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Abstract

In this paper, a fourth-order viscoelastic plate vibration equation is trans-
formed into a set of two second-order differential equations by introducing
an intermediate variable. A three-layer compact difference scheme for the in-
itial-boundary value problem of the viscoelastic plate vibration equation is
established. Then the stability and convergence of the difference scheme are
analyzed by the energy method, and the convergence order is O(T2 + h4).

Finally, some numerical examples are given of which results verify the accu-
racy and validity of the scheme.
Keywords

Viscoelastic Plate Vibration Equation, Compact Difference Method, Stability,
Convergence

1. Introduction

Consider the following initial-boundary value problem of the viscoelastic plate

vibration equation

2
(a)y%u+gt—g+aA2u+ku: f(xyt), (xy,t)eQx(0,T],
(b)ul_, = %(X,Y), =0,(xy), (xy)eQ
t=0
(C)U|X 0 V’l(y' )-u =V, yt (L.1)
| v (xt),ul | =w,(xt), €(0,T],
(d)Au|x 0 gl( Y, )’Au|x:b = gz(y’t)’
Auf_, =8;(xt),Au] _ =g,(xt), te(0T],
5 , o o'u  ou )
where Q:(O,b)X(O,C)CR , Au=—+42 ,u(,u>0) is the

—_— + —_—,
6)(4 6X26y2 6y4
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viscosity coefficient, k (k > O) is the elasticity coefficient, a = RI ,D, p and/
2,

are bending rigidity, board density and sheet thickness, respectively, and are
constants. The source term f (X, y,t) is known smooth functions, ¢, (X, y)
and ¢, (X, y) is initial value functions, v, (y,t) and ¢, (y,t) (i :1,2,3,4) are
boundary value functions.

Vibration is a common physical phenomenon, but vibration can cause serious
harm in some cases, such as damage to the mechanical structure and buildings,
noise that causes serious environmental pollution and so on. Studying the vibra-
tion of structural systems such as beams and plates is of important significance
in lowering the damage rate of the mechanical structure, increasing safety and
reducing the maintenance cost. And the use of viscoelastic damping can reduce
vibration hazards. Viscoelastic plate vibration equations can describe and solve
bridge and aerospace vibration and noise control issues, etc., theoretical analysis
and numerical calculations have attracted more and more attention of scientific
research and engineering personnel. In [1] [2], Cheng ef al investigate Rayleigh
wave propagation and the solvability of fractional order damped vibration in
viscoelastic media. In [3], the plate vibration equation is derived in detail. In [4],
Wang proves existence and uniqueness of the local solution refer to the fourth-
order damped wave equation. The compact finite difference method which usually
approximates the second-order derivatives has the advantages of using fewer and
compactly arranged nodes to achieve high precision, avoiding introducing vir-
tual nodes to handle boundary conditions easier and keeping desirable tridia-
gonal nature of the finite difference equation. In [5] [6] [7] [8], the compact fi-
nite difference scheme for wave equations is developed. Deng et al proposed a
fourth-order compact alternating direction implicit format for solving two-di-
mensional linear hyperbolic equations in [9]. For fourth-order parabolic equa-
tions, a compact finite difference scheme is established by introducing interme-
diate variables in [10]. In [11] [12] [13] [14] [15], for a class of two-dimensional
fourth-order differential equations such as plate vibration equation, a compact
finite difference scheme with fourth-order spatial accuracy is developed by in-
troducing a second-order derivative as an intermediate variable. However, we
have not seen any articles that solve the initial-boundary value problem of vis-
coelastic plate vibration equation by compact difference method until now. The
goal of this paper is to construct a compact implicit difference scheme for the
problem (1.1).

The outline of this paper is as follows. In Section 2, the fourth-order viscoelas-
tic plate vibration equation is transformed into a second-order system of equa-
tions. The space derivative terms of the equations are discretized by the fourth-
order compact difference scheme, while the time derivative terms are discretized
by the second-order central difference scheme. Finally, the compact implicit dif-
ference scheme of (1.1) is constructed. In Section 3, we prove that the presented

compact difference scheme is convergent and unconditionally stable by the energy

DOI: 10.4236/eng.2021.1311045

632 Engineering


https://doi.org/10.4236/eng.2021.1311045

C.L.Wuetal

method. In Section 4, some numerical examples are given to verify the accuracy

of the scheme, which show that the scheme has high practicability.

2. Compact Difference Scheme

In this section, we develop a compact difference scheme of the problem (1.1),

and introduce intermediate function v =-aAu, (1.1) is equivalent to

2
(a)p(;t—u+ng—Av+ku= f(x,y.t), (xy,t)eQx(0,T],

(b)aAu+v =0, (x,y,t) e @x(0,T],

=0,(xy), (x,y)eQ,

©ul_, =a(x y)% .

@ul, %( y.t).ul L, =v (yt),

ul, o =ws (xt)uf =y, (x1), (0.7]
@©)V],, =-ag; (y,t).v],_, =—ag, (V.t),

v|y:0— —ag, (x,t), | =-ag,(xt), te(0,T]

Take positive integers M,, M, and N let h, = ML , hy = ML’

X1y

h= max{h h} and T:%.Denote Xi=ihx(i=0,1,~-,MX),

y; = jhy(j=0,1,“',My), t,=nz(n=0,1---,N). Defining the grid function

u’

j onnode (Xi Yt ) , we introduce the following notations

(u +u””) s.ul :zlr(u”*l—ui?’l),

1
"+§
Uy

1
2

1/ o no_ 1
:;(u..l ) SN =

i t i 2
) j r

(”*l 2uj} +uj )

52 nzi

i T2
X

(|+1J 2U +u|1]) 55:;:1

E( i, j+1 2U +u|]l)

and the compact operators

i( Uy, +100; +U;, ), 1<i<M, -10<j<M

AU, =412 " v
Uy, i=0,M,,0<j<M,,
1 . :

Au, - 12( (110U +U ), IS jSM -10<i<M,,
U » j=0,M ,0<i<M,.

Let A, =AA, B=Ad5 +AS;.
Lemma 2.1 [16] I g(X) e C®[c—h,c+h], it holds
{9 (c=h)+10g"(c) +g"(c+h)]
1 h?
:h_Z[g(C+h)_29(c)+g(0_h)]+27,09 (¢),
where &e(c—h,c+h).

DOI: 10.4236/eng.2021.1311045 633 Engineering


https://doi.org/10.4236/eng.2021.1311045

C.L.Wuetal.

From now on, the derivation of the compact difference scheme is presented
carefully.

Considering the Equation (2.1a), for 1<i<M, -1, 1< j<M y L,
1<n< N -1, on the node (Xi,yj,tn),wehave

0 o° 0? o°
,U_U(Xivyj v%)*’?ﬁ(xi’ijtn)_a%(xivyl' 'tn)_ay_\zl(xi'yj 'tn)+ku(xi ) yj ltn)

ot (2.2)
=f (xi,yj,tn).
From the Taylor expansion, we obtain
0 n o’u
al:(x Yir n) SIU”_TG ats(x Yir n)+o( )

2 4
TY (kv t,) =00y -5 2 (., )+0(),

ot? A TYT
<xi,y,-,tn1)}

2

o? 1] 6° o%v 0
Lt h3y ) =2 S ) 22t 59y 2

_ii(xwyj,tn)+0(r4),

4 ox*ot’
a_zv(x.,y.,t) {62 (%Y, 1)Jrza_zv(x.,y.,t )+a_zv(x.,y.,t 1)}
ayz 1 ] n 4 ay j n+ ayz 1 ] n ayz 1 ] n-:

2 64

z;]_ayat (X yl n)+0( )

Substituting the above four formulas into (2.2) and replacing uj with

1

E(ui?” + ui;-"l) , we get
2y 2 2
HO U +67 i _Z{g 2 (X Yis n+1)+2%(xi’yj’tn)+%(xi'yj'tn1)i|

ay*
= f (%, ¥t )+7°9 (%, y;.t,)+O(7*),

2 2
_%|:6V(X yJ n+1)+22yv<x yJ n) 2y\2/(xi’yj’t”1):|+g(ui?+l+ui?_l) 2.3)

where

°u 4

1 10
g(xi’yj’t”) 663()( Y ”) 126t_ij(xi’yi’t”)

it d'v 1 o
46 zatz (X yj tn) _z—v( i!ijtn)'

+
x

Performing the compact operator A, A, on both sides of (2.3), we get

n 1 v o’V 02
;uAh t IJ Ah5t2 Ij__Ah|:a ( Yy n+1)+2a (X Yis n) 6X\2/(Xi’yj’tn1)i|

2

__Ah|: ( Jtn+1)+22y_2\2/(xi’yj’tn)+%<xi’yj’tnl):|+ Ah( T _1)(2.4)
= A £ +7*Agj +O(r").
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According to Lemma 2.1, and using the commutativity of A/A , we have
uAS U] + ASTUS - % ( Vit 2vi + v )JrgAh (u{j‘+1 +ui'j"1) = A +RY,,(2.5)

where
6

h4 6 6
Ri(,lj),n =‘[2AAAygirj] |: V(wajl n+1)+227\5/(xi’yj’tn) Z Z(Xuy]' n 1):|

960 ox°

6 6
960 A{ ( ilyjltn+l)+2%(xi'yj'tn)+%(xi'ijtn—l):|
+0(z* +h; +hp).

Assume u and vare sufficiently smooth, then there exists a positive constant C

such that
‘ RY

1,],n

SC(rz+h;‘+h;‘).

Omitting the small terms R,(J)n from (2.5) and letting U{, Vi’ be the ap-

proximate solution to Uy, Vj, we get difference discrete scheme of (2.1a)

1 . L k My
HAGU]+ AGIU -7 B, (Vi + v + vy 1)+EA“ (Ui +U") = A fF. (26)

Considering the Equation (2.1b) at node (Xi VY L ) ,for 1<i<M, -1,
1<j<M, -1, 1<n<N-1, wehave

2 2

Dy a0 e

Similar to (2.5), (2.7) is rewritten in the following form

aB,uj + A v =R} J)n, (2.8)

where
4

h 8% o%u
R(Z) = - X _— )(_7 . __y —_—
VN 240 6x6( Y ) 240A‘ay6

6, 1o
(xi,yj ,tn)+0(hX +hy).
Assume u and vare sufficiently smooth, then there exists a positive constant C
such that

i,j,n

RS

<C(hf+hy).

Omitting the small terms RI [n from (2.8) and letting U7, Vi' be the ap-
proximate solution to Uy, Vj, we get difference discrete scheme of (2.1b)

thUi? + Ahvijn =0. (2.9)
Considering the initial condition u|t: 0= (X,y), we have
Ui? = ui(j) = Pujj ’Vijo = Vi(j) =-alAg ;. (2.10)

In order to get the computation formats for the first time layer, using Taylor

expansion and combining (2.1) and (2.10), we obtain
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0 2 ( A2, \0 3/ A3,\0
U =u§+r(a—uj +T_[6_21J +T—(a—gj +O(r4>
ot )y 2\t i 6| ot i
2
T
= @i 70, i +7< fijo _aAZ(pl,ij — HOs i _k¢1,ij) (2.11)
+r,1<i<M, -11< j<M, -1,
and
0 2 ( A2,\°
v; :v§+r(@j + = a—;/ +O(r3)
at), 2\at?), (2.12)
=-aAg,; —athg,; +17,1<i <M, ~11< <M, -1
where

o) (% ’ 4 (2) % (0% ’ 3
rij :E[ﬁj +O(T ), I‘” :?(G?J +O(T )

ij ij
Omitting the small terms I’U(l) and rij(z)

and letting U{!, V' be the approximate solution to U

from (2.11) and (2.12) respectively,
n

n
i > Vij

i » we get

2
1 4 0 2
Ui =0 +70,5 +?( fy —aA g — up,; _kwl,ij)’ (2.13)

Vijl = —aAgolyij _aTA%,ij-
Considering the boundary value conditions (2.1d), (2.1e), we have
Ug; =wij U, =va;. Ui =va, Uin,My =V
Voﬁj = —agfj, V&X'j :—agznyj, Vs =—ag;;, (2.14)
Vi?My =-ag,;,1<i<M,-11<j<M -10<n<N.

Combining (2.6), (2.9), (2.10), (2.13), (2.14), we construct the following com-

pact implicit difference scheme of (2.1)

(@) uA U i? + Ahé‘tzui? _% B, (Vijml + Zvijn +Vijn71)+gAh (Ui;Hl +Ui?7l) =A fijnl
(b) thUi? + A.ﬂVijn =0,
(c) Ui(j) =@ Vijo =-aAg;,
2

T 2.15

(d) U% = @i T TP, i +7< fijo _aAZ(/’Lij — 1o, — Koy ), (2.15)
Vijl =-aAg; —artAg,;,

(e)US,,- :‘/’fp Ul?/lx,j :l//;,j' Uir,]o :l//;i’ UirjMy :l//z?,i’

n n n n n n n n
Vo3 =801, Vi, j =895, Vip =~0s;, V‘,My =-agy;-

According to the preceding derivation, the local truncation error of the dif-
ference scheme (2.15) is O(z’2 + hf + h;‘) .

3. Stability and Convergence Analysis

In this part, we prove the stability and convergence of difference schemes (2.15)
by energy method. We introduce the space
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M +1)x (M +1)

Shz{u|u eR™ ,osismx,ostMy},
shoz{uesh,uovj = Uy =l =y, :O,OgiSMX,OsjsMy}.

VU,V € S,,, we define inner products and norms on the space S,

M_lM—l M, -1

(uv)= Z Z uvihoh,, (8u,6,v)= ) i U, 5V, hh,
i=1 =1 i=1 j=1 I_E'J I_E'J
My-1 My-1
(5X2u,5fv): > D Sugsivghh,

i=1  j=1

(8,0,u.8,0,v)=

Lsz

y
Z:: 5,u B 5x5vvi,£ j,ihxhy’

i— )
2° 2

Jull = (uu). fo.ulf = (5,u.6,0),

| (8,6,u.88,u).

1 OxYy

= (5X2u,5fu)

In order to give stability and convergence analysis of the difference scheme
(2.15), the following lemmas are given.
Lemma 3.1 [13] For any grid function u,v €S, we have
(@) (Au,v)=(u,Ayv), (Ayu,v) :(u,Ayv),
) (Auv)=(u,Av), (Bu,v)=(u,Bv),
(©) (éfu,v) (u,5fv), <§y2u,v) = (u,5y2v).
Lemma 3.2 [13] [17] For any grid function u,v €S, ,, we have

20 2 2 2y 2 2
@ 2uf < (Aua) <l 2o <(Au) <ol

) Sl < (Auu) <o,
(©) hZ(ASu,5u)<4(Auu), h’(Asus,u)<4(Auu).

For convenience, we set
n n n n n n n n n n T
u :(ul,I’u2,1’”"qu—l,1'u1,2’u2,2"”’qu—l,Z"'"ul,My—l’u2,My—l"”’qu—l,My—l) J

T
n n n n n n n n
v _(V111V211 . VMX—1,17V1.27V2,2"”’VMx—l,Z"”7V1,My—1'V2,My—1"”’VMx—l,My—l) :

Theorem 3.1. The difference scheme (2.15) is stable. Let
=0;,=0(i=1234) and {u”,v”} refer to the solutions of the difference

scheme
n Vil k n+ n-: n
HASUT + A ST —= ( Lr2vi v ) EAh(uij Lruf 1)= P!, (3.1)
aB,u; + AV =Qj, (3.2)
0
Uy =@,V =—aAgpy,
7’ 0 2
Uj = @i 70, i +?( fi —aAp; —up,; —Key; )’ (3.3)

Vé = —aAgolyij —aTA(ozyij,

n _ ..n _4n _ /N _ n _ N gy 0 _
Up,j =Un,,j =Uio =Uim, =0, Vo =Vy, j =Vig =Viy, =0.

There is the stability estimate
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2
n+=

su™?

SC[

Proof. Taking the inner product on both sides of (3.1) with Zé}u” , We obtain

2 2 2

n+l

u

n

+ Vn+l +Vn

+

u

+

2

1 2 2 2 2 2
2 1 0 0 1 n m
sz v [+ X -

+2na

Q"

zy(ﬁh@un,@un)JrZ(ﬂé}zUnﬁfUn)—%(Bh (v”*1+2v” +V”’1),é}un) (3.4)
+k(Ah(un+1+un*1),5fu”)=2(P",5fu”).

From (3.2), we have

aB,gu" + AoV =6,Q". (3.5)

n+1

Taking the inner product on both sides of (3.5) with V""" +2v" +v"™, we ob-

tain

a(Bh5fu" V20" +v"‘1)+(Ah5fv”,v”*1 +2u" +v”‘1)
3.6
:(é‘an,Vn+l+2Vn +Vn—l)l ( )

Multiplying the both sides of (3.4) by a and multiplying the both sides of (3.6)

by %, then summing the results and applying Lemma 3.1, we obtain

1 1 1 1
2ayr(A15fu“,5fu”)+a{A15tu 2 5. ZJ—a[Ahétu 2.5 Zj

ka

+?(A1u"+l,u"+l)— 1

(Ahun—l,un—l)_f_Z

ka
2

TN ARV
A (A v

(Ah(v”+1+v”),v”+1+v”)

- 2ar(P”,§fu”)+%(5fQ”,v”+1 +2v" V),

Applying Lemma 3.2, we obtain

2

n+—- 2 2

2
Sayr”&fu" +4allsu 2| +2kafu™| + v V"
1 : 2 2
ol
<dalsu 2| +2kafu| +[v"+v? +18ar(P”,5fu”) (3.7)
+9_T(5an,Vn+l+2Vn+vnfl).
2
We set
L i 2 2 2
n+=
E" =4a|su 2 +2ka( u™" " )+ VAARIRVLY
then
1 § 2 2 2
E° = 4a|o,u? +2ka(||ul|| +||u°|| )+||vl+v°|| :
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We write (3.7) in the following form

8a,ur||5fu”

*LE"<EM™ +18ar(P”,§fu”)+%z-(éfQ”,v”+1 +2v" +v"’1). (3.8)

Noticing ¢ >0, a>0, summing over n from 1 to m on both sides of (3.8)

and applying Cauchy-Schwarz inequality, we get

2

(3.9)

2
m nel L
E"< E°+9arZ|P“ Su 2| +9r> vty
n=1 n=0

2+%Trnz':"5an

2 m
+ lBarZ
n=0

2

Pn

m m 2 gz. m
<E®+9rYE"+9ary |P"[ +=-)[6.Q"

n=0 n=1 4 n=1
Applying discrete Gronwall inequality, we obtain

EM< exp(9nr)[E0 +9ar§m:| P"
n=1

9r m
2+TTHZ:1||§{Qn

2]'

We present the error estimates for the difference scheme (2.15) in Theorem 3.2.
Setting & =uj —Uf, 7j =vj —V;', then subtracting (2.5) and (2.8) from
(2.6) and (2.9) at grid point (Xi Yt ), respectively, we get the error equations

The theorem has been proved.

1 1 1 1
T n+= n-= n+= n-= T e n e
% [5@ 2468 2}&[5@ 2-6¢ ZJ—ZBh(ﬂ Y2+ 1)

kt
+_
2

(3.10)
A (e +e)=7RY,  1<nsN-1,

and
aB,&"+An" =R, 0<n<N. (3.11)

Theorem 3.2. Assuming that {u” ,V"} and {U " ,V"} are, respectively, the so-
lutions of the initial-boundary problem (2.1) and the solutions of the difference
scheme (2.15), we have

1
é}g 2 §n+1 nn+1+’7n

+

gn

+

+

SC(rz+h4).

Proof. Similar to the proof of Theorem 3.1, we obtain

h+i 2 nel n 2 K 2 2
a5+t +2ka(||§ [ +e )
2
Sexp(9T)[4a 5et 7+ +2ka(||(§°||2 +||§1||2) (3.12)
3 (sl
where G" =M=%Rgz) +O<z’2) which is bounded by
T

Gn
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Noticing the initial conditions, we know fo =0, 51 -rY<c (1'3) s

&-¢

T

<Crz?, then

1
i

e |l e <c () a1

Next, ° =0, =1 <C(7?), then
||77l +77°||2 <c(s’ )2. (3.14)

RWI<C (s +h*),|c"
9arzk: i +97frzk:|
=i =

Substituting (3.13), (3.14) and (3.15) into (3.12), we obtain

Finally, noticing <C (Tz + h4) , it holds that

RY " <c(2+hn*).

(3.15)

2
1
n+— 2
4a é‘tg 2 n+1+’7n §n+l

+

gn

+

n

2+2ka( 2)sc(ﬁ+h4)2.

The theorem has been proved.

4. Numerical Experiment

In this section, we present two numerical examples. In addition to showing con-
vergence orders and the effectiveness of the presented difference scheme (2.15),
we apply the difference scheme to a practical problem and the results show the
effect of the viscosity coefficient on the plate vibration.

Example 1. In this example,let =2, a=1, k=2, Q= (0,1)><(0,1) ,
0<t<1, the analytic solution is chosen to be u(Xx,y,t)=cosatsinnxsinny,
then V(X, y,t) = 2n’ cos it sin mxsin nty , and the source term is  f (X, y,t) ,

f(x,y,t) = (~2msinnt - n* cos nt + 4n* cos mt + 2cos it ) sin nxsin my.

Taking the space step h= 1 = L , and the time step 7= L , we solve the
M, M, N

problem by using the presented compact implicit difference scheme (2.5). Table
1 shows the error and spatial convergence order of the numerical solution U.
Table 2 shows the error and time convergence order of the numerical solution
U. Figure 1 and Figure 2 show the images of the numerical solution U and the
analytic solution u when the mesh is divided into M, =M =32, N = M?Z. It
can be seen from the tables that in the sense of the maximum norm and the L2
norm, the time convergence order has reached the second order, and the space
convergence order has reached the fourth order, which shows the validity of the

compact difference scheme established.
Given below is the images of the numerical solution and the analytic solution
at T=1 with r=h’ =L2.
32

Example 2. In this example, let Q=(0,1)x(0,1), 0<t<3, a=2.67,
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Table 1. The computational errors and convergence orders of Uin space.

h |” -error order 1% -error order
1
g 1.11e-03 - 5.55e—04 -
1
E 6.45e—05 4.10 3.23e-05 4.10
1
5 3.98e-06 4.02 1.99e-06 4.02
1
— 2.48e—-07 4.00 1.24e-07 4.00
64
1
— 1.55e—-08 4.00 7.76e—09 4.00
128

Table 2. The computational errors and convergence orders of Uin time.

T 1” -error order 1% -error order
1
— 3.62e—03 - 1.81e-03 -
32
1
— 8.42e—04 2.11 4.21e-04 2.11
64
1
— 1.99e-04 2.08 9.97e—-05 2.08
128
1
— 4.87e—-05 2.03 2.43e-05 2.03
256
1
— 1.20e-05 2.02 6.02e—06 2.02
512
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Figure 1. The numerical solution Uwhen h= 3—12 .
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o (x,y)=sinnxsinmy , f(x,y,t)=,(x,y)=0. We consider the problem
which is more realistic in sense.

We observe vibration at the center point of the plate when the viscosity coeffi-
cient u takes different values. Setting k =1, Figure 3 and Figure 4 show the
images of displacement uwhen x is setas 1 and 10 respectively. It can be seen
from the figures that using the compact difference method to solve the problem
(1.1) well shows the process of damped vibration. And the figures depict the effect
of damping caused by the viscous term on vibration. We can see the values of

RS
ﬁe\\\\‘v‘@’ W0

S o ©
(=)} L N (=]
L L L /

The numerical solution U

y 0 0 ’ %

Figure 2. The analytic solution zwhen h= 3—12 .

1.5

The displacement U
=)

-1.5 *
0 0.5 1 1.5 2 2.5 3
t
Figure 3. The displacement zwhen n=1.
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The displacement u
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\
|

0 0.5 1 1.5 2 2.5 3
t

Figure 4. The displacement uwhen #=10.

the amplitude of the center point of the plate in different time periods. The am-
plitude becomes smaller and smaller as time goes on, and speed of decreasing

amplitude becomes faster and faster with increase of the viscosity coefficient.

5. Conclusion

In this article, we develop a compact difference scheme for the viscoelastic plate
vibration equation. The fourth-order differential equation is transformed into a
second-order differential equation system by introducing intermediate variables,
then the spatial derivative and time derivative are discretized by fourth-order
compact difference method and the central difference method respectively. The
stability and convergence of the scheme are proved by using the energy method.
The difference scheme is stable and convergence rate is O(T2 +h4). The nu-
merical results verify the validity and accuracy of the scheme. In future work, we

will consider the viscoelastic plate vibration equation with fractional derivative.
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