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Saliency Detection Using a Bio-inspired Spiking Neural 
Network Driven by Local and Global Saliency
Bhagyashree V. Lada, Manisha Dasa, Mohammad Farukh Hashmib, 
Avinash G. Keskara, and Deep Guptaa

aDepartment of Electronics and Communication Engineering, Visvesvaraya National Institute of 
Technology, Nagpur, India; bDepartment of Electronics and Communication Engineering, National 
Institute of Technology Warangal, Warangal, India

ABSTRACT
The detection of the most salient parts of images as objects in 
salient object detection tasks mimics human behavior, which is 
useful for a variety of computer vision applications. In this paper, 
the Local and Global Saliency Driven Dual-Channel Pulse 
Coupled Neural Network (LGSD-DCPCNN) model is used to 
provide a novel strategy for saliency detection. To achieve 
visually homogeneous sections and save computation costs, 
the input image is first subjected to superpixel segmentation. 
The global and local saliency maps are then created using the 
segmented image’s position, color, and textural properties. The 
LGSD-DCPCNN network is activated using these saliency maps 
to extract visually consistent features from the input maps to 
provide the final saliency map. An extensive qualitative and 
quantitative performance study is undertaken to assess the 
efficacy of the proposed method. When compared to state-of- 
the-art approaches, the experimental results show 
a considerable improvement in the detection of salient regions. 
Quantitative analysis of the proposed method reveals 
a significant improvement in the area under the ROC curve 
(AUC) score, F-measure score, and mean absolute error (MAE) 
score. The qualitative analysis describes the proposed algo
rithm’s ability to detect multiple salient objects accurately 
while maintaining significant border preservation.
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Introduction

Salient object detection techniques mirror human behavior and identify the 
most prominent regions of images or scenes as an object. It is used in 
numerous essential applications in the computer vision area. The human 
visual system (HVS) has an extraordinary capacity to swiftly notice and 
emphasize the remarkable things or areas in images that are more distinct in 
appearance and conspicuous. The aim of salient object detection (Shi et al. 
2015) is to explore the majority of the distinguishable targets in an image and 
then fragment it from the rest of the image. Salient object detection, unlike 
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image segmentation tasks, focuses on a small number of intriguing and 
appealing things. Because of this valuable characteristic, salient object recog
nition is commonly used as a preliminary step in various applications such as 
image compression, object recognition, quality assessment, video summariza
tion, image retrieval, object tracking, and image segmentation (Borji et al. 
2019; Cong et al. 2018).

Many techniques for recognizing salient objects have emerged in recent 
years which mainly depend on two approaches to find saliency: bottom-up 
saliency models and top-down saliency models. Computer vision researchers 
typically use the bottom-up saliency model to recreate the process of the 
human gaze. Bottom-up approaches mainly deal with handcrafted low-level 
features which are generally data-driven. The bottom-up saliency methods use 
self-information, histogram, regionbased features, locally measured dissimila
rities, information contents weighting, and frequency refined approach to 
compute the saliency (Borji et al. 2019; Cong et al. 2018; Duan et al. 2016; 
Zhang, Wang, and Lv 2016). Zhang et al. (2017; 2018b) used graph-based 
approaches to find the saliency which improved the saliency detection results 
with low-level features, objectness map, and compactness map. (Lu et al. 2019) 
and (Qi et al. 2015) used multiple graph-based manifold ranking to detect the 
salient objects. (Wang et al. 2021) used foreground and background seed 
selection models using graph-based extended random walk model to generate 
the saliency, in which the background and foreground seeds are produced 
using the convex hull approach and boundary prior knowledge respectively. 
All these methods mainly use graph-based saliency models which detects the 
salient objects by considering color contrast features. So the objects having 
similar color as background can not be detected by these methods, also 
textures and edges are not preserved in these methods. Bottom-up approaches 
are simple to implement and computationally efficient however their perfor
mance is limited for low contrast and complicated patterned images. Top- 
down saliency detection algorithms, on the contrary, are task-driven that are 
based on task-specific high-level features using convolutional and deep neural 
networks (Ji et al. 2021). Utilization of such approaches yields improved 
performance in this area but at the cost of large data availability and sub
stantial computing needs. Also, the results are quantitatively good but lack in 
preserving the complete boundaries and edges of the objects. As a result, the 
work of SOD employing handcrafted features plays an important role in 
today’s world for applications where data availability is limited and low 
computing complexity is preferred with better preservation of details. There 
are various machine learning (ML)-based bottom-up saliency detection tech
niques which have been introduced in recent years. (Pang et al. 2020a) used 
a bagging-based distributed learning approach for saliency detection which 
uses the training samples based on the center prior and background prior 
information. (Lei et al. 2016) uses Bayesian decision framework to refine the 
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primary rough saliency map which is extracted using other existing techni
ques. (Tong et al. 2015a) employs the bootstrap learning approach to build 
a powerful classifier that can distinguish between prominent and background 
objects. The local saliency detection of the proposed method is also based on 
ML-based bottom-up salient object detection approach.

Many recent approaches (Wang and Peng 2021a; Wang et al. 2021) use 
saliency map integration to produce the final saliency map. Along with 
properly detecting saliency, it is very important to fuse different saliency 
maps to achieve higher performance in a saliency detection task. But 
a majority of these approaches (Shariatmadar and Faez 2019; Tong et al. 
2015a) use simple pixel-wise addition or multiplication of the global and 
local saliency maps for generating the final saliency maps. Such approaches 
overlook the intensity variations of the neighboring pixels and may result in 
edge blurring or artifacts around the object boundaries. Some of the methods 
also use weighted average-based integration of global and local saliency maps 
but the selection of weights is mostly done using the hit and trial approach. 
Meta-heuristic optimization approaches have also been suggested but they 
suffer from increased computational cost. In context with the above discus
sion, to overcome the discussed limitations the proposed method uses pulse- 
coupled neural networks (PCNN)-based saliency map fusion to provide per
ceptually appealing results. Recently, PCNN-based approaches have also been 
explored in the area of saliency detection wherein the pixel intensities are used 
to activate the PCNN neurons (Wang and Shang 2020). These approaches 
have marked significant performance with improved preservation of object 
boundaries. Some visual saliency-driven PCNN models have also been pre
sented to achieve image segmentation (Z. Yang, Ma, Lian, Guo et al. 2018) and 
fusion tasks (Yang and Li 2014). Most of the methods discussed above use the 
PCNN model to directly generate saliency maps without differentiating 
between the local and global salient features of the input image while the 
proposed method uses a dual-channel pulse-coupled network (DCPCNN) 
(Chai, Li, and Qu 2010) network to fuse the local and global saliency maps 
by preserving the perceptual quality of an image.

Considering the discussed limitations of the extant work on salient object 
detection, the proposed method uses pixel-related superpixel segmentation 
using the Gaussian mixture model which has not been used earlier in 
a saliency detection task. Also, the combination of various features with center 
and objectness prior in the generation of global saliency detection is novel in 
the field of saliency detection. Many graph-related saliency techniques (Yang, 
Zhang, and Lu 2013; Zhang et al. 2017; Zhang et al., 2018) use only color 
contrast features to get the saliency map which fails when the contrast between 
objects and background is same, also these methods can not preserve the 
boundaries of the objects. The local saliency map generation extracts the 
K-nearest foreground and background superpixels based on the global 
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saliency map and tries to detect saliency using random forest regression. The 
novelty of the proposed work as compared to existing saliency detection 
techniques is both the baseline global saliency map as well as local saliency 
map use texture-based features that preserves the boundaries of the objects 
preciously as well as DCPCNN model is first time used in saliency detection 
task to merge the global and local saliency maps, which helps to preserve the 
visually prominent features of global and local saliency maps.

The comparison of the proposed approach with center prior and boundary 
prior-based saliency detection methods proposed by (Yang, Zhang, and Lu 
2013) (GR) and (Yang et al. 2013) (MR), respectively, is shown in Figure 1. 
Center prior and boundary prior-based methods generally fail to detect the 
objects away from the image’s center and containing the boundary. While the 
proposed LGSD-DCPCNN can detect the objects at the center and boundary 
to a great extent. So the major goal of the proposed work is to consider the 
image’s local detail with global information to provide boundary preserved 
and perceptually appealing final saliency maps. Most saliency detection meth
ods take into account only the saliency attributes which are based on the 
fundamental characteristics of an image, but the overall significance is typi
cally overlooked. The global saliency map represents the global information 
based on low-level features. It recognizes the entire salient object more pre
cisely with greater integrity. The objectness prior and the center prior used in 
generating the global saliency maps helps to detect more than one object 

Figure 1. Comparison with prior based saliency detection methods (a)original image (b)ground
truth (GT) (c)GR (Yang, Zhang, and Lu 2013) (d)MR (Yang et al. 2013) (e)LGSD-DCPCNN.
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accurately but is biased as well. On the other hand, the local saliency map takes 
into account the local spatial variations of an object and helps to detect the 
salient objects more precisely which are not correctly identified by global 
saliency maps. So integrating the global and local saliency maps achieves 
higher performance in saliency detection. In the proposed approach, we use 
a DCPCNN to process both the source images’ global and local information. 
The DCPCNN is an extended model of the original PCNN which can process 
two inputs simultaneously (Chai, Li, and Qu 2010). Processing both the global 
and local salient features together helps in retaining the most meaningful 
visual features of the input images and can provide better results. Recently, 
many researchers are working on video salient object detection (Xu et al. 2019; 
Xu et al., Jul. 2020) which uses traditional graph-based models to detect salient 
objects in videos. These methods fail to detect the complete salient objects 
which can be overcome by extending the proposed work for the video saliency 
detection task, as the proposed method is computationally efficient.

Taking into account the earlier discussion, in the presented work, the LGSD- 
DCPCNN model is proposed to merge the image’s local details with global 
features. The input image is first subjected to superpixel segmentation to obtain 
visually consistent regions for further processing. Working on a smaller number 
of superpixels reduces the computational complexity of the proposed approach. 
Then, global and local saliency maps of the superpixel segmented image are 
generated and the pixels of the global and local saliency maps are used to activate 
the neurons of the visual cortex-inspired DCPCNN model. LGSD-DCPCNN 
model extracts the prominent visual features of the global and local saliency 
maps and gives a more informative and perceptually appealing resultant saliency 
maps. The following are the major contributions of the proposed work:

• Unlike current existing saliency map integration models, the novel approach for 
integrating global and local saliency maps using visual cortex-inspired dual-channel 
pulse coupled neural network is proposed to generate visually consistent saliency maps 
from global and local saliency maps with improved boundary preservation.

• To provide computationally efficient performance a pixel-related Gaussian mixture 
model (GMM) based superpixel segmentation is used as an initial step.

• The global and local saliency maps are produced to provide efficient demarcation 
between foreground and background regions.

• Detailed experiments on widely known four public datasets demonstrate that the 
suggested methodology beats the most recent unsupervised handcrafted feature-based 
algorithms for detecting salient objects in terms of detecting more than one salient object 
accurately by preserving boundaries and edges of salient objects.

The rest of the paper is structured as follows: Section 2 describes, in brief, the 
methods and materials used in implementing the proposed salient object 
detection method. Section 3 outlines in detail the proposed methods’ 
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implementation steps. Section 4 presents the experiments and discussions. 
The run time of the proposed method is discussed in section 5. Finally, 
limitations and conclusion are presented in section 6 and section 7, 
respectively.

Methods and Materials

Superpixel Segmentation

The images’ visual segments are more appealing to HVS than the image 
pixel values. Superpixels are groupings of pixels that are color and other 
low-level features alike. A pixel-related GMM enables superpixels to pro
pagate locally throughout an image, reducing computing complexity than 
earlier expectation maximization (EM) GMM algorithms. In salient object 
detection tasks, the SLIC superpixel segmentation algorithm is widely used. 
SLIC is very effective and computationally efficient (Mu, Qi, and Li 2020), 
also it is excellent at detecting spherical regions but it may not be able to 
separate items with odd patterns, such as those that are elongated. Pixel- 
related GMM-based superpixel segmentation (Ban, Liu, and Cao 2018) is 
also computationally efficient and provides visually consistent superpixels 
with regular size and can efficiently detect the superpixels with unusual 
shapes. For a given image I of size w� h, each image pixel is assigned an 
index j. Image pixels are clustered using the GMM superpixel method 
depending on ws and hs, that are the superpixel’s allowable width and 
height, so that w mod ws, and h mod hs equal 0. The number of superpixels, 
N, is computed as in Eq. 1 and a set of N superpixels, sp1; sp2; :::spN , is 
created. 

nw ¼
w
ws
; nh ¼

h
hs
;N ¼ nw � nh (1) 

The label map Lbj for superpixels generation based on pixel-related GMM is 
given by Eq. 2. The superpixels are linked with the Gaussian distribution (Ban, 
Liu, and Cao 2018), which is defined by the probability distribution function 
pðz; θiÞ as given in (Ban, Liu, and Cao 2018). 

Lbj ¼ argi max
i2=j

pðz; θiÞ
P

i2=j
pðz; θiÞ

(2) 

Here, the term =j is a superpixel set belonging to the pixel j which is unique for 
each jth pixel. Each superpixel i has the local distributing region around it 
which is called the ith distributing region for superpixel i. It usually has a local 
limitation, which means that each superpixel can only appear in a small area of 
an image. As a result, the superpixel i must be present in each superpixel set =j 
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in the ith distribution region. The total number of elements in the superpixel 
set =j is assumed to be constant in this study, which is detailed in (Ban, Liu, 
and Cao 2018).

Center Prior

The background is more likely to be found toward the image’s edges which has 
been demonstrated to be true in (Wang and Peng 2021a). Under this concept, 
a global saliency map is constructed. While capturing the images the objects 
are mainly placed at the center and saliency is generally considered to be an 
actual object which takes into account various persons, cars, objects, boxes, 
etc. Humans observe a scene from the perspective of the intellect, and they 
tend to focus on the central portions. Cameras are frequently used to capture 
important items, which are always placed in the image’s central location, 
which is the center prior. The center is generally formulated using 
a Gaussian kernel, which was defined as follows: 

Cp ¼ exp �
Xp � X0
� �2

2σ2
x

 !

�
Yp � Y 0
� �2

2σ2
y

 ! !

(3) 

where Xp;Yp
� �

referred as x and y coordinates of pixel p and X0;Y 0ð Þ is center 
coordinate of an image. σ2

x and σ2
y are the variance of the image in x and y 

direction, respectively.

Objectness Prior

Another important consideration is the objectness prior (Alexe, Deselaers, 
and Ferrari 2012), which is utilized to differentiate the salient object win
dows from the ones in the background. (Alexe, Deselaers, and Ferrari 2012) 
present an objectness assessment that combines multiple picture features 
such as edge density, color contrast, multiscale saliency, and straddles using 
a Bayesian framework. The approach proposed in (Alexe, Deselaers, and 
Ferrari 2010) is used to get the objectness information about the region, 
where the objectness information is given in a window form which indicates 
whether that particular region contains the salient object or not. As a result, 
we receive an objectness prior map defined by OpðmÞ based on how often the 
pixel m falls into objectness windows. Sop sið Þ is the objectness value calcu
lated as follows: 

Sop sið Þ ¼
1

Nsi

X

m2si

Op mð Þ

 !

(4) 

where Nsi is the total number of pixels in the image region si.
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Random Forest Regression

To tackle regression problems, a Random Forest is an ensemble technique that 
employs many decision trees and a process known as Bootstrap and 
Aggregation. Instead of focusing on each decision tree to determine the out
come, the basic idea is to merge the decisions of multiple decision trees. 
Although every decision tree has significant variance as we mix them all, the 
total variance is considered to be low since every decision tree has been 
extensively trained on a sample of data, and so the outcome is based on 
multiple decision trees rather than just one. In random forest regression, 
every decision tree is trained with only a few randomly drawn features. And 
the final output of the random forest regression is the average of the outputs of 
all the trees. Random forest regression is beneficial for very high-dimensional 
data. It gives good performance in a salient object detection task.

Dual-channel Pulse Coupled Neural Network

The PCNN model is a bio-inspired spiking neural network that mimics the 
neuronal assemblies of the mammalian visual cortex. It consists of a single 
layer, two-dimensional, feed-forward network wherein the neurons are con
nected latterly (Wang et al. 2016b). Under the impression of an input image, 
the PCNN neurons respond sharply to various features like position, orienta
tion, direction, etc. Further, the responses of the neurons present within and 
neighboring cortex columns are also synchronized to generate the final neu
ronal activity. This feature linking phenomenon generates the coherent spik
ing of the neurons enabling the PCNN model to extract visually consistent 
image features. The DCPCNN is an extended model of the original PCNN 
which can process two inputs simultaneously (Chai, Li, and Qu 2010). The 
following is the mathematical formulation of a DCPCNN model: 

E1
x;yðnÞ ¼ S1

x;y
E2

x;yðnÞ ¼ S2
x;y

Lx;yðnÞ ¼ e� αLLx;yðn � 1Þ þ VL
P

w
Wx;yYx;yðn � 1Þ

U1
x;yðnÞ ¼ E1

x;yðnÞð1þ β1Lx;yðnÞÞ
U2

x;yðnÞ ¼ E2
x;yðnÞð1þ β2Lx;yðnÞÞ

Ux;yðnÞ ¼ max U1
x;yðnÞ;U2

x;yðnÞ
n o

Tx;yðnÞ ¼ e� αT Tx;yðn � 1Þ þ VTYx;yðnÞ

Yx;yðnÞ ¼
1; Ux;yðnÞ>Tx;yðnÞ
0; otherwise

�

9
>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>;

(5) 
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Here, E1
x;y and E2

x;y denote input feeding channels. S1
x;y and S2

x;y denote the 
external stimulus to the DCPCNN model which can be either pixel intensities 
or pixel activities of the input signal. Lx;y, Ux;y, Tx;y, and Yx;y represents the 
linking input, internal activity, variable threshold, and external activity of 
neurons, respectively. The surrounding activities of the neurons are weighted 
by synaptic weight matrix Wx;y of window size (w). n refers to the number of 
iterations. αL and αT denote the decay time constants, linking parameters of 
the two channels are represented by β1 and β2. VT and VL denote the threshold 
voltage and linking voltage, respectively. All the free parameters of the 
DCPCNN model generally depend on the nature of the texture of the image.

Proposed Method

The workflow of the proposed method based on superpixel segmentation and 
LGSD-DCPCNN is shown in Figure 2. The step-wise implementation infor
mation of the proposed method is given below.

Step 1: Superpixel segmentation
In the proposed method the input image is first converted CIELAB color 

space and segmented to superpixels as indicated in Eq. 6. Here, the number of 
superpixels N is considered to be 500. 

spi ¼ ½I x; yð Þ�Lb¼¼i; where i2 1;2;...:;Nf g (6) 

The labels Lb of the superpixel segmented image are obtained using pixel- 
related GMM-based superpixel segmentation (Achanta et al. 2012) using Eq. 2.

Figure 2. Process of proposed algorithm.
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Step 2: Features used for global saliency map generation
In the proposed approach, the global saliency map is constructed using 

data-driven 81-dimensional low-level features mentioned in Table 1. For every 
superpixel region spi, the 81-dimensional feature vector is given by Fspi ¼

f 0
i ; f 1

i ; . . . ; f 80
i

� �
where i 2 1; 2; . . . ;Nf g. The feature vector includes location, 

color, histogram, and textural features.
Step 3: Center prior used for global saliency map generation 

Cp spið Þ ¼ exp �
X � X0ð Þ

2

2σ2
x

 !

�
Y � Y 0ð Þ

2

2σ2
y

 ! !

(7) 

where X;Yð Þ referred as the average coordinate of the superpixel spi and 
X0;Y 0ð Þ is center coordinate of an image. σ2

x and σ2
y are the variance of the 

image in x and y direction, respectively.
Step 4: Objectness prior used for global saliency map generation
The superpixel region’s average level of objectness is given by Eq. 8, 

Sop spið Þ ¼
1

Nspi

X

m2spi

Op mð Þ

 !

(8) 

where m is the pixels contained by ith superpixel and Nspi is the total number of 
pixel in the ith superpixel.

Step 5: Global saliency map
In the proposed approach, the global contrast of the image regions with the 

boundary image regions is obtained and the discrepancies between them give 
the global saliency map. The boundary superpixel regions of an image is 

Table 1. Features used for generating global saliency map.
Index Component Feature Dimension

Features related to Location
0 Normalized x coordinate mean 1
1 Normalized y coordinate mean 1

Features related to color values
2–4 Mean CIELab values 3
5–7 Mean RGB values 3
8 Mean Hue value 1
9 Mean Saturation value 1

Features related to Color Histogram
10 RGB-Histogram 1
11 CIELab-Histogram 1
12 Hue-Histogram 1
13 Saturation-Histogram 1

Features related to Textures
14–21 The Histogram of Gradient 8
22–80 The LBP Histogram 59
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denoted by bh where h 2 1; 2; . . . ;Hf g, H is the number of boundary super
pixels in that particular image. Using the center prior Cp spið Þ and objectness 
prior Sop spið Þ, the global saliency map SmapGð Þ is obtained using Eq. 9. 

SmapG ið Þ ¼
1
H

XH

h¼1
d Fspi ; Fbh

� �
 !

þ Sop spið Þ

 !

� Cp spið Þ (9) 

Where d Fspi ; Fbh

� �
is the Euclidean distance between the 81-dimensional 

feature vectors of the ith superpixel region and boundary superpixel regions. 
Here, we have used Euclidean distance as the feature vector used in the 
proposed work is not sparse and the Euclidean distance is computationally 
efficient. Due to non-binary feature data, the Euclidean distance performs 
better than the L1 distance measure for the proposed work. The SmapG gives 
the global saliency map of the superpixel segmented image by considering 
center prior, objectness prior, and difference of feature vectors of each super
pixel to the boundary superpixels of an image. In the proposed method, Eq.9 
gives the global saliency maps by retaining the objects containing the bound
ary part too to a great extent, even though the boundary prior treats boundary 
as a background.

Step 6: Features used for generating local saliency map
The local saliency map is constructed using spatial, color, and textural 

differences of the superpixel with neighboring foreground and background 
superpixels. In the proposed method global saliency map is considered as the 
initial saliency map to find the K nearest background as well as K nearest 
foreground superpixels simply using the nearest Euclidean distance with the 
superpixel regions of the 2�mean thresholded global saliency map. The 
features used for local saliency map generation are listed in Table 2. The 
salient parts which are not recognized in the global saliency map generation 
method are also recognized by this local saliency-based method using spatial 
and color contrast features by considering the global saliency map as an initial 
saliency map. For every ith superpixel spi, firstly we obtain K-nearest fore
ground superpixels spfi1 ; spfi2 ; spfi3 ; ::::::spfiK

� �
and K-nearest background 

superpixels spbi1 ; spbi2 ; spbi3 ; ::::::spbiKf g. The value of K is set to 20 as it was 

Table 2. Features used in local saliency map generation.
Features Dimension

Superpixels spatial distance from K-nearest foreground superpixels K
Superpixels spatial distance from K-nearest background superpixels K
Superpixels color distance from K-nearest foreground superpixels 8 K
Superpixels color distance from K-nearest background superpixels 8 K
Superpixels texture distance from K-nearest foreground superpixels 10 K
Superpixels texture distance from K-nearest background superpixels 10 K
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giving best F-measure value. The Euclidean distance feature vector of ith 

superpixel from K-nearest foreground and background superpixels where 
dfi 2 R K�1� �

and dbi 2 R K�1� �
is computed by Eq. 10. 

dfi ¼

li � lfi1

�
�

�
�2

2

li � lfi2

�
�

�
�2

2
:

:

:

li � lfiK

�
�

�
�2

2

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

; dbi ¼

li � lbi1k k
2
2

li � lbi2k k
2
2

:

:

:

li � lbiKk k
2
2

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

(10) 

Where li indicates the location of the ith superpixel region, lfi and lbi indicates 
the location of K-nearest foreground and background superpixels, respec
tively, of the ith superpixel. The color contrast feature vector of ith superpixel 
region from K-nearest foreground and background superpixels where 

dcfi 2 R 8K�1
� �

and dcbi 2 R 8K�1� �
is computed by Eq. 11. 

dcfi ¼

d ci; cfi1

� �

d ci; cfi2

� �

:

:

d ci; cfiK

� �

2

6
6
6
6
4

3

7
7
7
7
5
; dcbi ¼

d ci; cbi1ð Þ

d ci; cbi2ð Þ

:

:

d ci; cbiKð Þ

2

6
6
6
6
4

3

7
7
7
7
5

(11) 

Here, eight color channels i.e. hue, saturation, CIELAB, and RGB are utilized 
to get the color contrast feature vector. ci, cfi and cbi are 8 dimensional color 
vectors of the ith superpixel, K-nearest foreground and background super
pixels of the ith superpixel, respectively. The distance vectors d ci; cfin

� �
and 

d ci; cbinð Þ indicates the Euclidean distance between ith and nth superpixel color 
attributes where n 2 1; 2; . . . :;Kf g i.e. K-nearest background and foreground 
superpixels. The textural distance feature vector of ith superpixel from 

K-nearest foreground and background superpixels where dtfi 2 R 10K�1
� �

and dtbi 2 R 10K�1� �
is computed by Eq. 12. 

dtfi ¼

d ti; tfi1

� �

d ti; tfi2

� �

:

:

d ti; tfiK

� �

2

6
6
6
6
4

3

7
7
7
7
5
; dtbi ¼

d ti; tbi1ð Þ

d ti; tbi2ð Þ

:

:

d ti; tbiKð Þ

2

6
6
6
6
4

3

7
7
7
7
5

(12) 

Where tð�Þ denotes the textural attributes of the superpixels such as gradient 
mean, gradient direction, and histogram of gradients. 
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Algorithm 1 Proposed Method

Input: Input image Iðx; yÞ of size w� h
Output: Saliency map SmapF

x;y
Parameters: Number of superpixels ðNÞ, K nearest background and fore
ground superpixels ðKÞ, DCPCNN parameters: no. of iterations ðnÞ, synaptic 
weight matrix ðWx;yÞ of size w, decay parameters αL and αT , linking para
meters of two channels β1 and β2, linking voltage VT , threshold voltage VT .

(1) Consider input image as Iðx; yÞ. First convert the I(x,y) from RGB to 
CIELAB color space.

(2) Segment an image into N superpixels given in Eq. 6 using label map Lb 
generated by a pixel related GMM based superpixel segmentation algorithm as 
in Eq. 2.

(3) Obtain the color, spatial distance and texture based 81 dimensional 
features for global saliency map generation as in Table 1.

(4) Compute the center prior and objectness prior of superpixel segmented 
image using Eq. 7 and Eq. 8, respectively.

(5) Compute the global saliency SmapG
x;y map using difference of 81 dimen

sional features from boundary superpixels, center prior and objectness prior as 
per Eq. 9.

(6) Considering SmapG
x;y as initial image, obtain K-nearest foreground and 

background superpixels for each superpixel in an image.
(7) For generating local saliency map, obtain spatial distance, color differ

ence and textural difference features of superpixels from K nearest background 
and foreground superpixels using Eq. 10, Eq. 11, and Eq. 12, respectively.

(8) Compute the local saliency map SmapL
x;y using random forest regression 

using features given in Table 2.
(9) Initialize the parameters of DCPCNN.
(10) Feed the two input channels of DCPCNN by pixel intensities of SmapG

x;y 
and SmapL

x;y and obtain the firing map Yx;y and internal activities U1
x;y and U2

x;y 

of two channel of DCPCNN using Eq. 13.
(11) Generate the final saliency map SmapF

x;y based on the choosemax rule 
to the internal activities U1

x;y and U2
x;y using Eq. 14.

Step 7: Local saliency map
The local saliency map is obtained using the above mentioned feature 

vectors by using random forest regression (Breiman 2001) algorithm, as it is 
very effective for large dimensional feature vectors. For training the random 
forest, 3000 MSRA-B dataset (Liu et al. 2010) images have been used and 
annotated ground-truth images are used as labels. For random forest 
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regression, 200 trees are used and the maximum depth of the tree is considered 
as 10 (Becker et al. 2013). The random forest outcome decides whether the 
superpixel belongs to the background or foreground region and 
a corresponding saliency map is generated for the particular image. Local 
saliency map SmapL is produced using random forest regression, for preser
ving the local characteristics of the objects that might not get captured by the 
global saliency map.

Step 8: Global and local saliency map integration using DCPCNN
The SmapG and SmapL obtained from step 5 and step 7, respectively, are fed 

to the two channels of the DCPCNN model shown below: 

E1
x;yðnÞ ¼ SmapL

x;y
E2

x;yðnÞ ¼ SmapG
x;y

Lx;yðnÞ ¼ e� αL Lx;yðn � 1Þ þ VL
P

w
Wx;yYx;yðn � 1Þ

U1
x;yðnÞ ¼ E1

x;yðnÞð1þ β1Lx;yðnÞÞ
U2

x;yðnÞ ¼ E2
x;yðnÞð1þ β2Lx;yðnÞÞ

Ux;yðnÞ ¼ max U1
x;yðnÞ;U2

x;yðnÞ
n o

Tx;yðnÞ ¼ e� αT Tx;yðn � 1Þ þ VTYx;yðnÞ

Yx;yðnÞ ¼
1; Ux;yðnÞ>Tx;yðnÞ
0; otherwise

�

9
>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>;

(13) 

The DCPCNN model used has wdc ¼ 5� 5, n ¼ 200, αL ¼ 1, αT ¼ 0:2, 
β1 ¼ 3, β2 ¼ 3, VL ¼ 1 and VT ¼ 10. The internal activities of a neuron for 
the inputs E1

x;y and E2
x;y are denoted by U1

x;y and U2
x;y, respectively. Based on the 

internal activities of the two channels the final saliency map SmapF
x;y is 

obtained as follows; 

SmapF
x;y ¼

SmapL
x;y; U1

x;yðnÞ>U2
x;yðnÞ

SmapG
x;y; otherwise

(

(14) 

Experiments and Discussions

This section presents a detailed qualitative and quantitative performance 
comparison of the proposed LGSD-DCPCNN method with 17 saliency detec
tion methods. These include methods proposed by Goferman et al. (CA) 
(Goferman, Zelnik-Manor, and Tal 2011), Yang et al. (GR) (Yang, Zhang, 
and Lu 2013), Rahtu et al. (SEG) (Rahtu et al. 2010), Yang et al. (MR) (Yang 
et al. 2013), Jiang et al. (MC) (Jiang et al. 2013), Li et al. (LPS) (Li et al. 2015b), 
Li et al. (RR) (Li et al. 2015a), Tong et al. (LGF) (Tong et al. 2015b), Zhou et al. 
(DPSG) (Zhou et al. 2017), Fu et al. (NCUT) (Fu et al. 2015), Yuan et al. 
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(RCRR) (Yuan et al. 2018), Peng et al. (SMD) (Peng et al. 2016), Liu et al. 
(FCB) (Liu and Yang 2019), Zhang et al. (LSP) (M. Zhang et al., 2018), Pang 
et al. (BSDL) (Pang et al. 2020b), Wang et al. (CDHL) (Wang and Peng 2021b), 
and Zang et al. (TMR) (Sun et al. 2022).

Datasets for Salient Object Detection

Four salient object detection datasets mentioned in Table 3 are used for the 
performance assessment of the proposed method. The datasets contain images 
with a complex and cluttered background, multiple objects, and low contrast. 
The performance is evaluated over the entire dataset to show that the proposed 
LGSD-DCPCNN method is capable of performing consistently and reliably 
over a diverse set of images.

Evaluation Metrics

The proposed method’s performance is assessed using different evaluation 
measures tabulated in Table 4.

The evaluation parameters used are the precision-recall (PR) curve, the 
mean absolute error (MAE) score, F-measure score, receiver operating char
acteristic (ROC) curve, the area under the ROC curve (AUC) score. 
F-measure, recall, and precision are used widely for evaluating the overall 

Table 3. Salient object detection datasets.
Sr. No. Dataset No.of images Description

1 SOD (Movahedi 
and Elder 2010)

300 Many images include multiple prominent items with little color 
contrast to the background

2 ECSSD (Shi et al. 
2015)

1000 The dataset contains multiple salient objects and also having 
a complex background, which makes the dataset more 
challenging for the salient object detection task

3 DUT-OMRON 
(Yang et al. 
2013)

5168 Images of high quality with multiple significant objects, while the 
backgrounds are relatively cluttered

4 HKU-IS (Li and Yu 
2015)

4447 Majority of the images are low contrast with several salient objects

Table 4. Evaluation metrics for salient object detection.
Sr. No. Evaluation Metrics Mathematical Expression

1 Precision (Davis and Goadrich 2006)
Precision ¼

Pw

x¼1

Ph

y¼1
SmapFT

x;y �GTx;y
Pw

x¼1

Ph

y¼1
SmapFT

x;y

2 Recall (Davis and Goadrich 2006)
Recall ¼

Pw

x¼1

Ph

y¼1
SmapFT

x;y �GTx;y
Pw

x¼1

Ph

y¼1
GTx;y

3 F-measure (Achanta et al. 2009) Fm ¼
ð1þ�2Þ�Precision�Recall
ð�2 �PrecisionÞþRecall where �2 ¼ 0:3

4 MAE (Borji et al. 2015) MAE ¼ 1
w�h

Pw
x¼1

Ph
y¼1 jSmapFN

x;y � GTx;y j

5 TPR (Davis and Goadrich 2006) TPR ¼ jSmapFT\GTj
jGTj

6 FPR (Davis and Goadrich 2006) FPR ¼ jSmapFT\GTj
jSmapFT\GTjþj�SmapFT\�GTj
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performance of salient object detection methods (Achanta et al. 2009). In 
Table 4, SmapFT

x;y and SmapFN
x;y are thresholded saliency map and normalized 

saliency map, respectively. GTx;y is the groundtruth of the particular image. 
The F-measure value is the combination of the recall as well as precision values 
that gives a comprehensive measure for saliency detection tasks. To evaluate 
these parameters thresholded saliency maps of the obtained gray level saliency 
maps are needed. To obtain the segmented binary saliency maps, the threshold 
is altered from 0 to 255 for a saliency map whose grayscale values of the pixels 
are in the range of [0, 255]. To evaluate the PR curve, the final saliency map 
SmapF

x;y is binarised using thresholds 0 to 255, and recall and precision values 
are calculated for each value of threshold which is further used to plot the 
precision-recall curve. At each threshold, FPR and TPR values are also com
puted to plot the ROC curve. The ROC curve gives the 2D description of the 
presented model’s effectiveness, while the AUC value summarizes this descrip
tion into a single quantity. The area under the ROC curve is used to calculate 
the AUC value. The true negative assignment of saliency is not taken into 
account by the overlap-based performance metrics. These metrics prefer 
approaches that assign strong saliency to prominent pixels while unable to 
recognize non-salient regions. In some applications like content-aware image 
resizing the continuous saliency maps have more importance than the thre
sholded binary saliency maps. In such situations, the MAE gives 
a comprehensive comparison between the groundtruth and the saliency 
map. The MAE is computed between the normalized final saliency map 
SmapFN

x;y which is normalized in the range ½0; 1� and the groundtruth.

Qualitative Analysis

In the qualitative analysis, the saliency maps obtained by the proposed and 
mentioned other saliency detection methods are evaluated subjectively based 
on the criteria like, the degree of isolation between foreground and back
ground regions, the region of the salient object to be outlined, homogeneity in 
highlighting different regions, detection of salient objects in the complex and 
low contrast background, and detecting more than one salient objects 
accurately.

Experimental results are shown in Figure 3–Figure 6 for DUT-OMRON, 
ECSSD, HKUIS, SOD datasets, respectively. It can be observed from Figure 3 – 
Figure 6 – Image 1 and Image 2 that CA (Goferman, Zelnik-Manor, and Tal 
2011) and SEG (Rahtu et al. 2010) methods are giving blurred results with loss 
of boundary preservation. Figure 3 – Image 1 and Image 2 of DUT-OMRON 
dataset indicates that GR (Yang, Zhang, and Lu 2013), MR (Yang et al. 2013), 
MC (Jiang et al. 2013), RR (Li et al., 2015a), LGF (Tong et al. 2015b), DPSG 
(Zhou et al. 2017), NCUT (Fu et al. 2015), RCRR (Yuan et al. 2018) and SMD 
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(Peng et al. 2016) methods are able to preserve the boundaries but they are 
unable to detect all the objects present in an image while the proposed method 
is able to detect multiple salient objects present in an image accurately with 
preserving the boundaries. In Figure 4 – Image 1, the proposed method is able 
to detect the salient objects with preserving the fine details of an image as 

Figure 3. Qualitative analysis of the proposed algorithm on DUTOMRON dataset compared to 
other salient object detection techniques (a)Original Image (b)Groundtruth (c)CA (d)GR (e)SEG (f) 
MR (g)MC (h)LPS (i)RR (j)LGF (k)DPSG (l)NCUT (m)RCRR (n)SMD (o)LGSD-DCPCNN.

Figure 4. Qualitative analysis of the proposed algorithm on ECSSD dataset compared to other 
salient object detection techniques (a)Original Image (b)Groundtruth (c)CA (d)GR (e)SEG (f)MR (g) 
MC (h)LPS (i)RR (j)LGF (k)DPSG (l)NCUT (m)RCRR (n)SMD (o)LGSD-DCPCNN.

Figure 5. Qualitative analysis of the proposed algorithm on HKUIS dataset compared to other 
salient object detection techniques (a)Original Image (b)Groundtruth (c)CA (d)GR (e)SEG (f)MR (g) 
MC (h)LPS (i)RR (j)LGF (k)DPSG (l)NCUT (m)RCRR (n)SMD (o)LGSD-DCPCNN.
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compared to all other methods except SMD (Peng et al. 2016) method, where 
the proposed LGSD-DCPCNN and SMD (Peng et al. 2016) give comparable 
performance. Figure 4 – Image 2 shows the proposed method is accurately 
detecting the salient object as compared to other methods even the color of the 
object and background is not so different. From Figure 5 – Image 1, it can be 
observed that the proposed method detects multiple salient objects with 
boundary preservation as compared to GR (Yang, Zhang, and Lu 2013), MR 
(Yang et al. 2013), MC (Jiang et al. 2013), RR (Li et al., 2015a), LGF (Tong et al. 
2015b), DPSG (Zhou et al. 2017), NCUT (Fu et al. 2015), RCRR (Yuan et al. 
2018) and SMD (Peng et al. 2016) methods. It can be observed that these 
methods can preserve the boundaries to some extent but fail to detect multiple 
salient objects. SMD (Peng et al. 2016) method in Figure 5 – Image 2 can detect 
multiple salient objects but it fails to do so for image shown in Figure 5- Image 
1. While the proposed method is detecting multiple salient objects almost for 
all kinds of images in the HKUIS dataset. Figure 6 – Image 1 shows that the 
proposed method accurately detects the complete salient object as compared 
to all the other methods which are miss detecting the tail portion of the object. 
Figure 6 – Image 2 indicates the image is having 5 salient objects, where only 
the proposed method can detect all the salient objects accurately compared to 
all the other methods. From the qualitative analysis, it can be inferred that the 
proposed LGSD-DCPCNN method outperforms other methods for all the 
datasets covering different scenarios. In comparison with other saliency meth
ods, LGSD-DCPCNN produces a high-resolution saliency output on a variety 
of tough natural images. In particular, when comparatively evaluated with 
other approaches, LGSD-DCPCNN provides a saliency map that evenly high
lights salient regions and efficiently suppresses background regions. It effec
tively separates background and foreground and detects the regions which are 
salient even in some complex background images. It also detects more than 
one salient object more accurately than other methods.

Figure 6. Qualitative analysis of the proposed algorithm on SOD dataset compared to other salient 
object detection techniques (a)Original Image (b)Groundtruth (c)CA (d)GR (e)SEG (f)MR (g)MC (h) 
LPS (i)RR (j)LGF (k)DPSG (l)NCUT (m)RCRR (n)SMD (o)LGSD-DCPCNN.
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Quantitative Analysis

Quantitative assessment is also carried out to evaluate the proposed LGSD- 
DCPCNN and other existing techniques. Figures 7 and 8 show comparative 
results of LGSD-DCPCNN with other saliency detection methods considering 
the PR curve, and ROC curve, respectively on four benchmark salient object 
detection datasets mentioned in Table 3. Figure 7 shows that the LGSD- 
DCPCNN approach gives the comparable or higher performance in terms of 
PR curve on all the datasets with mentioned salient object detection methods.

Moreover, the LGSD-DCPCNN method outperforms other methods and 
gives the best performance for almost all the datasets in terms of ROC curves 
shown in Figure 8. A comparative analysis based on MAE, F-measure (Fm), 
and AUC scores is also performed and presented in Table 5. The proposed 
LGSD-DCPCNN approach achieves the highest AUC score on all the datasets, 
which demonstrates the superiority of the proposed approach in accurately 

Figure 7. Quantitative analysis of the proposed algorithm based on the PR curve on four bench
mark saliency detection datasets (a)DUT-OMRON (Yang et al. 2013) (b)ECSSD (Shi et al. 2015) (c) 
HKUIS (Li and Yu 2015) (d)SOD (Movahedi and Elder 2010).
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discriminating the background and foreground areas in salient object detec
tion tasks. Table 5 demonstrate that the LGSD-DCPCNN method also 
achieves the MAE and Fm values in top-performing methods i.e. at 
first, second, or the third position as compared to mentioned saliency detec
tion techniques for all the dataset. By comparing the results in Table 5 the 
following points can be summarized:

• The methods CA (Goferman, Zelnik-Manor, and Tal 2011),SEG (Rahtu et al. 2010), and 
GR (Yang, Zhang, and Lu 2013) give poor performance as compared to proposed method.

• The proposed method gives the highest AUC score on all the datasets as compared to 
other mentioned salient object detection techniques.

• On all the datasets, the proposed method gains second or third highest performance in 
terms of Fm and MAE value as compared to existing salient object detection methods. 
But the overall performance of the proposed method is better than all the mentioned 
salient object detection techniques.

Figure 8. Quantitative analysis of the proposed algorithm based on the ROC curve on four 
benchmark saliency detection datasets (a)DUT-OMRON (Yang et al. 2013) (b)ECSSD (Shi et al. 
2015) (c)HKUIS (Li and Yu 2015) (d)SOD (Movahedi and Elder 2010).
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• For DUTOMRON dataset: the proposed method gains AUC value � 1.46% higher 
compared to MC (Jiang et al. 2013) and 24.6% higher as compared to BSDL (Pang et al. 
2020b) and FCB (Liu and Yang 2019) methods; the proposed method gains Fm value �
4.9% higher as compared to TMR (Sun et al. 2022) and 29.38% higher as compared to 
FCB (Liu and Yang 2019) and MR (Yang et al. 2013) methods; the proposed method 
achieves MAE value � 2.11% lower as compared to BSDL (Pang et al. 2020b) and 31.7% 
lower as compared to LPS (Li et al., 2015) and MR (C. Yang et al. 2013) methods.

• For HKUIS dataset: the proposed method gains AUC value � 0.96% higher compared 
to MC (Jiang et al. 2013) and 11.57% higher as compared to LPS (Li et al., 2015) method; 
the proposed method gains Fm value � 1.15% higher as compared to DPSG (Zhou et al. 
2017) and 35.78% higher as compared to MR (Yang et al. 2013) method; the proposed 
method achieves MAE value � 0.61% lower as compared to DPSG (Zhou et al. 2017) 
and 12.2% lower as compared to MC (Jiang et al. 2013) method.

• For ECSSD dataset: the proposed method gains AUC value � 0.5% higher compared 
to CDHL (F. Wang and Peng 2021b) and 17.95% higher as compared to FCB (G.H. Liu 
and Yang 2019) method; the proposed method gains Fm value � 0.3% higher as 
compared to TMR (Sun et al. 2022) and LGF (Tong et al. 2015b) and 22.2% higher as 
compared to CDHL (F. Wang and Peng 2021b); the proposed method achieves MAE 
value � 1.33% lower as compared to LSP (Zhang et al., 2018) and 34.67% lower as 
compared to MC (Jiang et al. 2013) method.

• For SOD dataset: the proposed method gains AUC value � 0.4% higher compared to MC 
(Jiang et al. 2013) and 17.47% higher as compared to FCB (Liu and Yang 2019) method; the 
proposed method gains Fm value � 6.56% higher as compared to SMD (Peng et al. 2016) 
and 25% higher as compared to FCB (Liu and Yang 2019) method; the proposed method 
achieves MAE value � 2.17% lower as compared to SMD (Peng et al. 2016) and 13.48% 
lower as compared to MC (Jiang et al. 2013) and LPS (Li et al., 2015a) methods.

Performance Comparison with Deep-Learning-Based Techniques

Furthermore, the proposed method’s overall performance is compared to 
deep-learning-based techniques which are, KSR (Wang et al. 2016a), RSD-R 
(Islam, Kalash, and Bruce 2018), PAGR (Zhang et al. 2018c), SSNet (Zeng et al. 
2019b), EGNet-R (Zhao et al. 2019), HRSOD-DH (Zeng et al. 2019a), and 

Table 6. Quantitative analysis of the proposed algorithm with deep learning based saliency 
detection techniques based on the MAE and AUC values on four benchmark saliency detection 
datasets. (Bold values show the best outcome, AUC higher is better and MAE lower is better)

Datasets DUT-OMRON HKUIS ECSSD SOD

Evaluation metric AUC MAE AUC MAE AUC MAE AUC MAE
KSR 0.825 0.131 0.824 0.12 0.823 0.134 0.739 0.199
RSD-R 0.812 0.178 0.867 0.155 0.845 0.172 0.753 0.226
PAGR 0.813 0.071 0.867 0.047 0.849 0.061 0.744 0.147
SSNet 0.773 0.056 0.819 0.041 0.813 0.046 0.692 0.118
EGNet-R – – – – 0.865 0.037 0.782 0.099
HRSOD-DH 0.782 0.065 0.851 0.042 0.839 0.052 0.716 0.139
SCRN 0.864 0.056 0.883 0.034 0.868 0.037 0.781 0.107
LGSD-DCPCNN 0.832 0.142 0.839 0.164 0.828 0.15 0.753 0.23
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SCRN (Wu, Su, and Huang 2019). Table 6 gives the comparative analysis of 
these deep-learning-based techniques with the proposed approach based on 
MAE and AUC scores. It is evident from Table 6 that the LGSD-DCPCNN- 
based approach gets equivalent or improved outcomes. It can be inferred 
clearly from Table 6 that the suggested LGSD-DCPCNN-based approach 
performs better for the DUT-OMRON, SOD, and HKUIS datasets than 
most of the deep learning-based approaches. In fact, despite the dataset’s 
renown for difficult images with dense backgrounds, low contrast images, 
and images with multiple objects, the proposed method can produce consid
erably superior results. The proposed approach is capable of detecting objects 
in images by preserving boundaries in a more efficient manner which is 
evident from Figure 9 where most of the DL-based techniques fail to produce 
better qualitative results. Traditional computer vision approaches can typically 
solve problems faster and with fewer lines of code than deep-learning algo
rithms (DL), hence DL is often superfluous. Deep neural net (DNN) features 
are particular to the training dataset and, if poorly created, are unlikely to 
function well for images other than the training set. On the other hand, 
traditional computer vision techniques are completely transparent, allowing 
you to assess whether your idea would perform outside of a training scenario. 
If anything goes wrong, the parameters can be changed to function properly 
for a larger range of images. One of the issues in deep learning algorithms is 
their poor capacity to learn visual relations or determine whether any items in 
an image are the same or different which is very important in a saliency 
detection task. The most recent deep learning algorithms may achieve far 
higher accuracy but at the cost of billions of additional math operations and 
a higher computing power demand as compared to ML-based bottom-up 

Figure 9. Qualitative analysis of the proposed algorithm compared to other deep learning based 
salient object detection techniques (a)Original Image (b)Groundtruth (c)KSR (d)HRSOD-DH (e) 
PAGR (f)EGNet-R (g)RSD-R (h)LGSD-DCPCNN.
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saliency approaches. So, we can not say that hand-crafted feature-based 
techniques are obsolete. In the field of computer vision, the integration of 
handcrafted features and deep features is yielding promising results, which can 
be considered a future scope of the proposed work.

Feature Selection for Global Saliency Map

To further understand the significance of each of the four feature attributes i.e. 
color-based features, color histogram-based features, texture-based features, 
and location-based features mentioned in Table 1, we constructed four applic
able approaches, each deleting one of the features, and compare the results for 
global saliency map generation in Figure 10. The findings show that every 
feature category has its own set of favorable conditions that the other three 
feature categories are unable to address. So, it is important to consider all the 
features in the global saliency map generation of the proposed work.

Run Time Analysis

This section shows how long the proposed method takes to produce a saliency 
map. The test is performed on a 300� 400 size image on a 64-bit PC with an 
i7-4770 3.40 GHz processor and 32.0 GB RAM. MATLAB 2017a is used to run 
all of the routines. Local and global saliency map generation takes 1.23 s and 
0.345 s. The time for merging global and local saliency maps using DCPCNN 
is 0.732 s. Our trained random forest model is 3.8 MB in size, making it a low- 
weight model which can be considered as efficient to deploy on hardware for 
any salient object detection application. By adopting a shallow random forest, 
the size of the trained random forest regression can be further lowered.

Figure 10. Comparative results using F-measure curve on the HKUIS dataset for features selection 
of global saliency map generation.
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Limitations and Future Aspects

The generation of the final saliency map using DCPCNN is mainly dependent on 
local and global saliency maps. For generating a local saliency map using an ML- 
based bottom-up saliency approach based, the global saliency map is considered as 
a baseline map. So, when the global saliency map does not produce good results the 
proposed method fails to provide the appropriate saliency map as can be seen from 
Figure 11. For the images in Figure 11, the object and background parts are very 
difficult to differentiate.

The baseline global saliency map can recognize a few salient objects, but many 
background disturbances cannot be efficiently eliminated. It is surprising to learn 
that our proposed LGSD-DCPCNN approach can adequately reflect the contrast 
between the salient object and the background. Based on the aforementioned 
observations, we conclude that the LGSD-DCPCNN method performs remarkably 
even when the baseline saliency map has a poor outcome. Nonetheless, good 
performance is difficult to achieve when the first saliency map fails to reveal any 
important saliency information. This difficulty arises in most of the ML-based 
bottom-up saliency approaches as they require initial knowledge to get the training 
data. This problem can be tackled using weakly supervised ML-based bottom-up 
saliency approaches, which may be considered as the future scope of the current 
work. The discussed limitation can also be overcome using different distance 
metrics for higher-dimensional data like fractional norms where L< 1 and by 
using some feature reduction technique to reduce the dimension of the 81- 
dimensional feature vector in global saliency map generation which can be con
sidered as the future scope of the proposed work.

Figure 11. The proposed method’s visual output when baseline saliency maps produce poor 
results. (a)original image (b)GT (c)global saliency map (d)LGSD-DCPCNN.
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Conclusion

This paper presents a novel salient object detection technique that integrates global 
and local image features using the LGSD-DCPCNN model. A pixel related GMM 
based superpixel segmentation is employed initially for the input image to speed up 
the computations. The feature vector of 81 dimensions which contains color, 
statistical, and texture-based features along with the objectness and center prior, 
is used to obtain the global saliency maps. While color, spatial, and textural 
distance features are used to generate the local saliency map using random forest 
regression which considers the global saliency map as an initial map to find the 
nearest background and foreground superpixels. The proposed method effectively 
merges the local and global information taking into account the human visual 
consistent features of the global and local saliency maps. The use of DCPCNN 
takes into account the neighborhood pixel variations and helps to preserve the 
object boundaries without introducing blurring and artifacts. The outcome of 
substantial experiments carried out on a variety of datasets demonstrates that the 
suggested combination of global and local saliency maps outperforms other exist
ing saliency detection methods in terms of AUC, F-measure, and MAE scores as 
well as it gives a comparable performance with many of the deep learning 
techniques. The proposed method for detecting salient objects proves its super
iority in detecting multiple salient objects by preserving the fine details and 
boundaries of the objects which is evident from the qualitative analysis of the 
proposed algorithm.
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