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A New Hybrid Under-sampling Approach to Imbalanced 
Classification Problems
Chun-Yang Peng and You-Jin Park

Department of Industrial Engineering and Management, National Taipei University of Technology, 
Taipei, Taiwan, R.O.C

ABSTRACT
Among many machine learning applications, classification is 
one of the important tasks. Most classification algorithms have 
been designed under the assumption that the number of sam
ples for each class is approximately balanced. However, if the 
conventional classification approaches are applied to a class 
imbalanced dataset, it is likely to cause misclassification and, 
as a result, may distort classification performance results. Thus, 
in this study, we consider imbalanced classification problems 
and adopt an efficient preprocessing technique to improve the 
classification performances. In particular, we focus on borderline 
noise and outlier samples that belong to the majority class since 
they may influence classification performance. For this, we pro
pose a hybrid resampling method, called BOD-based under- 
sampling, which is based on density-based spatial clustering of 
applications with noise (DBSCAN) approach as well as noise and 
outlier detection methods, that is, borderline noise factor (BNF) 
and outlierness based on neighborhood (OBN) to divide major
ity class samples into four distinctive categories, i.e., safe, bor
derline noise, rare, and outlier. Specifically, we first determine 
the borderline noise samples in the overlapped region using the 
BNF method. Secondly, we use the OBN method to detect out
lier samples and apply the DBSCAN approach to cluster the 
samples. Based on the results obtained from the sample identi
fication analysis, we then segregate the safe category samples 
which are not abnormal samples while keeping the rest of the 
samples as rare samples. Finally, we remove some of safe sam
ples by using the random under-sampling (RUS) method and 
verify the effectiveness of the proposed algorithm through the 
comprehensive experimental analysis with considering several 
class imbalance datasets.
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Introduction

It is very common that the majority samples (i.e., negative samples) dominate over 
minority samples (i.e., positive samples) in many practical areas such as fault or 
defect detection in semiconductor manufacturing, fraud detection in the financial 
sector, medical diagnosis, spam filtering, and so on. When the ratio of 
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observations (i.e., samples) in each class is disproportionate, a class imbalance 
problem arises and imbalanced classification refers to a classification problem 
when the distribution of classes is biased or skewed. Generally, it is known that the 
reliability of classification results often decreases as the imbalance ratio increases 
(Buda, Maki, and Mazurowski 2018; Ebenuwa et al. 2019; He and Garcia 2009; 
Janakiraman et al. 2014; Liu, Wu, and Zhou 2009). For example, when the class 
imbalance ratio is tremendously high, classifying all samples as the majority class 
may not affect the classification accuracy and so it may lead to a wrong conclusion 
(Bauder and Khoshgoftaar 2018; Liu et al. 2009; Loyola-González et al. 2016; Leevy 
et al. 2018). Thus, various useful approaches to imbalanced classification problems 
arising in diverse fields have been developed. He and Garcia (2009) reviewed the 
nature, technology, and evaluation methods (i.e., indicators) for learning perfor
mance of various imbalanced classification problems. They introduced the main 
opportunities and challenges of learning from the imbalanced data as well as 
potential research directions (He and Garcia 2009). Guo et al. (2017) provided a 
comprehensive review of the techniques and applications of imbalanced classifica
tion problems including various data preprocessing techniques, classification 
algorithms, and model evaluation methods which are widely used in chemical, 
biomedical engineering, financial management, security management, etc. (Guo et 
al. 2017). However, sometimes it may not be necessary to strike a perfect balance 
among the classes and most of the approaches developed for the imbalanced 
classification problems have not considered the intrinsic characteristics of data. So, 
it is necessary to provide an appropriate ratio of samples across the classes with 
understanding their own characteristics of data and class distributions in handling 
imbalanced classification problems (Buda, Maki, and Mazurowski 2018; Leevy et 
al. 2018). Thus, in this research, we propose a noble hybrid under-sampling 
method with considering noise and outlier detection methods as well as density- 
based clustering method to effectively separate majority class samples into four 
sub-categories and increase the performance of imbalanced classification pro
blems. The rest of this paper is organized as follows: Section 2 presents several data 
preprocessing techniques for imbalanced classification problems. In section 3, we 
provide several related works on noise and outlier detection techniques as well as 
clustering methods for handling class imbalance problems. Section 4 describes in 
detail the proposed method and section 5 provides the experimental analysis 
results. Finally, in section 6, we discuss the conclusions and further researches.

Approaches to imbalanced classification problems

Approaches for handling imbalanced classification problems can be basically 
divided into three categories, i.e., data-level, algorithm-level, and hybrid 
approaches (Galar et al. 2011). Data-level approaches are to adjust the class 
distribution by using effective data preprocessing methods, such as resam
pling, feature selection, etc. The most well-known resampling methods used to 
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balance a biased (or skewed) distribution of data are under-sampling, over- 
sampling, and hybrid sampling. Algorithm-level approaches are to modify 
existing learning algorithms using various techniques such as SVM, neural 
network, decision tree, etc. (Guo et al. 2017; Krawczyk 2016).

One of the popular under-sampling methods is random under-sampling 
(RUS), which selects and removes majority class samples randomly to achieve 
an inter-class balance until the ratio of samples between classes reaches a 
predetermined level retaining the minority class samples (Gong et al. 2019). 
Since RUS depends on sample distribution without considering any other 
information, the operation is quite simple. However, as a disadvantage of 
the RUS, there is a chance that certain majority class samples including 
important information can be eliminated because existing information is not 
fully taken into account (Dubey et al. 2014). The removal of majority class 
samples through RUS can make the decision boundary between classes harder 
to learn or may result in a degradation of classification performance 
(Attenberg and Ertekin 2013). To alleviate the problem caused by class 
imbalance, Seiffert et al. (2010) proposed a new data sampling algorithm 
combined with AdaBoost algorithm, called RUSBoost. In particular, through 
the AdaBoost algorithm, they adjusted weights on samples iteratively and 
assigned a class to the unlabeled samples according to a weighted vote 
(Seiffert et al. 2010). In contrast with under-sampling, over-sampling is to 
generate minority class samples until the ratio of samples between classes 
reaches a certain level like under-sampling method. Random over-sampling 
(ROS) is the simplest over-sampling method, which achieves the balance 
between classes by randomly creating the minority class samples (Fotouhi, 
Asadi, and Kattan 2019). However, when synthetic samples exist in the 
majority class region, an overfitting problem could occur since the ROS may 
not create a clear decision boundary to separate the classes by generating 
synthetic samples near the original minority class samples (Zhu, Lin, and 
Liu 2017). To overcome the overfitting problem of ROS, Chawla et al. (2002) 
proposed a new method called SMOTE (synthetic minority over-sampling 
technique), which artificially generates minority class samples by interpolating 
neighboring samples rather than simply replacing samples. In this research, 
they showed that SMOTE has better classification performance (i.e., ROC) 
when combined with random under-sampling method rather than plain 
under-sampling method (Chawla et al. 2002). As extensions of the SMOTE, 
Han, Wang, and Mao (2005) proposed two novel over-sampling methods 
called borderline-SMOTE1 and borderline-SMOTE2, which focus on the 
samples close to the borderline between classes and generate minority class 
samples near the borderline since they can be misclassified as majority class 
samples than those far from the borderline. They showed that improved F- 
measure and true positive rate can be achieved through these methods com
pared to the SMOTE and ROS (Han, Wang, and Mao 2005). Galar et al. (2011) 
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reviewed several ensemble techniques such as bagging-, boosting-, and hybrid- 
ensemble for the binary imbalanced classification problems. In this research, 
they categorized the ensemble-based methods according to inner ensemble 
methodologies and the technique types and compared the performances of the 
combined methods (Galar et al. 2011). Liang et al. (2020) pointed out that 
some of the over-sampling techniques cannot generate samples near the center 
of minority class samples while avoiding noises. To overcome this drawback, 
they proposed a new SMOTE that limits the radius of sample generation, 
called LR-SMOTE, which consists of three preprocessing procedures, i.e., de- 
noising, over-sampling, and filtering (Liang et al. 2020). Xie et al. (2019) 
provided an advanced over-sampling method based on alien k-neighbors 
and random-SMOTE, called AKN-Random-SMOTE. In this research, to 
classify the minority class samples near the decision boundary more accu
rately, they used the alien k-neighbors to select support vectors and then 
applied SMOTE to create synthetic samples with considering only selected 
support vectors which belong to minority class (Xie et al. 2019). Wei et al. 
(2020) proposed a method that can effectively identify noises belonging to the 
minority class, called NI-MWMOTE (noise-immunity majority weighted 
minority oversampling technique). To improve the noise immunity of the 
conventional MWMOTE (i.e., to identify and eliminate the real noise more 
effectively), in this research, they considered an adaptive noise processing 
scheme and aggregative hierarchical clustering (AHC) method to prevent 
the generated samples from becoming noises and affecting the classification 
performance (Barua et al. 2012; Wei et al. 2020). Gnip, Vokorokos, and Drotár 
(2021) proposed a selective over-sampling method (SoA), which is based on 
the outlier detection method to retain representative original minority class 
samples and generates synthetic minority class samples by using SMOTE and 
ADASYN (Gnip, Vokorokos, and Drotár 2021).

Related works

Anomaly detection methods

In general, most real-world data include various types of noises that might 
affect the performance in learning. Particularly, in imbalanced classifica
tion problems, it is known that the decision boundary can make the 
samples distinguishable more clearly after identifying and eliminating 
noise samples in overlapped regions (Fotouhi, Asadi, and Kattan 2019; 
Guzmán-Ponce et al. 2020). Thus, several useful methods have been devel
oped to identify and eliminate the noises in imbalanced classification 
problems, especially, which are close to the decision boundary. For this, 
Tomek (1976) proposed a distance-based method to determine whether a 
pair of different class samples can become a Tomek link or not. Since it is 
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quite helpful to identify samples from different classes around the decision 
boundary, some of the majority class samples which are identified as a 
Tomek link can be removed (Tomek 1976). Devi, Biswas, and Purkayastha 
(2017) proposed an under-sampling combined with the Tomek link 
method which focuses on detecting the samples that contribute less to 
the accurate estimation of class labels, that is, outliers or redundant and 
noisy samples (Devi, Biswas, and Purkayastha 2017).

Especially, for identifying borderline noises in the overlapped regions of 
imbalanced classification problems, Yang and Gao (2013) proposed a new 
evaluation method of noisy samples in overlapped areas, called BNF (border
line noise factor), and improved classification performance by eliminating 
borderline noises. In this method, when Ks represents the number of nearest 
neighbors for each sample within the same class in the training dataset S, the 
BNF value of sample x can be calculated as follows: 

BNF xð Þ ¼ α
Ks þ δ

kNS xð Þj j þ δ

� �

þ β kND xð Þj j (1) 

where kNS xð Þ and kND xð Þ indicate the samples belonging to the same and 
different class of a sample x, and kNS xð Þj j and kND xð Þj j represent the 
numbers of kNS xð Þ and kND xð Þ, respectively. Since there may not exist 
any mutual nearest neighbor of the same class sample x, i.e., kNS xð Þj j ¼ 0, 
an arbitrarily small positive value of δ (usually δ is set to be less than 1) is 
considered to prevent the denominator of the first term in BNF function 
from being zero. And, the parameters α and β (0 � α, β � 1, and αþ β ¼ 1) 
represent the weights assigned to each term in the BNF function, respec
tively. Through the investigation of the average G-mean of several datasets, 
the optimal value of α is found to be 0.3 (Yang and Gao 2013). For example, 
Figure 1 illustrates the procedure of finding kNS xð Þ and kND xð Þ for a 
majority class sample x when k ¼ 5. The symbols “●” and “◯” represent 
majority and minority class samples in two-dimensional space. Within a 
certain region of Θs, kNS xð Þj j (denoted by blue dots) and kND xð Þj j (denoted 
by red circles) for a majority class sample x are 5 and 6, respectively. The 
mutual nearest neighbors of majority class samples would be different since 
each majority class sample has different value of Θs. As shown in Figure 1 (b) 
to (f), the mutual nearest neighbors of the majority class sample x are x1, x2, 
x3, x6, and x7. In other words, the other majority class samples (i.e., x4, x5, x8, 
x9, and x10) are the nearest neighbors of sample x but not the mutual 
neighbors. The following section describes the outlier detection methods in 
detail.

In most data collection processes, due to several causes such as variations in 
measurement methods, human negligence, or experimental errors, some sam
ples are extremely different from the rest of the samples collected and they are 
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referred to as outliers (Chen, Miao, and Zhang 2010; Li, Lv, and Yi 2016). 
Similar to noises, the outliers may affect the learning performance of the 
model and even make it difficult to interpret the analysis results (Shi et al. 
2020). So, it is very important to identify and eliminate outliers in data and 
thus several useful approaches have been developed to handling outliers to 
improve the learning performance. Yuan, Zhang, and Feng (2018) proposed a 
neighborhood information entropy-based outlier detection method, called 
NIEOD, and investigated its measures. In this research, they determined the 
neighborhood information system through the heterogeneous distance and 
self-adapting radius and used the neighborhood information entropy and its 
three in-depth measures to illustrate data with uncertainty measurement. 
Then, they constructed the neighborhood entropy-based outlier factor 
(NEOF) (Yuan, Zhang, and Feng 2018). Gupta, Bhattacharjee, and Bishnu 
(2019) proposed a new neighborhood-based outlier detection and analysis 
technique that considers the weights of the neighbors of each sample. In this 
research, given a dataset D ¼ x1; x2; . . . ; xnf g, the set of r-neighbors is denoted 
as Nr xið Þ ¼ yj

�
�xi; yj 2 D; dist xi; yj

� �
� r

� �
for a sample xi where dist xi; yj

� �
is 

the Manhattan distance of two samples xi and yj (1 � i � n, 
1 � j � Nr xið Þ � n) and “r” is a user-defined radius. And, the weights of 
neighborhood of the sample xi and yj are defined as W Nr xið Þ½ � ¼

Figure 1. kNS xð Þ and kND xð Þ when k ¼ 5.
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�
Nr xið Þ
i¼1 dist xi; yj

� �
and W Nr yj

� �� �
¼ �

Nr yjð Þ
j¼1 dist xi; yj

� �
, respectively. So, the 

OBN (outlierness based on neighborhood) value for a sample xi can be 
calculated as follows: 

OBN xið Þ ¼
W Nr xið Þ½ �

�
Nr xið Þ
j¼1 W Nr yj

� �� � (2) 

Here, if OBN xið Þ for a sample xi is greater than the average OBN value of all 
the samples, the sample xi is classified as an outlier (Gupta, Bhattacharjee, and 
Bishnu 2019). Shi et al. (2020) proposed a geodesic-based outlier detection 
algorithm that considers both the global disconnection score and the local 
realness which can evaluate the degree of outlier of each sample and connec
tivity between samples as the detection measure of outliers. In particular, they 
constructed a global disconnection score to incorporate appropriate distribu
tion of the data and provided the local realness to consider the features of the 
samples effectively. Then, they determined the local outliers in smaller clusters 
with higher overall connectivity located in the minority class (Shi et al. 2020). 
Chen, Wang, and Yang (2021) extended the LOF (local outlier factor) method 
proposed by Breunig et al. (2002) and proposed a new outlier detection 
method, called CELOF (local outlier factor based on clustering and data 
extraction) (Chen, Wang, and Yang 2021). Wang et al. (2020) proposed a 
new outlier detection method based on the dynamic references nearest neigh
bors (DRNN) and local neighborhood outlier factor (LNOF), called LDNOD 
(Wang et al. 2020).

Clustering methods

The main purpose of clustering analysis is to group samples with similar 
characteristics into the same clusters (Rezaee et al. 2021). Particularly, for 
resolving imbalance classification problems, several different types of cluster
ing analysis methods have been developed. Yen and Lee (2009) proposed a 
cluster-based under-sampling (SBC) method to select representative data for 
training. Since the behavior or characteristic of a cluster depends on the 
proportion of the majority and minority class samples in the cluster, they 
considered a ratio of the number of majority class samples to that of minority 
class samples in the clusters and randomly selected a proper number of 
majority class samples from each cluster for training (Yen and Lee 2009). 
Lin et al. (2017) presented two under-sampling strategies based on the K- 
means clustering and then compared performances of several combinations of 
the clustering-based under-sampling techniques with different types of classi
fication methods to demonstrate the efficiency of the proposed methods (Lin 
et al. 2017). To improve the classification performance, Ofek et al. (2017) 
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focused on the samples that are difficult to identify (i.e., the majority class 
samples close to minority class region) and proposed a fast clustering-based 
under-sampling (Fast-CBUS) method which can cluster the minority class 
samples only (Ofek et al. 2017). As a spatial clustering technique, DBSCAN 
method has been widely used to cluster samples into three distinctive cate
gories, namely, core, border, and noise samples. Through the DBSCAN, the 
outlier with a small density are treated as noise samples which are unreachable 
samples from any core point or that do not belong to any cluster. This method 
requires two important parameters, i.e., the radius (ε) of neighborhood around 
a sample and a threshold (MinPts) for the number of neighbors which 
indicates the total weight of a neighborhood for a core sample (Schubert et 
al. 2017). There have been many applications of the DBSCAN method to 
various imbalanced classification problems. He et al. (2014) presented a scal
able DBSCAN algorithm based on MapReduce called MR-DBSCAN to 
enhance the performance of imbalanced classification problems as well as 
resolve the scalability problem in the DBSCAN algorithm (He et al. 2014). 
However, in the DBSCAN algorithm, it is very important but difficult to 
choose proper input parameters a priori, that is, the radius ε and MinPts 
even though they have a significant impact on the clustering results. Karami 
and Johansson (2014) provided an efficient hybrid clustering method called 
BDE-DBSCAN, which combines the binary differential evolution (BDE) 
method and DBSCAN algorithm to determine appropriate parameter values 
of ε and MinPts quickly and automatically (Karami and Johansson 2014). 
Guzmán-Ponce et al. (2020) proposed an under-sampling method called 
DBMIST-US that combines DBSCAN and minimum spanning tree (MST) 
algorithm for identifying noisy samples and cleaning borderline samples (i.e., 
the samples close to the decision boundary) sequentially (Guzmán-Ponce et al. 
2020).

Proposed method

In this research, we propose a hybrid resampling method called BOD-based 
under-sampling to improve the performance of imbalanced classification 
problems, which combines BNF, OBN, and DBSCAN approaches. To evaluate 
the proposed method, we adopt a SVM classifier with RBF (radial basis 
function) kernel since the RBF kernel can deal with the linear non-separable 
problem (Liu et al. 2015). In this research, the DBSCAN method is used to 
detect outliers, that is, the samples with low density. However, when there is a 
significant difference in data distribution, since the DBSCAN method may 
often misjudge normal samples as outliers, the BNF and OBN methods are 
also considered simultaneously to overcome this drawback. Then, among the 
abnormal samples (i.e., borderline noises and outliers) extracted by BNF, 
OBN, and DBSCAN methods, the outliers only determined by DBSCAN 
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method are classified as rare samples while the samples identified as normal 
are classified as safe samples sequentially. Then, some of the separated safe 
samples belonging to majority class are eliminated using RUS. Figure 2 and 3 
illustrates the categories of samples resulted from the application of the 
proposed method and the detailed procedures of the proposed method, 
respectively. In particular, since there is no prescribed rule to set an exact 
radius value r in the original OBN function and many previous studies have 
considered kNN (k nearest neighbor)-based outlier detection methods to 
determine the neighbors of a sample (Angiulli et al. 2012; Angiulli, Basta, 
and Pizzuti 2006; Angiulli and Fassetti 2009; Angiulli and Pizzuti 2005), we 
considered a proper k nearest neighbor value in the application of OBN 
method instead of the radius r to search neighbors of a sample.

The Algorithm 1 and 2 present the pseudo codes for finding overlapped 
samples and for categorizing majority class samples into four distinct cate
gories, respectively. In algorithms, the notations Str, Sts, SOVR, SBN , SO, SDBC, Sa, 
Ss, xtr, and xtrn represent the training dataset, test dataset, set of the samples in 
overlapped region, set of borderline noises, set of outliers, set of the samples 
clustered by DBSCAN, set of abnormal samples, set of safe samples, an 
individual sample in training dataset, and nearest neighbors of xtr, 
respectively. 

Algorithm 1. Pseudo code for finding overlapped samples.
Set SOVR ¼ ;

Figure 2. Categories of majority class samples.
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Figure 3. Procedures of the proposed method.
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For each sample xtr in the Str, find xtrn based on the Euclidean distance.
If xtrn belongs to the different class of the sample xtr
Add xtrn to SOVR.
Else
End

Algorithm 2. Pseudo code for categorizing majority class samples.
Set SBN ¼ ;

For each sample xtrn in SOVR, calculate BNF value.
Repeat
If Classification performance is maximized
Break
Else
Recalculate the remaining xtrn in SOVR.
Store the majority class sample with highest BNF value in SBN .
End Repeat
Set SO ¼ ;

For each majority class sample in Str
Repeat
Calculate OBN xtrð Þ.
Calculate E OBN xtrð Þð Þ.
If OBN xtrð Þ> E OBN xtrð Þð Þ

Add xtr to SO.
Else OBN xtrð Þ � E OBN xtrð Þð Þ

End Repeat
Set SDBC ¼ ; and Ss ¼ ;

Store the samples clustered by DBSCAN in SDBC.
Remove the set of samples in Sa ¼ SDBC\

SBN[
SOð Þ.

Keep the remaining samples in Ss.
Use RUS to balance the class distribution in Ss.
End

Experimental analysis

In this research, we consider 15 imbalanced datasets selected from KEEL data 
repository (http://www.keel.es/dataset.php) to evaluate the classification per
formance of the proposed method. Table 1 contains basic information of the 
datasets such as the number of attributes, number of samples, percentages of 
the majority and minority class samples, and imbalance ratio.

In experimental analysis, we use RUS to eliminate some of the safe samples 
derived from BNF, OBN, and DBSCAN methods and the RBF kernel SVM 
classifier to assess the proposed method with considering two classification 
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Table 1. Information of datasets.
Dataset NoA1 NoS2 PMa3 PMi4 IR5

glass1 9 214 64.54 35.46 1.82
yeast1 8 1484 71.10 28.90 2.46
haberman 3 306 73.54 26.46 2.78
ecoli1 7 336 77.06 22.94 3.36
segment0 19 2308 85.75 14.25 6.02
glass6 9 214 86.45 13.55 6.38
yeast2vs4 8 514 90.08 9.92 9.08
glass0146vs2 9 205 91.71 8.29 11.06
shuttle-c0-vs-c4 9 1829 93.28 6.72 13.87
yeast1vs7 7 459 93.46 6.54 14.30
glass4 9 214 93.93 6.07 15.47
glass016vs5 9 184 95.11 4.89 19.44
shuttle-c2-vs-c4 9 129 95.35 4.65 20.50
yeast5 8 1484 97.04 2.96 32.73
yeast6 8 1484 97.64 2.36 41.40

1Number of attributes, 2 Number of samples, 3 Percentage of the majority class samples, 4 Percentage of 
the minority class samples, 5 Imbalance ratio

Table 2. AUC of five classification models.
Dataset Model 1 Model 2 Model 3 Model 4 Model 5

glass1 0.6319 0.5787 0.6759 0.6792 0.6343
yeast1 0.6692 0.7596 0.7387 0.7428 0.7684
haberman 0.5477 0.5647 0.5477 0.6562 0.6386
ecoli1 0.7933 0.8702 0.8245 0.8462 0.8894
segment0 0.9924 0.9899 0.9924 0.9924 0.9924
glass6 0.8333 0.9459 0.8333 0.8333 0.9869
yeast2vs4 0.5000 0.9437 0.5000 0.9328 0.9491
glass0146vs2 0.5000 0.5034 0.5000 0.8513 0.5439
shuttle-c0-vs-c4 0.9792 0.9861 0.9792 0.9985 0.9985
yeast1vs7 0.5000 0.7093 0.5000 0.6977 0.7209
glass4 0.6542 0.8875 0.8333 0.9688 0.9500
glass016vs5 0.5000 0.9857 0.9714 1.0000 1.0000
shuttle-c2-vs-c4 0.7500 0.9583 0.7500 0.7500 1.0000
yeast5 0.7205 0.9340 0.7760 0.9449 0.9736
yeast6 0.5714 0.8793 0.7126 0.8304 0.9131

1SVM without any data preprocessing, 2 SVM with RUS, 3 SVM with DBSCAN, 4 SVM with SMOTE, 5 SVM with BOD

Table 3. G-mean of five classification models.
Dataset Model 1 Model 2 Model 3 Model 4 Model 5

glass1 0.5774 0.5528 0.6526 0.6769 0.6236
yeast1 0.6106 0.7592 0.7102 0.7384 0.7512
haberman 0.3392 0.5636 0.3392 0.6550 0.6366
ecoli1 0.7752 0.8702 0.8131 0.8407 0.8893
segment0 0.9924 0.9899 0.9924 0.9924 0.9924
glass6 0.8165 0.9444 0.8165 0.8165 0.9864
yeast2vs4 0.0000 0.9430 0.0000 0.9325 0.9483
glass0146vs2 0.0000 0.4350 0.0000 0.8383 0.4577
shuttle-c0-vs-c4 0.9789 0.9860 0.9789 0.9985 0.9985
yeast1vs7 0.0000 0.6470 0.0000 0.6627 0.6862
glass4 0.5701 0.8834 0.8165 0.9683 0.9487
glass016vs5 0.0000 0.9856 0.9710 1.0000 1.0000
shuttle-c2-vs-c4 0.7071 0.9574 0.7071 0.7571 1.0000
yeast5 0.6655 0.9317 0.7441 0.9338 0.9732
yeast6 0.3780 0.8710 0.6535 0.8223 0.9113

1SVM without any data preprocessing, 2 SVM with RUS, 3 SVM with DBSCAN, 4 SVM with SMOTE, 5 SVM with BOD
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performance measures, i.e., AUC (area under the ROC curve) and G-mean. 
The AUC measures the ability of a classifier to distinguish classes while the G- 
mean comprehensively measures the accuracy rates of positive samples and 
negative samples. The AUC and G-mean measures are as follows (Loyola- 
González et al. 2016; Yang and Gao 2013): 

AUC ¼ 1þ
TP

FN þ TP
�

FP
TN þ FP

� �

=2 (3) 

G � mean ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP
TPþ FN

�
TN

TN þ FP

r

(4) 

We set the termination condition of the proposed method as IR ¼ 1 of the safe 
category samples while all the borderline and outlier samples are removed but 
the entire rare samples are kept in the final training dataset. Tables 2 and 3 
include classification performances resulted from applying the SVM classifier 
combined with RUS, DBSCAN, SMOTE, and the proposed method to 15 
imbalanced datasets.

From the experimental results, we can see that the proposed method out
performs the other three traditional resampling approaches, that is, RUS, 
DBSCAN, and SMOTE, as well as the pure SVM for most of the considered 
imbalanced datasets with respect to AUC and G-mean. However, it seems that 
the proposed method may perform poorly for the datasets with a low imbal
ance ratio (i.e., IR < 9). Specifically, for ‘glass1ʹ (IR = 1.82), ‘yeast1ʹ (IR = 2.46), 
and “haberman” (IR = 2.78) datasets, the AUC and G-mean of the proposed 
method seem to be lower than those of the SVM combined with SMOTE, 
DBSCAN, and RUS sampling methods. We also found that the SVM com
bined with SMOTE outperforms the proposed method for ‘glass0146vs2ʹ and 
‘glass4ʹ datasets. Compared to the under-sampling, since most over-sampling 
methods (e.g., SMOTE) may not ignore noise and outlier samples belonging to 
the minority class, they can classify minority class samples more effectively 
and better classification performance can be obtained. However, in this 
research, since we aim to eliminate both borderline noise samples which 
belong to the majority class in the overlapped region and outliers which are 
far from the majority class sample cluster, it is very difficult to correctly classify 
certain unlabeled samples having nearest neighbors of the same class but 
located in the majority class region as the minority class. Thus, we can 
conclude that the SVM combined with SMOTE slightly outperforms the 
proposed method because most of the minority class samples in ‘glass0146vs2ʹ 
and ‘glass4ʹ datasets could be located inside the majority class region as well as 
a few samples of the same class. However, we can see that the proposed 
method performs quite well for the datasets with a high imbalance ratio (IR 
> 9). For example, there are almost 34% and 54% of improvements in AUC 
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and G-mean for ‘yeast6ʹ dataset. Figure 4 and 5 present a comparison of AUCs 
and G-means of the five classification models graphically. The x-axis and y- 
axis in figures represent imbalanced datasets considered and the correspond
ing classification performances, respectively.

Conclusions and further works

It has been known that class imbalance and abnormal observations such as 
noises and outliers have a considerably huge influence on the classification 
performance (Attenberg and Ertekin 2013; Shi et al. 2020; Tomek 1976). 
Thus, in this research, we considered an imbalanced binary classification 
problem and applied the DBSCAN method as well as efficient noise and 
outlier detection methods, i.e., BNF and OBN, to improve classification 

Figure 4. AUCs of 15 imbalance datasets.

Figure 5. G-means of 15 imbalance datasets.
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performances. The borderline noise samples determined by the BNF method 
are eliminated until the maximum level of AUC and G-mean values are 
achieved and then outliers (i.e., abnormal samples with large OBN values) 
are identified and eliminated. Finally, the safe and rare samples are deter
mined by the DBSCAN method and some of the safe samples are eliminated 
using the RUS. Through the comprehensive experimental analysis, we 
showed that the proposed data preprocessing method for imbalanced classi
fication problems can effectively determine borderline noises and outliers in 
the majority class and, by removing these abnormal samples, better classifi
cation performance can be achieved than the classification models combined 
with simple RUS, DBSCAN, and SMOTE. However, in this research, since 
we focused on the elimination of only majority class samples while keeping 
minority class samples that might have certain critical information, there is a 
limitation to improve the classification performances more significantly. 
Thus, it is necessary to develop efficient hybrid resampling methods con
sidering both under-sampling and over-sampling. And, since the proposed 
method involves two critical procedures, that is, (i) calculation procedure of 
the BNF values for all the borderline noise samples and (ii) removal proce
dure of the sample with the maximum BNF value iteratively to obtain the 
best classification performance, a moderately large amount of computation 
time is required for the complex and large-scale imbalanced classification 
problems. Thus, it is also necessary to develop an efficient and appropriate 
stopping criterion to reduce the computation time for the BNF values of 
majority class samples in overlapped region.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This work has been supported by the General Research Program funded by the Ministry of 
Science and Technology, Taiwan, R.O.C. [MOST 110-2221-E-027-106-MY3].

ORCID

Chun-Yang Peng http://orcid.org/0000-0002-3345-4493
You-Jin Park http://orcid.org/0000-0002-1006-5380

APPLIED ARTIFICIAL INTELLIGENCE e1975393-41



References

Angiulli, F., S. Basta, S. Lodi, and C. Sartori. 2012. Distributed strategies for mining outliers in 
large data sets. IEEE Transactions on Knowledge and Data Engineering 25 (7):1520-1532. 
doi:10.1109/TKDE.2012.71.

Angiulli, F., S. Basta, and C. Pizzuti. 2006. Distance-based detection and prediction of 
outliers. IEEE Transactions on Knowledge and Data Engineering 18 (2):145-160. 
doi:10.1109/TKDE.2006.29.

Angiulli, F., and F. Fassetti. 2009. Dolphin: An efficient algorithm for mining distance-based 
outliers in very large datasets. ACM Transactions on Knowledge Discovery from Data 3 (1):1- 
57. doi:10.1145/1497577.1497581.

Angiulli, F., and C. Pizzuti. 2005. Outlier mining in large high-dimensional data sets. IEEE 
Transactions on Knowledge and Data Engineering 17 (2): 203-215. doi:10.1109/ 
TKDE.2005.31.

Attenberg, J., and S. Ertekin. 2013. Class imbalance and active learning. In Imbalanced 
Learning: Foundations, Algorithms, and Applications, ed. H. He, and Y. Ma, 101–49. 
Piscataway, New Jersey, United States: Wiley-IEEE. doi:10.1002/9781118646106.ch6.

Barua, S., M. M. Islam, X. Yao, and K. Murase. 2012. MWMOTE-Majority Weighted Minority 
Oversampling Technique for Imbalanced Data Set Learning. IEEE Transactions on 
Knowledge and Data Engineering 26 (2): 405-425. doi: 10.1109/TKDE.2012.232.

Bauder, R. A., and T. M. Khoshgoftaar. 2018. The effects of varying class distribution on learner 
behavior for medicare fraud detection with imbalanced big data. Health Information Science 
and Systems 6 (1):1–14. doi:10.1007/s13755-018-0051-3.

Breunig, M. M., H.-P. Kriegel, R. T. Ng, and J. Sander. 2002. LOF: Identifying density-based 
local outliers. Proceedings of the ACM SIGMOD International Conference on Management 
of Data, Dallas, Texas, USA. ed. W. Chen, J. Naughton, and P. A. Bernstein, 29 (2): 93– 
104. New York, United States. doi:10.1145/335191.335388.

Buda, M., A. Maki, and M. A. Mazurowski. 2018. A systematic study of the class imbalance 
problem in convolutional neural networks. Neural Networks 106:249–59. doi:10.1016/j. 
neunet.2018.07.011.

Chawla, N. V., K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer. 2002. SMOTE: Synthetic 
smaller over sampling technique. Journal of Artificial Intelligence Research 16:321–57. 
doi:10.1613/jair.953.

Chen, L., W. Wang, and Y. Yang. 2021. CELOF: Effective and fast memory efficient local outlier 
detection in high-dimensional data streams. Applied Soft Computing 102:107079. 
doi:10.1016/j.asoc.2021.107079.

Chen, Y., D. Miao, and H. Zhang. 2010. Neighborhood outlier detection. Expert Systems with 
Applications 37 (12):8745–49. doi:10.1016/j.eswa.2010.06.040.

Devi, D., S. K. Biswas, and B. Purkayastha. 2017. Redundancy-driven modified Tomek-link 
based undersampling: A solution to class imbalance. Pattern Recognition Letters 93:3–12. 
doi:10.1016/j.patrec.2016.10.006.

Dubey, R., J. Zhou, Y. Wang, P. M. Thompson, and J. Ye. 2014. Analysis of sampling 
techniques for imbalanced data: An n= 648 ADNI study. NeuroImage 87:220–41. 
doi:10.1016/j.neuroimage.2013.10.005.

Ebenuwa, S. H., M. S. Sharif, M. Alazab, and A. Al-Nemrat. 2019. Variance ranking attributes 
selection techniques for binary classification problem in imbalance data. IEEE Access 
7:24649–66. doi:10.1109/ACCESS.2019.2899578.

Fotouhi, S., S. Asadi, and M. W. Kattan. 2019. A comprehensive data level analysis for cancer 
diagnosis on imbalanced data. Journal of Biomedical Informatics 90:103089. doi:10.1016/j. 
jbi.2018.12.003.

e1975393-42 C.-Y. PENG AND Y.-J. PARK

https://doi.org/10.1109/TKDE.2012.71
https://doi.org/10.1109/TKDE.2006.29
https://doi.org/10.1145/1497577.1497581
https://doi.org/10.1109/TKDE.2005.31
https://doi.org/10.1109/TKDE.2005.31
https://doi.org/10.1002/9781118646106.ch6
https://doi.org/10.1109/TKDE.2012.232
https://doi.org/10.1007/s13755-018-0051-3
https://doi.org/10.1016/j.neunet.2018.07.011
https://doi.org/10.1016/j.neunet.2018.07.011
https://doi.org/10.1613/jair.953
https://doi.org/10.1016/j.asoc.2021.107079
https://doi.org/10.1016/j.eswa.2010.06.040
https://doi.org/10.1016/j.patrec.2016.10.006
https://doi.org/10.1016/j.neuroimage.2013.10.005
https://doi.org/10.1109/ACCESS.2019.2899578
https://doi.org/10.1016/j.jbi.2018.12.003
https://doi.org/10.1016/j.jbi.2018.12.003


Galar, M., A. Fernandez, E. Barrenechea, H. Bustince, and F. Herrera. 2011. A review on 
ensembles for the class imbalance problem: bagging-, boosting-, and hybrid-based 
approaches. IEEE Transactions on Systems, Man, and Cybernetic (Part C: Applications and 
Reviews) 42 (4):463–84. doi:10.1109/TSMCC.2011.2161285.

Gnip, P., L. Vokorokos, and P. Drotár. 2021. Selective oversampling approach for strongly 
imbalanced data. PeerJ Computer Science 7:e604. doi:10.7717/peerjcs.604.

Gong, L., S. Jiang, L. Bo, L. Jiang, and J. Qian. 2019. A novel class-imbalance learning approach 
for both within-project and cross-project defect prediction. IEEE Transactions on Reliability 
69 (1):40–54. doi:10.1109/TR.2019.2895462.

Guo, H. X., Y. J. Li, J. Shang, M. Y. Gu, Y. Y. Huang, and G. Bing. 2017. Learning from class- 
imbalanced data: Review of methods and applications. Expert Systems with Applications 
73:220–39. doi:10.1016/j.eswa.2016.12.035.

Gupta, U., V. Bhattacharjee, and P. S. Bishnu. 2019. A New Neighborhood-Based Outlier 
Detection Technique. Proceedings of the Third International Conference on Microelectronics, 
Computing and Communication Systems, ed. V. Nath and J. K. Mandal, 556:527– 
534. Springer Nature, Singapore. doi:10.1007/978-981-13-7091-5_43.

Guzmán-Ponce, A., R. M. Valdovinos, J. S. Sánchez, and J. R. Marcial-Romero. 2020. A new 
under-sampling method to face class overlap and imbalance. Applied Sciences 10 (15):5164. 
doi:10.3390/app10155164.

Han, H., W. Y. Wang, and B.-H. Mao. 2005. Borderline-SMOTE: A New Over-Sampling Method in 
Imbalanced Data Sets Learning. Proceedings of International Conference on Intelligent 
Computing: Advances in Intelligent Computing, ed. D. S. Huang, X. -P. Zhang, G. -B. Huang, 
3644:878–887. Berlin, Heidelberg: Springer Berlin Heidelberg. doi:10.1007/11538059_9.

He, H., and E. A. Garcia. 2009. Learning from imbalanced data. IEEE Transactions on 
Knowledge and Data Engineering 21 (9):1263–84. doi:10.1109/TKDE.2008.239.

He, Y., H. Tan, W. Luo, S. Feng, and J. Fan. 2014. MR-DBSCAN: A scalable MapReduce-based 
DBSCAN algorithm for heavily skewed data. Frontiers of Computer Science 8 (1):83–99. 
doi:10.1007/s11704-013-3158-3.

Janakiraman, V. M., X. Nguyen, J. Sterniak, and D. Assanis. 2014. Identification of the dynamic 
operating envelope of HCCI engines using class imbalance learning. IEEE Transactions on 
Neural Networks and Learning Systems 26 (1):98–112. doi:10.1109/TNNLS.2014.2311466.

Karami, A., and R. Johansson. 2014. Choosing DBSCAN parameters automatically using 
differential evolution. International Journal of Computer Applications 91 (7):1–11. 
doi:10.5120/15890-5059.

Krawczyk, B. 2016. Learning from imbalanced data: Open challenges and future directions. 
Progress in Artificial Intelligence 5 (4):221–32. doi:10.1007/s13748-016-0094-0.

Leevy, J. L., T. M. Khoshgoftaar, R. A. Bauder, and N. Seliya. 2018. A survey on addressing high- 
class imbalance in big data. Journal of Big Data 5 (1):42. doi:10.1186/s40537-018-0151-6.

Li, X., J. Lv, and Z. Yi. 2016. An efficient representation-based method for boundary point and 
outlier detection. IEEE Transactions on Neural Networks and Learning Systems 29 (1):51–62. 
doi:10.1109/TNNLS.2016.2614896.

Liang, X. W., A. P. Jiang, T. Li, Y. Y. Xue, and G. T. Wang. 2020. LR-SMOTE - An improved 
unbalanced data set oversampling based on K-means and SVM. Knowledge-Based Systems 
196:105845. doi:10.1016/j.knosys.2020.105845.

Lin, W.-C., C.-F. Tsai, Y.-H. Hu, and J.-S. Jhang. 2017. Clustering-based undersampling in 
class-imbalanced data. Information Sciences 409–410:17–26. doi:10.1016/j.ins.2017.05.008.

Liu, X.-Y., J. Wu, and Z.-H. Zhou. 2009. Exploratory undersampling for class-imbalance 
learning. IEEE Transactions on Systems, Man, and Cybernetics (Part B: Cybernetics) 39 
(2):539–50. doi:10.1109/TSMCB.2008.2007853.

APPLIED ARTIFICIAL INTELLIGENCE e1975393-43

https://doi.org/10.1109/TSMCC.2011.2161285
https://doi.org/10.7717/peerjcs.604
https://doi.org/10.1109/TR.2019.2895462
https://doi.org/10.1016/j.eswa.2016.12.035
https://doi.org/10.3390/app10155164
https://doi.org/10.1007/11538059_9
https://doi.org/10.1109/TKDE.2008.239
https://doi.org/10.1007/s11704-013-3158-3
https://doi.org/10.1109/TNNLS.2014.2311466
https://doi.org/10.5120/15890-5059
https://doi.org/10.1007/s13748-016-0094-0
https://doi.org/10.1186/s40537-018-0151-6
https://doi.org/10.1109/TNNLS.2016.2614896
https://doi.org/10.1016/j.knosys.2020.105845
https://doi.org/10.1016/j.ins.2017.05.008
https://doi.org/10.1109/TSMCB.2008.2007853


Liu, Z., M. J. Zuo, X. Zhao, and H. Xu. 2015. An analytical approach to fast parameter selection 
of Gaussian RBF Kernel for support vector machine. Journal of Information Science and 
Engineering 31 (2):691–710. doi:10.6688/JISE.2015.31.2.18.

Loyola-González, O., J. F. Martínez-Trinidad, J. A. Carrasco-Ochoa, and M. García-Borroto. 
2016. Study of the impact of resampling methods for contrast pattern based classifiers in 
imbalanced databases. Neurocomputing 175:935–47. doi:10.1016/j.neucom.2015.04.120.

Ofek, N., L. Rokach, R. Stern, and A. Shabtai. 2017. Fast-CBUS: A fast clustering-based 
undersampling method for addressing the class imbalance problem. Neurocomputing 
243:88–102. doi:10.1016/j.neucom.2017.03.011.

Rezaee, M. J., M. Eshkevari, M. Saberi, and O. Hussain. 2021. GBK-means clustering algorithm: 
An improvement to the K-means algorithm based on the bargaining game. Knowledge-Based 
Systems 213:106672. doi:10.1016/j.knosys.2020.106672.

Schubert, E., J. Sander, M. Ester, H. P. Kriegel, and X. Xu. 2017. DBSCAN revisited, revisited: 
why and how you should (still) use DBSCAN. ACM Transactions on Database Systems 42 
(3):1–21. doi:10.1145/3068335.

Seiffert, C., T. M. Khoshgoftaar, J. V. Hulse, and A. Napolitano. 2010. RUSBoost: A hybrid 
approach to alleviating class imbalance. IEEE Transactions on Systems, Man, and Cybernetics 
(Part A: Systems and Humans) 40 (1):185–97. doi:10.1109/TSMCA.2009.2029559.

Shi, C., X. Li, J. Lv, Y. Yin, and I. Mumtaz. 2020. Robust geodesic based outlier detection for 
class imbalance problem. Pattern Recognition Letters 131:428–34. doi:10.1016/j. 
patrec.2020.01.028.

Tomek, I. 1976. Two Modifications of CNN. IEEE Transactions on Systems, Man, and 
Cybernetics SMC-6 (11):769–772. doi:10.1109/TSMC.1976.4309452.

Wang, R., Q. Zhu, J. Luo, and F. Zhu. 2020. Local dynamic neighborhood based outlier 
detection approach and its framework for large-scale datasets. Egyptian Informatics 
Journal (Available online). doi:10.1016/j.eij.2020.06.001.

Wei, J., H. Huang, L. Yao, Y. Hu, Q. Fan, and D. Huang. 2020. NI-MWMOTE: An improving 
noise-immunity majority weighted minority oversampling technique for imbalanced classifica
tion problems. Expert Systems with Applications 158:113504. doi:10.1016/j.eswa.2020.113504.

Xie, W., G. Liang, Z. Dong, B. Tan, and B. Zhang. 2019. An improved oversampling algorithm 
based on the samples’ selection strategy for classifying imbalanced data. Mathematical 
Problems in Engineering 2019:3526539. doi:10.1155/2019/3526539.

Yang, Z., and D. Gao. 2013. Classification for imbalanced and overlapping classes using outlier 
detection and sampling techniques. Applied Mathematics & Information Sciences 7 
(1L):375–81. doi:10.12785/AMIS/071L50.

Yen, S.-J., and Y.-S. Lee. 2009. Cluster-based under-sampling approaches for imbalanced data 
distributions. Expert Systems with Applications 36 (3):5718–27. doi:10.1016/j.eswa.2008.06.108.

Yuan, Z., X. Zhang, and S. Feng. 2018. Hybrid data-driven outlier detection based on neigh
borhood information entropy and its developmental measures. Expert Systems with 
Applications 112:243–257. doi:10.1016/j.eswa.2018.06.013.

Zhu, T., Y. Lin, and Y. Liu. 2017. Synthetic minority oversampling technique for multiclass 
imbalance problems. Pattern Recognition 72:327–40. doi:10.1016/j.patcog.2017.07.024.

e1975393-44 C.-Y. PENG AND Y.-J. PARK

https://doi.org/10.6688/JISE.2015.31.2.18
https://doi.org/10.1016/j.neucom.2015.04.120
https://doi.org/10.1016/j.neucom.2017.03.011
https://doi.org/10.1016/j.knosys.2020.106672
https://doi.org/10.1145/3068335
https://doi.org/10.1109/TSMCA.2009.2029559
https://doi.org/10.1016/j.patrec.2020.01.028
https://doi.org/10.1016/j.patrec.2020.01.028
https://doi.org/10.1016/j.eij.2020.06.001
https://doi.org/10.1016/j.eswa.2020.113504
https://doi.org/10.1155/2019/3526539
https://doi.org/10.12785/AMIS/071L50
https://doi.org/10.1016/j.eswa.2008.06.108
https://doi.org/10.1016/j.eswa.2018.06.013
https://doi.org/10.1016/j.patcog.2017.07.024

	Abstract
	Introduction
	Approaches to imbalanced classification problems
	Related works
	Anomaly detection methods
	Clustering methods

	Proposed method
	Experimental analysis
	Conclusions and further works
	Disclosure statement
	Funding
	ORCID
	References

