anomalous data for training anomaly detectors. Model training without 
anomalous data is an optimal approach because preparing a large quantity 
of abnormal data is difficult in a real environment. However, the auto-encoder 
(AE) (Hinton and Salakhutdinov 2006) and generative adversarial network 
(GAN) (Goodfellow et al. 2014) output immoderate blurry structures because 
of the failure in reconstructing fine structures at times.

Few-shot earning is a subfield of machine learning that aims to create 
models that can learn the desired objective with fewer data, similar to 
human learning. While most classification-based methods require training 
on massive datasets, few-shot learning aims to learn the features of the object 
categories from one or only a few training images. Architectures for learning 
from a small dataset have been extensively researched (Jadon 2020).

Deep learning-based few-shot learning approaches can be divided into four 
main categories: data augmentation, metric-based, model-based, and optimi-
zation-based methods. The Siamese network (Bromley et al. 1994) is 
a representative metric-based method. It consists of twin networks and can 
use the relationship between pairs of input samples for learning. The twin 
networks are identical, sharing the same weights and network parameters; 
both refer to the same embedding network that learns efficient embedding to 
reveal the relationship between pairs of data points.
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Although it is difficult to collect a large quantity of anomaly data, a smaller 
quantity can be collected. Thus, it is expected that the obtained anomaly data 
can be used effectively to achieve highly-accurate anomaly detection. The 
Siamese network learns the optimal embedding space based on pairs of data; 
hence, the few available anomaly data can be used efficiently for training.

Attention is used in a wide range of deep-learning applications and is an 
epoch-making technology in the rapidly developing field of natural language. 
In computer vision tasks using deep learning, attention is a mechanism to 
dynamically identify where the input data should be focused. It is used to 
improve the accuracy of the task by focusing the model on the important parts 
of the image (Jetley et al. 2018). The attention branch network (ABN) (Fukui 
et al. 2019) has been proposed as a typical classification task-specific CNN 
model that introduces a learnable attention mechanism. It extends the top- 
down visual explanation model by introducing a branch structure with an 
attention mechanism. By introducing a branch for attention, the ABN simul-
taneously achieves visualization of the gazing area through visual explanation 
and improves the model accuracy. The most important feature of the ABN is 
that the model is trained to classify images precisely using only the feature map 
data obtained from the attention mechanism. Thus, the attention mechanism 
is trained to render a more task-specific attention map.

In this study, a method based on deep-metric learning and an attention 
mechanism is proposed for improving the accuracy of CNN-based anomaly 
detection under a situation where only very few anomaly data are available. An 
anomaly detection model that can be efficiently and effectively trained even 
with a small quantity of anomaly data is first constructed using deep- metric 
learning combined with a Siamese network and CNN. Further, to improve the 
accuracy of the proposed method, an attention mechanism is applied to the 
feature extractor of the proposed method. With reference to the ABN concept, 
only the feature map obtained from the attention mechanism is used for 
learning to construct an optimum embedding space with the Siamese network. 
The attention mechanism is trained with the aim of rendering the attention 
map itself more task-specific to move away different classes of data in the 
embedding space. Furthermore, we propose pair balanced contrastive loss 
(PBCL) to account for the effect of training with unbalanced data on the CL, 
which is used to train the Siamese network. Experimental results using the 
benchmark dataset ”MVTec AD (Bergmann et al. 2019)” confirm that the 
proposed method improves the anomaly detection performance.

Related Work

Compared to the classical machine vision methods, deep-learning methods 
achieve automatic end-to-end learning of rules, which contribute to scientific 
decision-making, from the input data through network learning. The powerful 
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feature representation capabilities of deep-learning methods are well suited for 
detecting complex defects. Existing methods for anomaly detection using 
deep-learning can be approximately divided into classifier-based and recon-
struction-based methods. The methods relevant to our work are described in 
brief in the following subsections.

Classifier-Based Anomaly Detection

Classification-based surface-defect detection for products has been widely 
proposed (Andrews et al. 2016; Cha, Choi, and Buyukzturk 2017; Eisenbach 
et al. 2017; Katafuchi et al., 2021; Ma, Xie, and Zhang 2019; Masci et al. 
2012; Ren, Hung, and Tan 2017; Soukup and Huber-Mork 2014; Weimer, 
Scholz-Reiter, and Shpitalni 2016). Classification-based methods are simple 
classification tasks that apply a CNN for exception detection based on 
supervised learning. The binary classification task outputs a two-class clas-
sification result, generally normal or abnormal, for evaluating the input 
image. Cha et al. used two types of CNNs for detecting building damage, 
including cracks (Cha, Choi, and Buyukzturk 2017). Soukup et al. trained 
a classical CNN model to detect rail metal surface defects in a purely 
supervised manner (Soukup and Huber-Mork 2014). They showed that 
the CNN clearly outperformed traditional model-based anomaly detection. 
Ma et al. proposed automatic blister defect detection using a CNN with 
a dense block to ensure the quality and reliability of polymer lithium-ion 
batteries (Ma, Xie, and Zhang 2019). They added trainable weight para-
meters to each skip-connection for improving the dense blocks in the CNN 
architecture. Ren et al. adopted a generic approach for automated surface 
inspection (Ren, Hung, and Tan 2017). Their method extracts patch fea-
tures using a pretrained CNN and then predicts the defect area by gen-
erating a defect heat map based on the patch features. However, this 
technique is only applicable to surface defects with localized anomalies 
within a homogeneous texture. Katafuchi et al. proposed a layer-wise 
external attention network (LEA-Net) for color anomaly detection tasks 
(Katafuchi et al., 2021). Their contribution is the integration of unsuper-
vised and supervised anomaly detectors via the visual attention mechanism. 
Although they claimed that their proposed model improves the accuracy 
even on unbalanced data sets, training the model requires a relatively large 
quantity of anomaly data.

Classification-based methods are intended to be trained on relatively 
large data sets with little bias among the categories. However, it is difficult 
to collect considerable abnormal data as training images in a real envir-
onment. In addition, certain defect types occur very rarely. Anomaly 
detection datasets are heavily imbalanced, and often contain only a few 
anomalies for model verification and testing. Therefore, supervised 
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learning remains a challenge in many situations where only a few defec-
tive image patches are available along with thousands of normal image 
patches (Haselmann and Gruber 2019).

Reconstruction-Based Anomaly Detection

The requirement for sufficient abnormal samples can be eliminated using 
reconstruction-based methods trained in an unsupervised manner on exclu-
sively normal data (Akcay et al., 2018, 2019; Bergmann et al. 1993; Gong et al. 
2019; Haselmann, Gruber, and Tabatabai 2018; Mei, Yang, and Yin 2018; 
Sakurada et al., 2014; Schlegl et al. 2017; Tang et al. 2020; Zenati et al. 2018). 
This approach generally uses an AE and GAN to learn powerful reconstruc-
tion manifolds using only normal data.

The AE attempts to learn the identity function using only normal data 
(Hinton and Salakhutdinov 2006). It is difficult for an AE-based model to 
represent anomalous image structures because the model reconstructs the 
input image after compressing the image into a low-dimensional embed-
ding. Thus, the model can reconstruct a plausible normal image even if an 
image containing anomalies is input. Therefore, anomaly detection is 
achieved by comparing the input image with the reconstructed image.

Mei et al. proposed a method to localize and detect using only defect-free 
data for model training (Mei, Yang, and Yin 2018). This method is based 
not only on the reconstruction of image patches with a convolutional 
denoising AE at different Gaussian pyramid levels but also the synthesis of 
the detection results from these different-resolution channels. Bergmann 
proposed autoencoding architectures that used pixel-wise reconstruction 
error metrics as unsupervised defect segmentation (Bergmann et al. 1993). 
Gong et al. proposed MemAE with a memory module for mitigating 
a problem encountered when using a simple deep autoencoder network 
(Gong et al. 2019).

GAN is an unsupervised learning neural network (Goodfellow et al. 2014) 
that learns to generate a new image with a probability distribution similar to 
that of the training data. To design the loss function of the neural network 
(generators and discriminators compete) for training, the network uses game 
theory.

Schlegl et al. proposed AnoGAN, which is a GAN-based anomaly 
detection network for images (Schlegl et al. 2017). By training the GAN 
using only normal samples, a model that can generate fake images with 
probability distributions similar to those of the normal samples is con-
structed. The network can then classify anomaly samples by defining the 
threshold of the residual score between the test and fake images. Akcay 
et al. proposed GANomaly, which is a conditional GAN including an 
extra encoder for the extraction of meaningful latent variables from 

APPLIED ARTIFICIAL INTELLIGENCE e2094885-2933



images (Ak¸cay et al., 2018). In addition, they proposed skip-GANomaly, 
an improvement of GANomaly (Ak¸cay et al., 2019). Skip-GANomaly 
achieves superior image reconstruction by adding a skip-connection archi-
tecture to GANomaly.

Tao et al. (Tao et al. 2022) proposed the reconstruction-based detection 
method for the location of anomalies using the Siamese architecture. This 
model was trained using only normal samples to focus on a detection task 
of an unknown abnormal sample. Although this method has different 
tasks and requisites than ours, it achieved more accurate anomaly location 
detection than other state-of-the-art methods.

A disadvantage of the reconstruction-based method is that the CNN-based 
autoencoder or generator outputs immoderate blurry structures because it 
sometimes fails to reconstruct fine structures. Moreover, it requires consider-
able computing resources.

Materials and Methods

Deep Metric Learning Using a Siamese Network and CNN

The metric learning problem, which involves learning a distance function 
tuned to a particular task, is beneficial when used in conjunction with nearest- 
neighbor methods and other techniques that rely on distances or similarities 
(Jadon 2020). In this study, we focus on the Siamese network (Bromley et al. 
1994), a type of metric learning, and propose a visual inspection method based 
on deep metric learning combined with a CNN.

Figure 1. Overview of the siamese network using a CNN as the feature extractor.
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Figure 1 presents an overview of the Siamese network. The basic concept of 
the Siamese network is the design of a loss function that directly pulls together 
the embedding of samples with the same label and pushes away those of 
samples with different labels. The contrastive loss (CL) defined by Equation 
(1) is generally used as the loss function: 

CLðf ðx1Þ; f ðx2ÞÞ ¼
1
2
fYD2 þ ð1 � YÞmax ðm � D; 0Þ2g (1) 

D ¼ jjf ðx1Þ � f ðx2Þjj2 (2) 

where x1 and x2 are an input data pair, f ð�Þ is the feature extractor, and m is 
a margin value greater than zero. Y is a flag indicating whether the input 
data pairs are in the same category (1 for the same class and 0 for different 
classes).

CL, which is a typical loss function for metric learning (Chopra, Hadsell, 
and LeCun 2005), is one of the most straightforward and intuitive training 
objectives. The main idea of using a Siamese network is not to classify the 
classes but to learn to discriminate between inputs. The network learns the 
distances between data using the feature vectors obtained from the feature 
extractor. The advantage of the Siamese network is that it can learn even when 
the number of original data is small because pairs of data are used for training. 
With a Siamese network architecture based on few-shot learning, the network 
can generate a feature space in which normal and abnormal data are separated 
by learning the normal data and a few abnormal data.

In this study, VGG16 (Simonyan and Zisserman 2014) is used as the feature 
extractor of the Siamese network. VGG is designed based on the fundamental 
concept that deeper networks are better, and has smaller filters than AlexNet 
(Krizhevsky, Sutskever, and Hinton 2012). Here, each filter has a size of 3� 3 
albeit with a lower stride of one, and effectively captures a receptive field 
identical to that captured by a 7� 7 filter with four strides. In the VGG16 used 
in the proposed method, the image features related to anomaly detection are 
extracted from the input image, mainly in the convolutional layers (convolu-
tion (1–1) – convolution (5–4)) listed in Table 1. Note that a 224� 224-pixel 
RGB 3CH color image is used as the input image. This feature extractor 
outputs a 512-dimensional feature vector, based on the attention and feature 
maps, as output-1.

Attention Mechanism for the CNN

When training a CNN model to handle images, the task accuracy can be 
improved by focusing the model on the important parts of the image. One 
of the methods for accomplishing this involves the usage of a learnable atten-
tion mechanism, which has been attracting considerable interest in computer 
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vision (Jetley et al. 2018). The attention mechanism is generally defined as the 
process of refining or enhancing the image features for a recognition task. In 
the human perceptual system, information relevant to the current task tends to 
be preferentially incorporated. The attention mechanism essentially mimics 
this to extract features for image classification.

In anomaly detection by a Siamese network, the quality of the generated 
feature space affects the accuracy of anomaly detection. Therefore, we added 
the attention mechanism to the feature extractor in our Siamese network 
model. Figure 2 shows the proposed network with an attention mechanism 
introduced in VGG16. The green dashed line in the figure means that the 
model or layer shares the same parameters. The structure of the proposed 

Table 1. The structure of CNN model for image aesthetic assessment.
Layer type Kernel\Stride Activation Output size

Convolution(1–1) 3 � 3\1 ReLU 224 � 224 � 64
Convolution(1–2) 3 � 3\1 ReLU 224 � 224 � 64
Max Pooling 2 � 2\2 – 112 � 112 � 64
Convolution(2–1) 3 � 3\1 ReLU 112 � 112 � 128
Convolution(2–2) 3 � 3\1 ReLU 112 � 112 � 128
Max Pooling 2 � 2\2 – 56 � 56 � 128
Convolution(3–1) 3 � 3\1 ReLU 56 � 56 � 256
Convolution(3–2) 3 � 3\1 ReLU 56 � 56 � 256
Convolution(3–3) 3 � 3\1 ReLU 56 � 56 � 256
Convolution(3–4) 3 � 3\1 ReLU 56 � 56 � 256
Max Pooling 2 � 2\2 – 28 � 28 � 256
Convolution(4–1) 3 � 3\1 ReLU 28 � 28 � 512
Convolution(4–2) 3 � 3\1 ReLU 28 � 28 � 512
Convolution(4–3) 3 � 3\1 ReLU 28 � 28 � 512
Convolution(4–4) 3 � 3\1 ReLU 28 � 28 � 512
Max Pooling 2 � 2\2 – 14 � 14 � 512
Convolution(5–1) 3 � 3\1 ReLU 14 � 14 � 512
Convolution(5–2) 3 � 3\1 ReLU 14 � 14 � 512
Convolution(5–3) 3 � 3\1 ReLU 14 � 14 � 512
Convolution(5–4) 3 � 3\1 ReLU 14 � 14 � 512
Max Pooling 2 � 2\2 – 7 � 7 � 512
Global Average Pooling – – 1 � 1 � 512

Figure 2. Architecture of the proposed feature extractor using VGG16 with an attention 
mechanism.
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attention mechanism is listed in Table 2. Here, we incorporated the attention 
mechanism behind a single arbitrary layer of VGG16. Therefore, in Table 2, 
the number of channels (filters) d and the size h� w of the input feature map 
are indicated as variables.

On the other hand, Fukui et al. proposed an attention branch network 
(ABN) as a visual explanation method for image classification tasks (Fukui 
et al. 2019). The ABN extends the top-down visual explanation model by 
introducing a branch structure with an attention mechanism. By introducing 
a branch for attention, the ABN simultaneously achieves visualization of the 
gazing area through visual explanation and improves the model accuracy. 
With attention branch loss (ABL) in the ABN, the model is trained to precisely 
classify images using only the feature-map data obtained from the attention 
mechanism. Thus, the attention mechanism is trained to render the attention 
map itself more task-specific.

Therefore, to train attention maps to be more task-specific, we introduced 
an attention branch in the attention mechanism based on the ABN concept. 
Figure 3 shows the proposed network with an attention mechanism and 

Table 2. Structure of the attention mechanism.
Layer type Kernel\Stride Output size

Convolution(a-1) 3 � 3\1 h� w � d
Convolution(a-2) 3 � 3\1 h� w � d
Batch Normalization – –
Convolution(a-3) 1 � 1\1 h� w � d
ReLU – –
Convolution(a-4) 1 � 1\1 h� w � 1
Batch Normalization – –
Sigmoid – h� w � 1

Figure 3. Architecture of the proposed feature extractor using VGG16 with an attention mechan-
ism and attention branch.
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attention branch. The green dashed line in the figure means that the model or 
layer shares the same parameters. In the proposed model, the attention branch 
is set after applying the ReLU activation function to convolution layer (a-3) of 
the attention mechanism. The structure of the proposed attention branch is 
depicted in Table 3. The size of the feature map input to the attention branch is 
h� w� d. This attention branch outputs a two-dimensional feature vector, 
mainly based on the attention maps, as additional output-2.

Although the ABN is trainable end-to-end using the losses at both branches, 
it is based on a classification model using a large dataset. This study differs 
from the ABN concept because it focuses on deep metric learning using the 
Siamese network and small datasets. Therefore, it is difficult to use the cross- 
entropy loss as in the ABN for training the model. To address this issue, our 
training loss function Lall is defined as the simple sum of the losses at both 
branches and is expressed by Equation (3): 

Lall ¼ LCL þ w � LABL (3) 

where LCL is the CL calculated using output-1 and LABL is the ABL calculated 
using output-2, as depicted in Figure 3; w is a weighting parameter of the ABL.

Pair Balance Contrastive Loss (PBCL)

For anomaly detection, it is difficult to collect the same quantity of anomalous 
data as normal data, resulting in a biased and unbalanced dataset. Although 
a Siamese network can be efficiently trained even when data are scarce, 
accuracy degradation is a concern when a biased dataset is used for training 
data pairs. Therefore, we propose the PBCL, in which the number of pairs is 
considered, and each term of the CL is weighted. The three types of pairs used 
in this study during training were [normal, normal], [abnormal, abnormal], 
and [normal, abnormal]. The PBCL, which introduces a ratio of the numbers 
of data pairs belonging to each of the three types, is defined by Equation (4). 

PBCLðf ðx1Þ; f ðx2ÞÞ ¼

Table 3. Structure of the attention branch.
Layer type Kernel\Stride Output size

Convolution 1 � 1\1 h� w � d
Global Average Pooling – 1 � 1 � 2

Table 4. Data in each category in dataset A used in the experiment.
Mode Category Capsule Screw Carpet Tile

Train Normal 80 80 80 80
Abnormal 40 40 40 40

Test Normal 61 71 45 40
Abnormal 61 71 45 40

e2094885-2938 H. TAKIMOTO ET AL.



1
2
fNYD2 þ αð1 � NÞYD2 þ βNð1 � YÞmax ðm � D; 0Þ2g (4) 

where α and β are the weighting parameters determined by considering the 
ratio of the numbers of pairs. N is set to unity if the pair contains normal data 
and zero otherwise.

Experimental Setup

The MVTec AD dataset contains defect-free and anomalous images of various 
object and texture categories. From this dataset, we used ”capsule” and ”screw” 
as the object categories, and ”carpet” and ”tile” as the texture categories. 
Figure 4 shows an example of each product.

In this study, we evaluated the effectiveness of the proposed method by 
preparing two training datasets with different quantities of anomalous data. 
The details of both training datasets A and B are presented in Tables 4 and 5, 
respectively. Dataset A contains a total of four products, with two products 
each from the object and texture categories. In this dataset, the normal data in 
the training dataset are not considerable, and the abnormal data quantity is 
half that of the normal data. The abnormal data are limited. On the other 

Normal of ”capsule” Normal of ”screw” Normal of ”carpet” Normal of ”tile”

Abnormal of ”capsule” Abnormal of ”screw” Abnormal of ”carpet” Abnormal of ”tile”

Figure 4. Examples of the MVtec AD images used in the experiment.

Table 5. Data in each category in dataset B used in the 
experiment.

Mode Category Capsule Tile

Train Normal 80 80
Abnormal 20 20

Test Normal 61 40
Abnormal 61 40
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hand, dataset B contains two products, with a product each from the object 
and texture categories. In dataset B, the normal data quantity in the training 
dataset is similar to that of dataset A, but that of the abnormal data is half. 
Tables 6 and 7 list the number of data pairs used for training the Siamese 
network for each experiment.

As experiment A, for evaluating the effectiveness of the attention mechan-
ism and ABL, experiments using dataset A were conducted with the following 
three feature extractors:

• Method I: VGG16 without an attention mechanism
• Method II: VGG16 with an attention mechanism
• Method III: VGG16 with an attention mechanism and ABL
Methods II and III are models that use the feature extractor shown in 

Figures 2 and 3, respectively. By incorporating an attention mechanism in 
one of the N-th (N=2,4,7,10,13) convolution layers of VGG16, we evaluated 
the differences in accuracy depending on the attention position. The ABL 
weight parameter was set as w ¼ f1:0; 1:5g and the accuracy was compared.

Table 6. Number of data pairs in data-
set A for training.

Pair type # of pair

(Normal, Normal) 3,160
(Abnormal, Abnormal) 780
(Normal, Abnormal) 3,200

Table 7. Number of data pairs in data-
set B for training.

Pair type # of pair

(Normal, Normal) 3,160
(Abnormal, Abnormal) 190
(Normal, Abnormal) 1,600

Table 8. Results for “capsule” (experiment A).
Method Model Loss w N AUC Accuracy Recall Specificity

I VGG16 CL – – 0.9397 0.867 0.930 0.803

2 0.9409 0.865 0.910 0.820
4 0.9406 0.854 0.898 0.810

II CL – 7 0.9373 0.861 0.915 0.807
10 0.9433 0.859 0.916 0.802
13 0.9381 0.854 0.928 0.780

2 0.9464 0.871 0.908 0.833
III VGG16 4 0.9486 0.867 0.878 0.856

+ CL 1.0 7 0.9316 0.853 0.891 0.816
Attention + 10 0.9302 0.840 0.902 0.777

ABL 13 0.9331 0.853 0.876 0.830

2 0.9494 0.869 0.910 0.828
4 0.9477 0.869 0.884 0.853

1.5 7 0.9429 0.872 0.898 0.846
10 0.9330 0.860 0.874 0.846
13 0.9114 0.837 0.890 0.777
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In experiment B, we used dataset B to evaluate the effectiveness of the 
proposed PBCL. In the experiment, the CL or PBCL combined with the ABL 
based on Method III were compared as the loss function. The PBCL para-
meters were set as α ¼ 4:0 and β ¼ f1:0; 2:0g. These parameters were opti-
mized from the ratio of the numbers of training pairs in Tables 6 and 7. The 
weight parameter w of the ABL was set to 1.0 experimentally.

In the experiments, Adam was used as the optimizer and the learning rate 
was set to 10� 5. The number of epochs and batch size were set to 100 and 16, 
respectively.

We describe below the determination of the validation data as normal or 
abnormal. Two methods were used for judging the validation data. Anomaly 
detection was first performed using the nearest neighbor method, wherein the 

Table 9. Results for “screw” (experiment A).
Method Model Loss w N AUC Accuracy Recall Specificity

I VGG16 CL – – 0.8868 0.784 0.640 0.986

2 0.8894 0.805 0.690 0.966
4 0.8895 0.790 0.652 0.983

II CL – 7 0.8925 0.782 0.654 0.980
10 0.8901 0.795 0.664 0.983
13 0.8892 0.794 0.674 0.963

2 0.9000 0.793 0.670 0.963
III VGG16 4 0.9013 0.781 0.640 0.980

+ CL 1.0 7 0.8970 0.790 0.656 0.972
Attention + 10 0.8975 0.809 0.684 0.983

ABL 13 0.8886 0.794 0.666 0.972

2 0.8866 0.767 0.620 0.975
4 0.8959 0.785 0.650 0.975

1.5 7 0.8995 0.802 0.678 0.983
10 0.8997 0.807 0.680 0.986
13 0.8863 0.794 0.678 0.958

Table 10. Results for “carpet” (experiment A).
Method Model Loss w N AUC Accuracy Recall Specificity

I VGG16 CL – – 0.9335 0.953 1.000 0.849

2 0.9388 0.952 1.000 0.844
4 0.9342 0.952 1.000 0.844

II CL – 7 0.9323 0.966 1.000 0.889
10 0.9352 0.946 1.000 0.827
13 0.9354 0.954 1.000 0.853

2 0.9388 0.956 1.000 0.858
III VGG16 4 0.9393 0.959 0.980 0.871

+ CL 1.0 7 0.9352 0.964 1.000 0.884
Attention + 10 0.9346 0.949 1.000 0.836

ABL 13 0.9562 0.955 1.000 0.853

2 0.9505 0.946 1.000 0.827
4 0.9387 0.961 1.000 0.876

1.5 7 0.9356 0.966 1.000 0.889
10 0.9346 0.948 1.000 0.831
13 0.9579 0.948 1.000 0.831
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validation data is judged by calculating the distance between it and all the 
training data in the feature space. The accuracy, recall, and specificity were 
used as the evaluation criteria. Recall is an index that indicates the ratio of 
normal data predicted as normal, whereas specificity is an index that indicates 
the ratio of abnormal data predicted as abnormal. Next, the center of gravity 
was obtained from the normal data set used for training as a representative 
point of the normal class. The area under the curve (AUC) was then obtained 
as a criterion by applying a threshold for the distance between the validation 
data and the representative point.

In all the experiments, anomaly detection was performed only in the 512- 
dimensional embedding space obtained as output-1 of the proposed model. 
The embedding space obtained as output-2 was used only for training the 
model and not for judgment during verification.

The MVTec AD dataset contains images of 15 different products. However, 
as mentioned above, we not only calculated the three evaluation metrics based 
on the nearest neighbor method but also analyzed the accuracy of the pro-
posed method on the ABL and some parameters. Therefore, our experiments 
were performed with only four products because of the enormous time cost.

Results and Discussion

Tables 8–11 present the results for each category for experiment A; the best 
value of each evaluation index is indicated in bold. Method III with the 
attention mechanism and ABL is the best in almost all the categories. This 
suggests that the introduction of the attention mechanism improves the 
quality of the feature space.

In object categories, such as the capsule and screw, the accuracy is higher 
when the attention mechanism is incorporated in a relatively shallow layer 
(N ¼ 2; 4). On the contrary, the accuracy is higher for texture categories, such 

Table 11. Results for “tile” (experiment A).
Method Model Loss w N AUC Accuracy Recall Specificity

I VGG16 CL – – 0.9681 0.785 0.590 0.980

2 0.9596 0.808 0.636 0.980
4 0.9590 0.795 0.614 0.975

II CL – 7 0.9563 0.793 0.600 0.985
10 0.9701 0.792 0.604 0.980
13 0.9739 0.797 0.624 0.970

2 0.9685 0.786 0.592 0.980
III VGG16 4 0.9640 0.769 0.552 0.985

+ CL 1.0 7 0.9636 0.776 0.572 0.980
Attention + 10 0.9739 0.814 0.648 0.980

ABL 13 0.9691 0.824 0.668 0.980

2 0.9621 0.789 0.602 0.975
4 0.9751 0.755 0.534 0.975

1.5 7 0.9756 0.789 0.602 0.970
10 0.9801 0.821 0.656 0.985
13 0.9838 0.800 0.604 0.995
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as the carpet and tile, when the attention mechanism is incorporated in the 
deeper layers (N ¼ 10; 13). This indicates that in the object category, it is 
possible to determine whether a target region is abnormal by comparing it 
with a relatively narrow surrounding, but in the texture category, it is neces-
sary to determine whether a target-site is abnormal by comparing it with 
a wider range of features. Thus, the accuracy is improved by incorporating 
the attention mechanism at a deeper layer because not only the local features, 
but more global features are also judged to be important. These results suggest 
that the optimal position for introducing the attention mechanism depends on 
the location of the anomaly in the product and its definition.

The results for experiment B are presented in Tables 12 and 13. When 
CL is used as the loss function, it can be observed that the specificity 
decreases significantly as the number of anomalous product data in the 
training data decreases. However, using the PBCL as the loss function 
slightly improves the degradation of the accuracy. Although the Siamese 

Table 12. Results for “capsule” (experiment B).
Method Loss α β N AUC Accuracy Recall Specificity

III CL – – 2 0.9526 0.807 0.984 0.630

+ 4 0.9424 0.799 0.982 0.616
ABL 7 0.9414 0.769 0.984 0.554
(w=1.0) 10 0.9481 0.769 0.984 0.554

13 0.9320 0.760 0.992 0.528

PBCL 2 0.9686 0.796 0.996 0.597
+ 4 0.9675 0.817 0.994 0.639
ABL 4.0 1.0 7 0.9611 0.759 0.986 0.531
(w=1.0) 10 0.9604 0.704 0.996 0.413

13 0.9632 0.718 1.000 0.436

PBCL 2 0.9628 0.741 0.996 0.485
+ 4 0.9594 0.764 0.994 0.534
ABL 4.0 2.0 7 0.9640 0.764 0.994 0.508
(w=1.0) 10 0.9643 0.708 0.996 0.420

13 0.9497 0.747 0.998 0.495

Table 13. Results for “tile” (experiment B).
Method Loss α β N AUC Accuracy Recall Specificity

III CL 2 0.9601 0.830 0.824 0.845
+ 4 0.9638 0.811 0.784 0.880
ABL – – 7 0.9776 0.851 0.830 0.905
(w=1.0) 10 0.9765 0.899 0.920 0.845

13 0.9820 0.851 0.850 0.855

PBCL 2 0.9638 0.841 0.870 0.770
+ 4 0.9597 0.821 0.808 0.855
ABL 4.0 1.0 7 0.9829 0.845 0.826 0.895
(w=1.0) 10 0.9699 0.823 0.836 0.790

13 0.9854 0.843 0.810 0.925

PBCL 2 0.9654 0.844 0.854 0.820
+ 4 0.9579 0.819 0.808 0.845
ABL 4.0 2.0 7 0.9821 0.851 0.842 0.875
(w=1.0) 10 0.9639 0.870 0.916 0.755

13 0.9785 0.873 0.890 0.830
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network can be trained with limited data, it is confirmed that unbalanced 
data sets have a negative impact on the accuracy. Therefore, the PBCL, 
which considers the total number of pairs for each pair, is effective for 
training with unbalanced data sets.

In addition, the accuracy tends to be lower when β ¼ 2:0 compared to 
β ¼ 1:0. The term related to β separates the distance between different classes 
of data in the feature space. This result suggests that in the learning process of the 
Siamese network, the function that brings features of the same class closer may 
be more important than the function that separates the data of different classes.

Conclusions

This study proposed an abnormality detection method based on a Siamese 
network with an attention mechanism, for a small dataset. An ABL was 
proposed for the Siamese network to render the attention maps, from the 
attention mechanisms, more task-specific. Using the MVTec AD dataset, we 
confirmed that the proposed method with the attention mechanism and ABL 
was effective even with few abnormal data. It was suggested that the optimal 
position of the attention mechanism depended on the target product. 
Although the Siamese network could be trained with limited training data, it 
was established that imbalance in the number of abnormal data in the dataset 
reduced its accuracy. As a countermeasure, we confirmed that the PBCL, 
which considers the bias in the number of pairs used for training, was effective 
as a loss function.

In the proposed method, the embedding space obtained by output-2 used 
for ABL during training is not used for verification. As a future work, it is 
possible that the use of two embedding spaces in the verification process can 
improve accuracy. In addition, it is necessary to detect anomalous regions in 
the image using the attention map obtained from the attention mechanism. 
The proposed method does not focus on detecting the location of defects. 
However, in our future study, we will investigate whether visualization of the 
attention map obtained from the attention branch contributes to defect loca-
tion detection. Furthermore, visualization of the basis for evaluation is 
expected to lead to discovering the causes of defects.
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