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ABSTRACT 
 
Because of the importance of fiber Bragg grating in designing new devices to meet a need range of 
optical communication systems, it has attracted a great deal of attention. Fiber Bragg gratings have 
become a key technology in many applications. They are widely used in optical communication 
systems as a narrow band filters, dispersion compensators, fiber’s sensors and dense wavelength 
division multiplexing. Advanced functionalities of fiber Bragg grating can be achieved by controlling 
its structural parameters. This paper is devoted to the modeling and simulation of weak and strong 
fiber Bragg gratings. The simulation is based on the solution of the coupled mode equations. The 
effect of the structural parameters such as grating length, refractive index modulation and grating 
period on the reflectivity, spectral bandwidth and maximum wavelength is studied. Additionally, the 
role of a new parameter, which is known as fringe visibility, that it can play in controlling the spectral 
response of the grating is also investigated. The results show that the reflectivity increases by 
increasing the grating length, refractive index modulation, or fringe visibility and will be decreased by 
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increasing the grating period. Additionally, the influence of the spectral bandwidth and maximum 
wavelength by the changing of the grating’s parameters is also taken into account in studying the 
two types of fiber grating. 

 
 
Keywords: Couple mode theory; fiber Bragg grating; fringe visibility; strong and weak gratings. 
 

1. INTRODUCTION 
 
Owing to the ever-increasing need for 
communication capacity, the field of optics has 
brought into focus for the past decades. On the 
parallel fashion, the dramatic reduction of 
transmission loss in optical fibers coupled with 
equally important developments in the area of 
light sources and detectors have brought about a 
phenomenal growth of the fiber optic industry 
during the past two decades. Its high bandwidth 
capabilities and low attenuation characteristics 
make it ideal for gigabit data transmission and 
beyond. The birth of optical fiber communication 
coincided with the fabrication of low-loss optical 
fibers and room-temperature operation of 
semiconductor lasers in 1970. Optical fibers 
have revolutionized the modern 
telecommunication industry. Much of its success 
lies in its near-ideal properties: low transmission 
loss, high optical damage threshold, and low 
optical nonlinearity. Due to these merits, optical 
fiber communication technology has been 
deployed widely all over the world and has 
become an integral part of telecommunications. 
On the other hand, optical fibers offer a much 
higher capacity, a smaller size, a lesser weight, 
as well as it has an immunity to electromagnetic 
interference effects, in comparison with copper 
cables. Therefore, it is beneficial to use it as a 
communication medium instead of other 
competing media. This is actually the case for 
modern communication systems where the 
optical fiber gradually replaces copper cables. 
As a consequence of this situation, it will 
become necessary for many of the electronic 
network components to be replaced by 
equivalent optical components. Consequently, 
for all such optical components to be 
economical, compatible, easily manufactured, 
and comfortably integrated, it is of importance to 
use optical fiber in their fabrication [1-5]. 
 
Fiber optic photosensitivity has indeed opened a 
new era in the field of fiber optic based devices. 
Photosensitivity refers to a permanent change in 
the index of refraction of the fiber core when 
exposed to light with characteristic wavelength 
and intensity that depend on the core material. It 
has the ability to alter the core index of refraction 

in a single-mode optical fiber through the optical 
absorption of UV light. The photosensitivity of 
optical fibers allows the fabrication of phase 
structures directly into the fiber core, called fiber 
Bragg gratings (FBGs). A grating, on the other 
hand, is a device that periodically modifies the 
phase or the intensity of a wave reflected on, or 
transmitted through, it. The uniform means that 
the grating period “Λ” and the refractive index 
change “δn” are constant over the whole length 
of the grating. The operation of FBGs is based 
on the principle of Bragg reflection. When light 
propagates by periodically alternating regions of 
higher and lower refractive index, it is partially 
reflected at each interface between those 
regions. If the spacing between such specified 
regions is such that all the partial reflections add 
up in phase; when the round trip of the light 
between the two reflections is an integral 
number of wavelengths; the total reflection can 
grow to nearly cent percent, even if the individual 
reflections are very small. Of course, that 
condition will only hold for specific wavelengths. 
For all other wavelengths, the out-of-phase 
reflections end up cancelling each other, 
resulting in high transmission. Based on this 
principle of operation, the FBG represents a key 
element in fiber components [6-9]. 
 
Recently, optical FBGs have attracted a great 
deal of attention because of their importance in 
designing new devices to meet a need range of 
optical communication systems. An intense 
investigation of the possibility of using this 
device for all optical ultrafast applications is 
achieved by allowing its dielectric characteristics 
to be varied in such a way that a periodic 
perturbation of its refractive index along its 
optical length will be formed. The inline optical 
fiber based component demonstrated the 
tremendous potential applications over the 
optical components fabricated through the 
lithographic techniques. On the other hand, FBG 
is an optical wavelength filter created by the 
periodic modulation of the refractive index of the 
optical fiber’s core. This modulation can be 
achieved mechanically or electrically. 
Mechanical modulation can be carried out by the 
variation of the core diameter, whilst electrical 
modulation was obtained by varying the 
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refractive index of the core along the fiber length. 
At each change of the refractive index, a 
reflection of the propagating light occurs. The 
repeated modulation of the refractive index 
results in multiple reflections of the forward 
travelling light. The period of index modulation 
relative to the wavelength of the light determines 
the relative phase of all the reflected signals. At 
a particular wavelength, all reflected signals are 
in phase and add constructively and a back 
reflected signal centered about the Bragg 
wavelength is observed. The reflected 
contributions from light at other wavelengths do 
not add constructively and are cancelled out so 
that these wavelengths are transmitted through 
the grating. Fiber Bragg gratings are most 
commonly used as wavelength selective 
reflectors and dispersion compensators in optical 
communication systems. Most common 
applications of fiber Bragg grating include: 
wavelength division multiplexing systems, 
Raman amplifiers, dispersion compensators, and 
CDMA systems.  
 
Normally, a germanium doped silica fiber was 
used for the fabrication of fiber Bragg grating 
owing to its photosensitivity, which means that 
the change of the refractive index of the core is 
obtained by exposing it to the ultraviolet light. 
The amount of change of the refractive index 
depends on the intensity of the incident light and 
the duration of the exposure as well as the 
photosensitivity of the fiber. For improving the 
reflectivity of the fiber Bragg grating, the level of 
doping with germanium needs to be high. Pre-
soaking the fiber in hydrogen, on the other hand, 
constitutes another technique of fabrication of 
FBG. This process is called hydrogenation. The 
most important characteristic of FBG is its 
flexibility in achieving the desired spectral 
characteristics.  
 
The design of fiber Bragg grating depends on 
various parameters e.g. length of the grating, 
period of gratings, refractive index of core and 
cladding, mode of excitation conditions and 
temperature. Although the FBG is analyzed in 
literature [e.g. 1,7] for several profiles of the 
induced index change along the fiber axis, the 
optimum values of its interesting parameters, 
especially the fringe visibility, for the most widely 
used version (uniform), where the induced index 
is weakly or strongly changed, are not yet 
achieved. On the other hand, to meet the 
increasing demand for large capacity of the next 
generation of optical communication systems, 
there is an important need for numerically 

searching the optimum values of the more 
effective parameters, such as of fringe visibility, 
grating period, refractive index modulation, and 
grating length, that have a heavy weight on its 
performance. This is the motivation of this paper. 
These optimum parameter's values are obtained 
through the using of more efficient numerical 
methods in solving the resulting equations of the 
coupled mode theory. Here, we are interested in 
studying the spectral characteristics of two types 
of fiber Bragg grating: the strong and the weak 
FBG. The spectral characteristics of these two 
types are analyzed and modeled by the most 
widely used theory which is the coupled mode 
theory. Additionally, our goal is to design an FBG 
with maximum reflectivity and narrow bandwidth 
through the variation of the grating’s parameters 
in such a way that the optimum of their values is 
attained. Moreover, the effect of grating period, 
refractive index modulation, grating length and 
fringe visibility on the reflectivity, spectral 
bandwidth and maximum wavelength is studied 
for the selected types of FBG. The remainder of 
this paper is organized as follows: section II 
explains the basic theory of fiber Bragg grating 
and its application for the underlined types. 
Section III deals with the simulation results 
obtained for both weak and strong gratings while 
section IV resumes our concluded remarks. 
 

2. THEORY OF FIBER BRAGG GRATING 
 
2.1 Coupled-mode Theory 
 
The term grating is used to describe almost any 
device whose operation involves interference 
among multiple optical signals originating from 
the same source but with different relative phase 
shifts. Bragg gratings are widely used in fiber 
optic communication systems. In general, any 
periodic perturbation in the propagating medium 
serves as a Bragg grating. This perturbation is 
usually a periodic variation of the refractive index 
of the medium. Fiber gratings are attractive 
devices that can be used for a variety of 
applications, including filtering, add/drop 
functions, and compensating for accumulated 
dispersion in the system. Being all-fiber devices, 
their main advantages are their low loss, ease of 
coupling (with other fibers), polarization 
insensitivity, low temperature-coefficient, and 
simple packaging. As a result, they can be 
extremely low-cost devices [10]. 
 
Wave propagation in an optical waveguide is 
analyzed through the solution of Maxwell's 
equations constrained to appropriate boundary 
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conditions. The problem of finding solutions to 
the resulting wave-propagation equations is 
simplified by assuming weak guidance, which 
allows the decomposition of the modes into an 
orthogonal set of transversely polarized modes. 
The solutions provide the basic field distributions 
of the bound and radiation modes of the 
waveguide. These modes propagate without 
coupling in the absence of any perturbation. 
Coupling of specific propagating modes can 
occur if the waveguide has a phase and/or 
amplitude perturbation that is periodic with a 
perturbation phase/amplitude-constant close to 
the sum or difference between the propagation 
constants of the modes. The technique of 
coupled-mode theory is normally applied for 
solving this type of practical problems. The 
method assumes that the mode fields of the 
unperturbed waveguide remain unchanged in 
the presence of weak perturbation. This 
approach provides a set of first-order differential 
equations for the change in the amplitude of the 
fields along the fiber, which have analytical 
solutions for uniform sinusoidal periodic 

perturbations. In other words, the coupled mode 
theory is a powerful mathematical tool in 
analyzing the wave propagation and interactions 
with materials in optical waveguide. Since the 
fiber Bragg grating is one of the weakly guiding 
structures, the underlined theory can be used to 
analyze its optical behavior [11].  
 
In the case of fiber grating, coupled mode theory 
considers the grating structure as the 
perturbation to an optical waveguide where 
coupling of guided modes occurs due to this 
perturbation. This theory has the advantage that 
it is relatively straightforward, intuitive and for 
most practical fiber gratings of interest it is 
accurate. It is used to describe the relation 
between structural parameters of the FBG and 
its spectral response. The basic idea of the 
considered theory is that the electric field of the 
waveguide with a perturbation can be 
represented as a linear combination of the 
modes that belong to the field distribution in the 
absence of perturbation [4]. The modal fields of 
the fiber can be formulated as: 

 

�±�(�, �, �) = �±��(�, �) exp�±����� ���     � = 1, 2, 3, … … … ..                                                                    (1)             

 
In the above expression, �±��(�, �) denotes the amplitude of the transverse electric field of the jth 

propagating mode, " ± " represents the propagation direction and �� symbolizes the propagation 

constant or eigenvalue of the j
th
 mode. The propagation of light along the optical waveguide can be 

described by Maxwell's equations. In terms of the coupled-mode theory, the transverse component of 
the electric field at position z in the perturbed fiber can be described by a linear combination of the 
ideal guided modes of an unperturbed fiber. In other words, the electric field transversal component 
can be written as: 
 

��⃗ �(�, �, �, �)     =    ∑  ��⃗ �(�, �, �, �)   +  ��⃗ ��(�, �, �, �)�                                                                                       (2)  
 
By substituting the modal field representation into the above formula, the electric field takes the form: 
 

��⃗ �(�, �, �, �) = �[��
�(�)exp (���

�

�) + ��
�(�)exp (−����)]�⃗��(�, �)exp (−���)                                       (3) 

 
��

�(�) and ��
�(�) are slowly varying amplitudes of the j

th
 forward and backward travelling waves, 

respectively.  
 
In the fiber Bragg grating, on the other hand, the index of the grating has z-dependent component 
along the fiber. Thus, it can be expressed as: 
 

�(�, �, �) = �(�) = �� + ��� + ��(�) cos �
2�

Ʌ
� + ∅(�)�                                                                              (4) 

 
�� denotes the refractive index of the core without the perturbation, ��� represents the average index 
modulation (DC change), ��(�) symbolizes the small amplitude of the index modulation (AC change), 
∅(�) is the phase of the grating, and Ʌ indicates the grating period. Under the weak propagation 
approximation, the distribution of the propagating electric field in the grating satisfies the scalar wave 
equation.  
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This follows from the simplification of Maxwell's equations which leads to: 
 

[∇�
� + ����(�, �, �) − ��]  ��⃗ �(�, �, �, �)   =  0                                                                                                      (5)  

 
Where � denotes the free space wave number (k=2π/λ) and � symbolizes the free space wavelength. 

The substitution of the electric field ��⃗ �(�, �, �, �) and the refractive index �(�, �, �) into the wave 
propagation equation yields the following coupled-mode equations: 
 

���
�

��
= � � ��

�

�

���� + ���� exp[�(�� − ��)�] + � � ��
�

�

���� − ���� exp[−�(�� + ��)�]          (6) 

 
and 
 

���
�

��
= −� � ��

�

�

���� − ���� exp[�(�� + ��)�] − � � ��
�

�

���� + ���� exp[−�(�� − ��)�]      (7) 

 
In the above formulas, ���(�) represents the transverse coupling coefficient between modes m and 
n. This coefficient has a form given by: 
 

���(�) =
�

4
� ∆�(�, �, �) ���(�, �) ���

∗ (�, �)   ��  ��                                                                                    (8) 

 
∆� denotes the perturbation of the permittivity. In the case where the waveguide is weak, i. e. � ≫ ��, 

∆� = 2���. In that case, the longitudinal coefficient ��� is smaller than the transversal coefficient  
���(�) and therefore, it can be neglected. If we assume that there are no waves propagating in the 
cladding of the single mode fiber, only basic counter-propagating modes exist in the fiber. Under the 
two-mode approximation, the coupled mode equations of Bragg gratings can be simplified to become: 
 

��(�)

��
  =   ���(�) �(�)   +   ��(�)  �(�)                                                                                                                  (9) 

 
and 
 

��(�)

��
  =   −���(�)  �(�)   −   ��∗(�)  �(�)                                                                                                         (10) 

 
with 
 

�(�)   =    ��(�)  exp �� �� � −
�

2
��                  &                   �(�)   =    ��(�)  exp �−� �� � +

�

2
��      (11) 

 
�(�) & �(�) denote the forward reverse modes, respectively, and the two types of modes are slowly 
varying mode envelope functions. �� represents a general "DC" self-coupling coefficient, also called 
local detuning; and �(�) stands for the "AC" coupling coefficient, also called local grating strength. 
Mathematically, the general "DC" coupling coefficient can be formulated as: 
 

��   =   �  +   �  −   
1

2
  

��

��
                                                                                                                                      (12) 

 
The last term in the above expression describes the possible chirp of the grating period. Furthermore, 
the detuning � depends upon the propagation constant and the grating period according to: 
 

�   =   �  −  
�

Ʌ
  =    �  −   ��    =    2 � ���� �

1

�
 −

1

��
�                  &           �� ≜  2 ���� Ʌ                   (13) 
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�� refers to the design wavelength. The "DC" coupling coefficient, on the other hand, is given by: 
 

�      ≜     
2�

�
   �����                                                                                                                                               (14)  

 

 ����� denotes the averaging of the background refractive index change. The "AC" coupling 

coefficient �(�) can be mathematically modeled as: 
 

�(�)       ≜       
�

�
    ��(�)   �(�)   �                                                                                                                        (15) 

 
Where �(�) refers to the function of the apodization, and � denotes the fringe visibility. The reflection 
and transmission coefficients can be evaluated through the coupled-mode equations and the initial 
conditions which can be summarized as follows: when there is no input signal incident from the right 
hand side of the grating so �(+�/2) = 0, there is some known signal that is incident from the left side 
of the grating which means that  �(−�/2) = 1. Under these assumptions, the amplitude of the 
reflection coefficient can be written as: 
 

�        ≜          � �− 
�

2
�  � �− 

�

2
��                                                                                                                          (16) 

 
In terms of ρ, the power reflection coefficient (reflectivity) can be formulated as: 
 

�       ≜         |��|                                                                                                                                                        (17)     
 
The solution of the coupled-mode equations for uniform fiber Bragg grating will lead to the calculation 
of the amplitude and power reflection coefficients which have mathematical forms given by [5]: 

 

�       =       
−� sinh�√�� − ���  � �

�� sinh�√�� − ���  � � + �√�� − ��� cosh�√�� − ���  ��
                                                            (18) 

 
and 
 

�       =        
���ℎ��√�� − ���  � �

���ℎ��√�� − ���  � � −
���

��

                                                                                                               (19) 

 
At resonance there is no detuning i.e. � = 0, hence reflectivity is maximum. Under this situation of 
operating conditions, the reflectivity takes the form: 

 
����     =           ���ℎ�(��)                                                                                                                                      (20) 

 
2.2 Properties of Fiber Bragg Grating 
 
A lot of issues have to be taken into account 
when designing a reliable fiber Bragg grating. 
The more important one is the interference that 
may occur among the incident and the reflected 
waves along the optical fiber. Also, the 
coherence of the generated beams from the 
optical source is of primary concern. For the 
importance of these issues on the behavior of 
the FBG, this subsection is concerned with the 
discussion, briefly, of them. The coherence; the 
property that the light waves it contains are in 

phase with one another, constitutes one of the 
laser beam’s unique properties. Coherence is 
important in applications such as holography and 
some types of spectroscopy and communication. 
For any electromagnetic wave, two types of 
coherence namely spatial and temporal 
coherence can be distinguished. Temporal 
coherence is the correlation between the fields 
at two different times (t1, t2 = t1 + τ) in the same 
wave train. This type of coherence is useful in 
interferometry because the formation of 
interference fringes is a manifestation of the 
temporal coherence between interfering beams, 
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since their ability to form fringes may be 
explained as arising from correlations that exist 
between them under conditions where a time 
delay has been introduced. Correlation functions 
are used to describe a laser beam’s coherence 
properties. The degree of temporal coherence 
can be obtained from the measurement of the 
fringe visibility function. This function quantifies 
the contrast of interference in any system which 
has wave-like properties, such as optics, 
quantum mechanics, water waves, or electrical 
signals. Generally, two or more waves are 
combined and as the phase between them is 
changed, the power or intensity of the resulting 
wave oscillates forming an interference pattern. 
The ratio of the size or amplitude of these 
oscillations to the sum of the powers of the 
individual waves is defined as the visibility. 
Visibility is a quantitative measurement of the 
coherence of a light source. The fringe visibility 
will have a value between 0 and 1. The 
maximum visibility will occur when the two 
waves have equal intensity. The visibility will 
drop to zero when one of the waves has zero 
intensity. In general, the intensities of the two 
waves can vary with position, so that the 
average intensity and fringe visibility can also 
vary across the fringe pattern. The average 
intensity in the observation plane equals the sum 
of the individual intensities of the two interfering 
waves. The interference term redistributes this 
energy into bright and dark fringes. This is the 
role that the fringe visibility can play in 
formulating the fringe pattern. 
 
Here, we have investigated two, weak and 
strong, different types of fiber Bragg gratings. 
The effect of their different parameters, including 
the fringe visibility, on their reflectivity, spectral 
bandwidth and maximum wavelength is 
analytically studied. The wavelength at which 
maximum reflectivity occurs has a mathematical 
form given by [9]: 

 

����    =    �1  +   
�����
��������

����

�  ��                           (21) 

 
It is evident that the maximum wavelength drifts 

from design wavelength by a factor of  
�����
���������

����
��. 

This increase in the peak wavelength is useful 
for experimentally determining the induced index 
change while photo-writing the grating. On the 
other hand, the normalized bandwidth between 
the first zeros of the grating can be 
mathematically formulated as [12]: 

∆��

��

    =    �  
�����
��������

����

� 1  +    �
��

� �����
���������

�

�

     (22) 

 
The weak grating is characterized by very small 
value of "��" so the normalized bandwidth of that 
type of grating can be approximated to become: 
 

∆��

��

      ≅      
2

�
    &   �     ≜     

�

�
                        (23) 

 
Where �  is the number of periods within the 
grating of length L. For strong gratings, on the 
other hand, " ��"  is large and the normalized 
bandwidth can be simplified to: 
 

∆��

��

       ≅     �     
�����
��������

����

                                        (24) 

 
As can be seen from the previous formulas, the 
normalized bandwidth for weak fiber Bragg 
grating is dependent only on the grating length 
whilst in the case of strong fiber Bragg grating, it 
depends mainly on the refractive index 
modulation and is independent of the grating 
length [13]. 
 

2.3 Photosensitivity and Fabrication 
Techniques 

 
Photosensitivity means the periodic perturbation 
of the refractive index along the core of the fiber. 
This property makes it available for the 
fabrication of fiber Bragg grating across the core 
of the optical fiber. The first technique used for 
the fabrication of fiber Bragg grating depends on 
the use of continuous wave blue light from an 
Argon ion laser which has a wavelength of 488 
nm [6]. This light wave was launched into a short 
segment of mono-mode optical fiber and then 
the intensity of the reflected light was monitored. 
At first, the intensity of the reflected light was low 
then after a period of few minutes, it grows in 
strength until almost all the light launched into 
the fiber is back-reflected. This growth in the 
reflected light was due to the effect of 
photosensitivity of optical fiber which enables an 
index grating to be written in the fiber. This 
increase in the reflected light intensity comes 
from the fact that coherent light propagating in 
the fiber interferes with a small amount of light 
reflected back from the end of the fiber to set a 
standing wave pattern which through 
photosensitivity writes an index grating in the 
core of the fiber. As the strength of the grating 
increases the intensity of the reflected light is 
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Fig. 1. Fiber Bragg grating structure 
 
increased until it reaches saturation. 90% 
reflectivity is achieved with the use of Argon-ion 
laser experiment. The disadvantage of this type 
of grating (Hill gratings) was that it works only at 
wavelengths near the writing wavelength [7]. 
This limitation was overcome about ten years 
later in an experiment by Meltz et al. In his 
experiment, he used ultraviolet light with 
wavelength of 244 nm. The fiber is irradiated 
from the side with two intersecting coherent 
ultraviolet light beams. The two overlapping 
ultraviolet light beams interfere with each other 
producing a periodic interference pattern that 
writes the corresponding periodic index grating 
in the core of the fiber. This technique was called 
the transverse holographic technique. This 
technical processing has the advantage that the 
cladding is transparent to ultraviolet light but the 
core is highly absorbing to the ultraviolet light. 
So, this technique has the advantage of the 
ability of forming Bragg grating in the fiber core 
without removing the glass cladding. This 
process of fabrication has also another 
advantage which is: the Bragg grating could be 
made to work at much longer wavelengths in a 
spectral region of interest. This is because the 
period of the photo-induced grating depends on 
the angle between the two interfering coherent 
ultraviolet light beams, as Fig. 1 illustrates the 
basic structure of such technique of grating. 
 

3. NUMERICAL SIMULATION RESULTS  
 
The reflectance spectra of the reflection FBGs 
were MATLAB simulated according to the 

theoretical background that is previously 
outlined. The simulation is based on the solution 
of the coupled-mode equations. Our object here 
is to elucidate the effect of some parameters on 
the spectral response of two types of gratings: 
weak fiber Bragg grating (WFBG) and strong 
fiber Bragg grating (SFBG). These parameters 
include the fringe visibility, the grating period, the 
grating length and the refractive index 
modulation. Their effects on the reflectivity, 
spectral bandwidth, and maximum wavelength 
are examined. The parameters used in this 
simulation are chosen to be as follows: the 
designed wavelength is �� = 1550�� , the 
effective refractive index  ���� = 1.45, the fringe 

visibility is allowed to be varied in the range 
0.7 ≤ � ≤ 1.0 . For WFBG, in which the 
refractive index modulation is small, we have 
taken  �����

������� = 8 × 10��, whilst it was chosen to 

be as �����
������� = 4 × 10��  for SFBG. The grating 

length is assumed to be � = 1�� for both cases 
of gratings. 

 
As a first point, the spectral response 
dependence of the fringe visibility parameter is 
investigated. Fig. 2 shows the effect of the fringe 
visibility “�" on the spectral response for weak 
fiber Bragg grating. It is obvious from the results 
of this plot that the fringe visibility has a 
significant effect on the maximum reflectivity of 
WFBG. As the fringe visibility increases, the 
maximum reflectivity as well as the spectral 
bandwidth is increased. However, there is a 
slight shift, towards larger wavelengths, for the 
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maximum wavelength due to the increased value 
of the underlined parameter. Note that the 
maximal reflectivity does not occur at the 
designed wavelength “��". This is because �� = 
2nΛ is valid for Bragg scattering by infinitesimally 
weak grating with a period Λ, which can be 
obtained as �����  approaches zero. In reality, 

the Bragg wavelength of grating is typically 
greater than the designed wavelength, for ����� 

larger than 0. Additionally, the obtained results 
demonstrate that as �  acquires higher values, 
the side lobes are increased and the appearance 
of these secondary lobes is undesired for some 
practical applications of FBGs. This problem can 
be solved by using an apodization technique 
which depends on making the grading of the 
refractive index of the core to approach zero at 
its ends. This process provides a significant 
improvement in side lobes suppression without 
affecting the reflectivity or the bandwidth of FBG. 
Table 1 offers some numerical values of the 
underlined parameters to illustrate the role that 
they can play in controlling the characteristics of 

WFBG. Fig. 3 repeats the same thing for the 
SFBG under the same parameter values. The 
examination of the curves of this figure shows 
that the variation of the parameter of fringe 
visibility has no effect on the maximum 
reflectivity of SFBG on the contrary of WFBG. In 
general, strong gratings become saturated, and 
their reflectivity spectra exhibit flat top. 
Therefore, using saturated gratings will help us 
in achieving the desired square shape of the 
reflectivity spectrum. On the other hand, the 
change of �  will affect both the spectral 
bandwidth and maximum wavelength. As Table 
2 demonstrates, by giving �  smaller or greater 
values, the reflection bandwidth can be made 
narrower or broader, respectively. In other 
words, the parameter � plays an important role in 
the width of reflection bandwidth of SFBG than in 
the case of WFBG. Additionally, it is noted that 
the maximum wavelength is shifted towards 
higher values as the value of � augments similar 
to the case of WFBG. 

  

 
 

Fig. 2. Effect of fringe visibility on the spectral response of WFBG 
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Fig. 3. Effect of fringe visibility on the spectral response of SFBG 
 

Table 1. Effect of fringe visibility on the spectral response of WFBG 
 

Fringe visibility �� = �. � �� = �. � �� = � 
Maximum reflectivity (p.u) 0.650497 0.733041 0.848451 
Maximum wavelength (nm) 1550.055 1550.07 1550.08 
Normalized bandwidth 1.1365*10�� 1.1565*10�� 1.2*10�� 

 
Table 2. Effect of fringe visibility on the spectral response of SFBG 

 
Fringe visibility �� = �. � �� = �. � �� = � 
Maximum reflectivity (p.u) 1 1 1 
Maximum wavelength (nm) 1550.427 1550.427 1550.427 
Normalized bandwidth 0.000193 0.000221 0.000276 

 
Table 3. Effect of grating period on the spectral response of WFBG 

 
Grating period (nm) Ʌ� = ���. �� Ʌ� = ���. �� Ʌ� = ���. �� 
Maximum reflectivity (p.u) 0.8553 0.8551 0.8551 
Maximum wavelength (nm) 1549.845 1550.075 1550.425 

 
Table 4. Effect of grating period on the spectral response of SFBG 

 
Grating period (nm) Ʌ� = ���. �� Ʌ� = ���. �� Ʌ� = ���. �� 
Maximum wavelength (nm) 1550.33256 1550.4195 1550.4776 

 
Table 5. Effect of refractive index modulation on the spectral response of WFBG 

 
Refractive index modulation �����

�������� = �∗ ���� �����
�������� = �∗ ���� �����

�������� = �∗ ���� 

Maximum reflectivity (p.u) 0.6939 0.849453 0.929343 
Maximum wavelength (nm) 1550.06 1550.085 1550.1 
Normalized bandwidth 1.146*10�� 1.2*10�� 1.272*10�� 
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Fig. 4. Effect of grating period on the spectral response of WFBG 
 

 
 

Fig. 5. Effect of grating period on the spectral response of SFBG 
 

Table 6. Effect of refractive index modulation on the spectral response of SFBG 
 

Refractive index modulation �����
�������� = �∗ ���� �����
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�������� = �∗ ���� 
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Normalized bandwidth 0.000206 0.000277 0.000311 
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Fig. 6. Effect of refractive index modulation on WFBG 
 

 
 

Fig. 7. Effect of refractive index modulation on the spectral response of SFBG 
 

Table 7. Effect of grating length on the spectral response of WFBG 
 

Grating length (cm) �� = � �� = � �� = � 
Maximum reflectivity (p.u) 0.929 0.99 1 
Maximum wavelength (nm) 1550.085 1550.085 1550.085 
Normalized bandwidth 0.000225 0.000112 0.000075 
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Fig. 8. Effect of grating length on the spectral response of WFBG 
 

 
 

Fig. 9. Effect of grating length on the spectral response of SFBG 
 

Table 8. Effect of grating length on the spectral response of SFBG 
 

Grating length (mm) �� = � �� = � �� = �� 
Maximum reflectivity (p.u) 1 1 1 
Maximum wavelength (nm) 1550. 427 1550.427 1550.427 
Normalized bandwidth 3.49*10�� 3.15*10�� 3*10�� 
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Fig. 10. Relation between refractive index modulation and maximum wavelength 
 

 
 

Fig. 11. Relation between normalized bandwidth and grating length for WFBG 
 

Let us turn our attention to the effect of the 
grating period on the spectral response of the 
underlined FBGs.  Fig. 4 displays the WFBG’s 
reflectivity as a function of the operating 
wavelength for several grating periods. The 
family of curves of this scene clearly exhibits that 
the grating period has a significant impact on the 
reflectivity of the fiber Bragg grating especially 

the operating wavelength that catches maximum 
reflectivity “λmax”. It is observed that λmax moves 
towards longer values by extending the grating 
period. Additionally, there is a noticeable shift of 
maximum wavelength as the grating period 
changes. Moreover, the variation of the grating 
period does not nearly affect the level of 
maximum reflectivity in contrast to the variation 
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of the parameter of fringe visibility where the 
level of maximum reflectivity increases with its 
increasing, as Fig. 2 demonstrates. Furthermore, 
the spectral bandwidth of WFBG rests 
approximately unchanged whether the grating 
period increases or not. Generally, as the grating 
period is increased, there is a little decrease in 
the maximum reflectivity and a little increase in 
the spectral bandwidth in the case of weak FBG. 
Some numerical values for the interesting 
parameters are depicted in Table 3. Fig. 5 
represents a replica version of Fig. 4 for the 
same parameter values in the case of strong 
FBG. It was observed that, like the WFBG, the 
changing of the grating period affects only the 
maximum wavelength and does not have any 
effect neither on the maximum reflectivity nor on 
the spectral bandwidth. On the other hand, the 
variation of the grating period gives the same 
level of maximum reflectivity, which attains its full 
scale, as the variation of the fringe visibility in the 
case of strong FBG. Additionally, the existence 
of the side lobes in the performance of SFBG is 
more intense than in the case of WFBG under 
the behavior of the two indicated parameters. 
Table 4 gives the reader an idea about the effect 
of the changing of the under investigation 
parameters on the behavior of the SFBG. 

The next category of curves is concerned with 
studying the impact of refractive index 
modulation on the spectral response of the two 
types of FBG under investigation. The family of 
this group includes Figs. 6-7: one plot for each 
type. For WFBG, see Fig. 6, there is an increase 
in the level of maximum reflectivity with the 
increasing of the refractive index modulation. It 
has a little effect on the spectral bandwidth and 
maximum wavelength. The spectral bandwidth, 
on the other hand, varies with the changing of 
the underlined parameter in such a way that it 
increases with its increasing and vice versa. The 
number of side lobes also increases as the 
refractive index modulation increases. For 
illustrating the range of values of the considered 
parameters, Table 5 is devoted to represent this 
purpose. In Fig. 7, the effect of refractive index 
modulation was investigated for the SFBG. It 
was noticed that the change in the refractive 
index modulation has a significant effect on the 
spectral bandwidth and maximum wavelength. 
Besides, it does not affect the maximum 
reflectivity as the previously mentioned 
parameters. As in the case of WFBG, the 
spectral bandwidth depends on the operating 
value of the refractive index modulation. The 

 

 
 

Fig. 12. Normalized bandwidth as a function of the refractive index modulation for SFBG 
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central wave length of maximum reflectivity is 
shifted towards longer values as the modulation 
of the refractive index becomes condensed. 
Some of our numerical results are displayed in 
Table 6 to explain to what extent the grating 
parameters can vary its performance. 

 

Finally, the influence of the grating length on the 
behavior of the under examined FBGs is tested 
in Figs. 8-9. Fig. 8 illustrates that the grating 
length of WFBG does not have any effect on the 
maximum wavelength which means that λmax 
remains unchanged with the changing of the 
concerned parameter. As Table 7 demonstrates, 
the grating length plays a noticeable role on the 
level of maximum reflectivity where it is 
increased as the underlined parameter 
increases. The spectral bandwidth, on the other 
hand, decreases with the increasing of the 
grating length. The side lobes follow also the 
variation of the grating length where they are 
increased by its increasing. Fig. 9 depicts the 
same thing for the SFBG. The spectral 
bandwidth of strong fiber Bragg grating is 
independent of the grating length as the light 
does not penetrate the full length. The change in 
the grating length does not affect the maximum 
wavelength as well. The only effect that the 
grating length produces in the SFBG is that as it 
is increased, the spectral response takes a 
square shape in its variation and becomes a 
more flat so the desired square shape of the 
reflectivity can be easily achieved. Table 8 
exhibits some numerical values for the 
concerned parameters to show their role in 
controlling the characteristics of the FBG under 
consideration. 

 

In order to clearly elucidate how can λmax varies 
with the refractive index modulation, Fig. 10 is 
devoted to illustrate this variation. By examining 
the results of this scene, it is obvious that the 
maximum wavelength increases as the refractive 
index modulation increases in a linear fashion for 
both weak and strong FBGs. Fig. 11, on the 
other hand, shows the relation between 
normalized bandwidth and grating length for 
WFBG. It was clear that for WFBG, the 
normalized bandwidth is dependent on the 
grating length. As the grating length is increased, 
the normalized bandwidth is decreased. For 
strong FBG, the normalized bandwidth depends 
on the refractive index modulation. The relation 
between normalized bandwidth and refractive 
index modulation is shown in Fig. 12. 
 

4. CONCLUSION 
 
In this paper, two types of uniform Bragg 
gratings were simulated. The coupled-mode 
theory as a suitable tool of analysis is used to 
analyze them. Their spectra with different 
parameter values were simulated and discussed. 
 
By varying some parameters such as fringe 
visibility, grating period, grating length and 
refractive index modulation, it is possible to 
obtain narrow-band transmission as well as high 
reflectivity at the Bragg wavelength. Optimization 
of these parameters is the main aim of any 
designer for achieving the maximum 
performance of the FBG in its practical uses and 
especially in band-pass filtering applications 
such as wavelength multiplexing/de-multiplexing 
and add/drop optical filter. 
 
The results of our FBGs simulation elucidate that 
these parameters have a significant effect on the 
maximum reflectivity, spectral bandwidth and 
maximum wavelength of weak and strong fiber 
Bragg gratings. By adjusting the values of these 
parameters, we can obtain the desired spectral 
response with high reflectivity and narrow 
bandwidth. We have concluded that the 
maximum reflectivity of FBG is improved as the 
fringe visibility, grating length, or refractive index 
modulation increases. On the other hand, it is 
degraded as the grating period augments. 
Additionally, the spectral bandwidth of weak 
FBG is length limited while that of strong FBG 
depends upon the refractive index modulation. 
Moreover, there is a significant shift for 
maximum wavelength towards longer values 
when the grating period is elevated and this 
occurs for both weak and strong FBGs. 
Furthermore, the reflectivity attains always its full 
level (100%) at the design wavelength for strong 
FBG whilst it increases when the fringe visibility, 
refractive index modulation, or the grating length 
increases and vice versa in the case of weak 
FBG.  
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