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Local linear scale factors in map projections in the direction of coordinate axes
Miljenko Lapaine , Nedjeljko Frančula and Željka Tutek

Faculty of Geodesy, University of Zagreb, Zagreb, Croatia

ABSTRACT
This paper explains that the terms “horizontal and vertical scales” are not appropriate in map 
projections theory. Instead, the authors suggest using the term “scales in the direction of 
coordinate axes.” Since it is not possible to read a local linear scale factor in the direction of 
a coordinate axis immediately from the definition of a local linear scale factor, this paper 
considers the derivation of new formulae that enable local linear scale factors in the direction 
of coordinate x and y axes to be calculated. The formula for computing the local linear scale 
factor in any direction defined by dx and dy is also derived. Furthermore, the position and 
magnitude of the extreme values of the local linear scale factor are considered and new 
formulas derived.
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1. Introduction

Goodchild (1992) notes the importance of map 
projections and that GIScience needs to revive the 
orthographic projection to conduct analyses at the 
global level. Map projections are among the most 
important topics in Geographic Information System 
(GIS) curricula as identified in a survey of GIS 
education in higher education (Fagin and Wikle 
2011). Understanding the nuances of map projec
tions and global coordinate systems will become 
more important as theory and practice in global 
sciences increase (Greco 2018).

A map is a result of mapping of data usually from 
the real Earth, celestial body or imagined world to 
a plane representation on a piece of paper or on 
a digital display such as a computer monitor. The 
mapping from the curved surface into a plane is 
known as map projection and can take a variety of 
forms. All map projections involve distortion of areas, 
angles, and/or distances. The types of distortion can be 
controlled to preserve specific characteristics, but map 
projections must distort other characteristics of the 
object represented. The main problem in cartography 
is that it is not possible to map/project/transform 
a spherical or ellipsoidal surface into a plane without 
distortions. Euler first proved as early as 1777 that 
a sphere cannot be mapped into a plane without dis
tortions (Euler 1777; Biernacki 1949; Lapaine et al. 
2014). Gauss’s theory applies to the projection of any 
curved surface on another curved surface, and the 
Tissot’s indicatrix is often used to give a quick and 
complete information regarding the distortion char
acteristic in a certain point of the map (Canters and 
Decleir 1989).

High-resolution regional and global raster data
bases are often generated for a variety of environmen
tal and scientific modeling applications. The 
projection of these data from geographic coordinates 
to a plane coordinate system can result in significant 
areal distortion. Sources of error include users select
ing an inappropriate projection or incorrect para
meters for a given projection, algorithm errors in 
commercial GIS software, and distortions resulting 
from the projection of data in the raster format. The 
accuracy of raster projection has been analyzed by 
Usery and Seong (2001).

Seong and Usery (2001) investigated the effect of 
projection distortion on raster representation at 
a global scale and suggested a scale factor model to 
simulate the effect of using horizontal and vertical scale 
factors. The results showed that the raster representation 
accuracy was a function of these two local scale factors. 
When three global equal-area projections were tested – 
the cylindrical equal-area, sinusoidal, and Mollweide – 
the differences between the experimental results and 
model results were less than 1.0%. Interestingly, the 
sinusoidal projection showed no error.

According to Seong and Usery (2001), “In the case 
where the areal scale factor is not 1.0, which occurs 
with conformal, equidistant, and arbitrary projec
tions, the error will be increased by the extent of 
the areal expansion. For those non-equal area projec
tions, it is necessary to calculate the vertical and 
horizontal scale factors independently, because one 
is not the reciprocal of the other. Because equivalent 
area is preserved when the product of the horizontal 
and vertical scale factors equals one, subtracting 1.0 
from the multiplication of horizontal and vertical 
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scale factors yields the extent of the areal expansion”. 
The authors of the cited paper did not define hor
izontal and vertical scales in general and did not 
explain why they argued the area was preserved 
when the product of the horizontal and vertical 
scale factors equaled one.

In a footnote on page 224 of the paper by Seong, 
Mulcahy, and Usery (2002), we read, “In the case of 
a sphere, the condition for equal area transforma
tion is [m·ncos(ε) = 1.0], where m is the linear scale 
factor along the meridian, n is the linear scale 
factor along the parallel, and ε is the deviation of 
the graticule intersection from a right angle on the 
map (Bugayevskiy and Snyder 1995). Because par
allels are horizontal in the sinusoidal projection, 
n becomes the horizontal scale factor, and m·cos 
(ε) produces the vertical scale factor. Here, the 
vertical scale factor means the scale factor along 
the right angle on the map, not the scale factor 
along the meridian. In the case of the sinusoidal 
projection, n is always 1.0, and m equals sec(ε) 
(Bugayevskiy and Snyder 1995). The vertical scale 
factor of the sinusoidal projection, therefore, 
becomes sec(ε)·cos(ε), which is 1.0. This research 
focuses on the horizontal and vertical scale factors.” 
It is not clear from the cited footnote why m·cos(ε) 
produces the vertical scale factor, because m·cos(ε) 
is the orthogonal projection of the scale factor 
along the meridian on a perpendicular to the pro
jection of the parallel.

From the terminological point of view, we see 
another problem. Namely, horizontal and vertical 
are terms often used in the geosciences. For exam
ple, vertical is in the direction of a plumbline, while 
a vertical scale is something completely different. 
Furthermore, if we agree that horizontal and verti
cal scales are in fact scales in the direction of 
coordinate axes, then there is another 
problem: m·cos(ε) is not the scale factor of the 
y-axis. For instance, in a pseudocylindrical projec
tion like the sinusoidal (Sanson) projection, this is 
an orthogonal projection of the scale along 
a meridian to the y-axis. But the scale factor in 
the direction of the y-axis can be obtained when 
we put dx= 0 into the general expression of local 
linear scale factor. The result will be different 
from m·cos(ε). The proof will be given in the next 
sections. The proposed approach is valid generally 
and not only for raster maps.

Moreover, the new formula for computing the local 
linear scale factor in any direction defined by dx and 
dy is also derived. Finally, the position and magnitude 
of the extreme values of the local linear scale factor are 
considered and new formulas derived. All derived 
formulas are applied to several map projections to 
illustrate their functionality and validity. There is no 
similar research work to this study.

2. A sphere, map projection and local linear 
scale factor

The geographic parameterization of a sphere with 
a radius R> 0 and the center located in the origin of 
the coordinate system is a mapping defined by the 
following formulae: 

x ¼ R cos φ cos λ; y ¼ R cos φ sin λ; z ¼ R sin φ (1) 

φ 2 � π
2 ;

π
2

� �
, λ 2 � π; π½ �. In this case, φ is latitude, 

and λ is longitude. It is not difficult to derive that the 
first fundamental form of this mapping reads 

ds2 ¼ R2dφ2 þ R2cos2φdλ2 (2) 

We will limit ourselves to the sphere as a domain of 
map projection, and define map projection as map
ping given by differentiable functions: 

x ¼ x φ; λð Þ; y ¼ y φ; λð Þ (3) 

where the geographic coordinates φ 2 � π
2 ;

π
2

� �
, 

λ 2 � π; π½ �, as usual, and x and y are coordinates of 
a point in a rectangular (mathematical, right oriented) 
coordinate system in the plane. The first fundamental 
form of such a mapping is (Canters and Decleir 1989; 
Bugayevskiy and Snyder 1995): 

ds02 ¼ Edφ2 þ 2Fdφdλþ Gdλ2 (4) 

with coefficients 

E ¼
@x
@φ

� �2

þ
@y
@φ

� �2

; F ¼
@x
@φ

@x
@λ
þ
@y
@φ

@y
@λ
;

G ¼
@x
@λ

� �2

þ
@y
@λ

� �2 (5) 

The local linear scale factor c for mapping (3) of a sphere 
with the radius R is usually defined in the theory of map 
projections by using the following relation: 

c2 ¼
ds02

ds2 ¼
Edφ2 þ 2Fdφdλþ Gdλ2

R2dφ2 þ R2cos2φdλ2 (6) 

which can also be written as (Canters and Decleir 
1989; Bugayevskiy and Snyder 1995) 

c2 αð Þ ¼
E
R2 cos2αþ

F
R2 cos φ

sin 2αþ
G

R2cos2φ
sin2α

(7) 

where 

tan α ¼
cos φdλ

dφ
(8) 

The poles are singular points of geographic parame
terization (1) and therefore expression (6) and all 
subsequent ones should be interpreted in the poles as 
limiting cases when φ! π

2 or φ! � π
2 .

If α ¼ 0 or, more generally, α ¼ zπ, z 2 Z, where 
Z denotes the set of all integers, then the local linear 
scale factor c along a meridian (dλ ¼ 0) is 
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h ¼ c dλ ¼ 0ð Þ ¼

ffiffiffi
E
p

R
(9) 

and if α ¼ π
2 or, more generally, α ¼ π

2 þ zπ, z 2 Z, 
then the local linear scale factor c along a parallel 
(dφ ¼ 0) is given by 

k ¼ c dφ ¼ 0ð Þ ¼

ffiffiffiffi
G
p

R cos φ
(10) 

3. Local linear scale factors in the directions of 
coordinate axes

It is not possible to read a local linear scale factor in 
the direction of a coordinate axis immediately from 
the definition of local linear scale factor (6). The same 
is true for Equation (7) where α denotes the azimuth, 
i.e. the angle between a meridian and any direction in 
a point in question. To be able to get a local linear scale 
factor in a direction defined by dx and dy we need to 
modify Equation (6) or (7) in the appropriate way.

Let us start with the general Equation (3) of a map 
projection. Then we can write 

dx ¼
@x
@φ

dφþ
@x
@λ

dλ; dy ¼
@y
@φ

dφþ
@y
@λ

dλ (11) 

From (11) we have 

dφ ¼ �
1
H

@y
@λ

dx �
@x
@λ

dy
� �

;

dλ ¼
1
H

@y
@φ

dx �
@x
@φ

dy
� � (12) 

where 

H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EG � F2
p

¼
@y
@φ

@x
@λ
�
@y
@λ
@x
@φ

(13) 

and 
H > 0 (14) 

If we suppose that 
dy ¼ 0 (15) 

then 

dφ ¼ �
1
H
@y
@λ

dx; dλ ¼
1
H
@y
@φ

dx (16) 

and by substituting (16) in (6), we get the local linear 
scale factor in the direction of the x-axis 

c dy ¼ 0ð Þ ¼
H

R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@y
@λ

� �2
þ cos2φ @y

@φ

� �2
r (17) 

If we suppose that 
dx ¼ 0 (18) 

then 

dφ ¼
1
H
@x
@λ

dy; dλ ¼ �
1
H
@x
@φ

dy (19) 

and by substituting (19) in (6) we get the local linear 
scale factor in the direction of the y-axis 

c dx ¼ 0ð Þ ¼
H

R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

@x
@λ

� �2
þ cos2φ @x

@φ

� �2
r (20) 

Figure 1 represents a general case of Tissot’s indica
trix with local linear scale factors along a meridian 
c dλ ¼ 0ð Þ, along a parallel c dφ ¼ 0ð Þ, in the direc
tion of the x-axis c dy ¼ 0ð Þ, in the direction of the 
y-axis c dx ¼ 0ð Þ, and the extremal values cmin 
and cmax.

4. Local linear scale factor in a given direction

Let us suppose that we need a local linear scale factor in 
a given direction. If the direction is defined by dφ and dλ 
then we can use Equation (6) and our problem will be 
solved. If the direction is defined by dx and dy then we 
can use the following procedure. Let us denote (ψ is 
known as a meridian convergence) 

tan ψ ¼
dy
dx

(21) 

Then, 

cos ψdy ¼ sin ψdx (22) 

and by using (12), (6) can be transformed into 

c2 ¼
H2 dx2 þ dy2ð Þ

R2 @y
@λ dx � @x

@λ dy
� �2

þ cos2φ @y
@φ dx � @x

@φ dy
� �2

� �

¼
H2

R2 a1cos2ψ þ a2 sin ψ cos ψ þ a3sin2ψð Þ

(23) 

where 

a1 ¼
@y
@λ

� �2

þ cos2φ
@y
@φ

� �2

a2 ¼ � 2
@x
@λ
@y
@λ
þ cos2φ

@x
@φ

@y
@φ

� �

a3 ¼
@x
@λ

� �2

þ cos2φ
@x
@φ

� �2

(24) 

It follows that a local linear scale factor c in direc
tion ψ defined by (21) can be calculated by the 
formula: 

c ¼
H

R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1cos2ψ þ a2 sin ψ cos ψ þ a3sin2ψ

p (25) 

where the coefficients a1, a2 and a3 are given by (24), 
and H by (13).
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In a special case, when dy = 0 then ψ ¼ 0, (25) reduces 
to (17). If dx = 0, then ψ ¼ π

2 , and (25) takes the 
form (20).

Extremal values of c ¼ c ψð Þ given by (25) can be 
obtained in the usual way: 

dc
dψ
¼ 0 (26) 

which gives 

tan 2ψ ¼
a2

a1 � a3
(27) 

and by substituting (27) in (25), the extremal values of 
c are 

c1;2 ¼
H

ffiffiffi
2
p

R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a1 þ a3 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a1 � a3ð Þ
2
þ a2

2

qr

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a1 þ a3 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a1 � a3ð Þ
2
þ a2

2

qr

ffiffiffi
2
p

R cos φ

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Gþ Ecos2φ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Gþ Ecos2φð Þ
2
� 4H2cos2φ

qr

ffiffiffi
2
p

R cos φ

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h2 þ k2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h2 � k2ð Þ
2
þ 4h2k2cos2β

qr

ffiffiffi
2
p

(28) 

h and k in (28) are local linear scale factors along 
a meridian and parallel, respectively (see (9) and (10)).

The angle β (Figure 1) is the angle between the 
images of a meridian and a parallel at a point 
(Bugayevskiy and Snyder 1995) 

sin2β ¼
H2

EG
; cos2β ¼

F2

EG
(29) 

The extremal values of the local linear scale factor (28) 
are the semiaxes of the well-known Tissot indicatrix or 
the ellipse of distortion.

5. Examples

All derived formulas in the previous sections will be 
applied to several map projections to illustrate their func
tionality and validity. The first two examples relate to the 
Mercator projection, which in the normal and transverse 
aspects is well known and widely used. The following is 
an example of an azimuth equidistant projection that is 
chosen because it illustrates the application of formulas to 
equations in a polar coordinate system. We then investi
gate pseudocylindrical projections because the sinusoidal 
(Sanson) projection is one of them. It is this projection 
that is crucial in our research because we prove that the 
scale factor in the direction of y-axis of the sinusoidal 
projection is less than 1 in general. Moreover, in the last 
example, we prove that an equal-area pseudocylindrical 
projection with a local linear scale factor in the y-axis 
direction equal to 1 does not exist.

5.1. Local linear scale factors in the Mercator 
projection

The equations for the normal aspect conformal cylind
rical or Mercator projection of a sphere are 

Figure 1. General case of Tissot’s indicatrix showing local linear scale factors along a meridianh ¼ c dλ ¼ 0ð Þ, along 
a parallelk ¼ c dφ ¼ 0ð Þ, in the direction of the x-axis c dy ¼ 0ð Þ, in the direction of the y-axis c dx ¼ 0ð Þ, and extremal values 
cmin and cmax . The angle β is the angle between the images of a meridian and a parallel at a point under consideration.
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x ¼ R λ � λ0ð Þ; y ¼ Rtanh� 1 sin φ (30) 

where λ0 2 � π; π½ � represents the longitude of the 
central meridian. Without loss of generality, we can 
take R ¼ 1. From (30), we can obtain partial 
derivatives 

@x
@λ
¼ 1; ::

@x
@φ
¼ 0;

@y
@λ
¼ 0; ::

@y
@φ
¼

1
cos φ

(31) 

and then by using formulae (9), (10), (17) and (20) 

c dλ ¼ 0ð Þ ¼ c dφ ¼ 0ð Þ ¼ c dx ¼ 0ð Þ ¼ c dy ¼ 0ð Þ

¼
1

cos φ
¼ cosh y

(32) 

as expected because the Mercator projection is 
conformal.

5.2. Local linear scale factors in the transverse 
Mercator projection

The equations for the transverse aspect conformal 
cylindrical or transverse Mercator projection of 
a sphere are 

x ¼ Rtanh� 1 sinðλ � λ0Þ cos φ½ �; y

¼ Rtan� 1 tan φ
cos λ � λ0ð Þ

(33) 

where λ0 2 � π; π½ � represents the longitude of the 
central meridian. Without loss of generality, we can 
take R ¼ 1. From (33) we can obtain partial 
derivatives 

@x
@λ
¼

cos φ cos λ
1 � cos2φcos2λ

;
@x
@φ
¼

sin φ sin λ
1 � cos2φcos2λ

;

@y
@λ
¼

sin φ cos φ sin λ
1 � cos2φcos2λ

; ::
@y
@φ
¼

cos λ
1 � cos2φcos2λ

(34) 

and then by using formulae (9), (10), (17) and (20) 

c dλ ¼ 0ð Þ ¼ c dφ ¼ 0ð Þ ¼ c dx ¼ 0ð Þ ¼ c dy ¼ 0ð Þ

¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � cos2φcos2λ

p ¼ cosh x

(35) 

as expected because the transverse Mercator projec
tion is also conformal.

5.3. Local linear scale factors in the azimuthal 
equidistant projection

The equations for the normal aspect azimuthal equi
distant projection of a sphere are 

x ¼ ρ sin θ; y ¼ ρ cos θ (36) 

where 

ρ ¼ R
π
2
� φ

� �
; θ ¼ R λ � λ0ð Þ (37) 

λ0 2 � π; π½ � represents the longitude of the central 
meridian. Without loss of generality we can take 
R ¼ 1. From (36) and (37) we can obtain partial 
derivatives 

@x
@λ
¼ ρ cos λ � λ0ð Þ; ::

@x
@φ
¼ � sin λ � λ0ð Þ;

@y
@λ
¼ � ρ sin λ � λ0ð Þ;

@y
@φ
¼ � cos λ � λ0ð Þ

(38) 

and then by using formulae (9), (10), (17) and (20) 

h ¼ c dλ ¼ 0ð Þ ¼ 1; k ¼ c dφ ¼ 0ð Þ ¼
ρ

cos φ
(39) 

c dy ¼ 0ð Þ ¼
ρ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2sin2λþ cos2φcos2λ

p ;

c dx ¼ 0ð Þ ¼
ρ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2cos2λþ cos2φsin2λ

p
(40) 

We can see that the local linear scale factors (39) – (40) 
are different and depend on the direction.

5.4. Local linear scale factors in pseudocylindrical 
projections

The equations for normal aspect pseudocylindrical 
projections are 

x ¼ x φ; λð Þ; y ¼ y φð Þ (41) 

from where 

@y
@φ
¼

dy
dφ
;
@y
@λ
¼ 0 and H ¼

dy
dφ
@x
@λ

(42) 

Now we have 

c dλ ¼ 0ð Þ ¼ h ¼
ffiffiffi
E
p

R
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

@x
@φ

� �2
þ

dy
dφ

� �2
r

R
(43) 

c dφ ¼ 0ð Þ ¼ k ¼
ffiffiffiffi
G
p

R cos φ
¼

@x
@λ

R cos φ
(44) 

c dx ¼ 0ð Þ ¼

dy
dφ

@x
@λ

R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

@x
@λ

� �2
þ cos2φ @x

@φ

� �2
r (45) 

c dy ¼ 0ð Þ ¼
@x
@λ

R cos φ
¼ k ¼ c dφ ¼ 0ð Þ (46) 

5.5. Local linear scale factors in the sinusoidal 
(Sanson) projection

The equations for normal aspect Sanson projections are 
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x ¼ R λ � λ0ð Þ cos φ; y ¼ Rφ (47) 

from where 

@y
@φ
¼

dy
dφ
¼ R;

@y
@λ
¼ 0 H ¼ R2 cos φ (48) 

According to (43) – (46), we have a local linear scale 
factor along the meridian 

c dλ ¼ 0ð Þ ¼ h ¼
ffiffiffi
E
p

R
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ λ � λ0ð Þ
2sin2φ

q

(49) 

a local linear scale factor along the parallel 

c dφ ¼ 0ð Þ ¼ k ¼
ffiffiffiffi
G
p

R cos φ
¼ 1 (50) 

a local linear scale factor in the direction of the y-axis 

c dx ¼ 0ð Þ ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ λ � λ0ð Þ
2sin2φ

q ¼
1
h
� 1 (51) 

and a local linear scale factor in the direction of the 
x-axis 

c dy ¼ 0ð Þ ¼
@x
@λ

R cos φ
¼ 1 ¼ k (52) 

From expression (51), it can be seen that the local 
linear scale factor in the direction of the y-axis 
(vertical scale in terminology used by Seong and 
Usery (2001) and Seong, Mulcahy, and Usery 
(2002)) is less than 1 in general. It is equal to one 
along the equator (φ ¼ 0) and along the central 
meridian (λ ¼ λ0) only. This is contrary to the 
claims by Seong and Usery (2001) and Seong, 
Mulcahy, and Usery (2002).

Ellipses of distortion or Tissot’s indicatrices in 
a sinusoidal (Sanson) projection are depicted in Figure 2.

5.6. A pseudocylindrical equal-area projection in 
which each point has a local linear scale factor in 
the direction of the y-axis equal to 1 does not exist

The sinusoidal (Sanson) projection is pseudocylindri
cal and equal-area. We proved in the previous section 
that for this projection. In general, there is no local 
linear scale factor in the y-axis direction equal to 1. 
The question naturally arises about the existence of an 
equal-area pseudocylindrical projection with a local 
linear scale factor equal to 1 in the y-axis direction at 
each point. In this section, we will show that such 
a map projection does not exist.

Let us assume the opposite and that the equations 
of a pseudocylindrical projection are (41).

Condition (45) with the requirement that the local 
linear scale factor equals 1 leads to

dy
dφ

@x
@λ

R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

@x
@λ

� �2
þ cos2φ @x

@φ

� �2
r ¼ 1 (53) 

The equal-area condition for pseudocylindrical pro
jections reads

dy
dφ
@x
@λ
¼ R2 cos φ (54) 

Without loss of generality, we can assume that R = 1, 
and then from (53) and (54) we derive this partial 
differential equation: 

@x
@λ

� �2

þ cos2φ
@x
@φ

� �2

¼ cos2φ (55) 

This first order partial differential equation is non
linear with respect to derivatives and is a special case 
of general nonlinear equation:

F φ; λ; x; p; qð Þ ¼ 0 (56) 

Figure 2. Tissot’s indicatrices in a sinusoidal (Sanson) projection (Jung 2020).
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where p ¼ @x
@φ and q ¼ @x

@λ . The theory of such equa
tions is well known (Sneddon 1957). Its complete inte
gral could be written as 

x φ; λð Þ ¼ aλþ bþ
ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos2φ � a2

cos2φ

s

dφ (57) 

where a and b are real numbers (Polyanin, Zaitsev, 
and Moussiaux 2002). The expression under the 
square root in (57) should be a real number for each 
φ 2 � π

2 ;
π
2

� �
. It follows a ¼ 0, and the conclusion: x is 

not a function of φ and λ, but of φ only. But this is the 
opposite of the hypothesis. In other words, there is no 
pseudocylindrical projection that satisfies (55) and has 
the equation of the form (57).

We conclude that there is no equal-area pseudocy
lindrical projection which in each of its points has local 
linear scale factor in the y-axis direction equal to 1.

6. Conclusions

All map projections involve distortion of areas, angles, 
and/or distances. The types of distortion can be con
trolled to preserve specific characteristics, but map pro
jections must distort other characteristics of the object 
represented. The main problem in cartography is that it 
is not possible to map/project/transform a spherical or 
ellipsoidal surface into a plane without distortions. It is 
well known that scale changes from point to point, and 
at certain points usually depends on direction. This is the 
local scale. The local linear scale factor c is the ratio of the 
differential of the curve arc in the plane of projection and 
the differential of the corresponding curve arc on the 
ellipsoid or spherical surface. The local linear scale factor 
c is one of the most important indicators of distortion 
distribution in the theory of map projections.

It is not possible to read the local linear scale factor in 
a direction of a coordinate axis immediately from the 
definition (6). The same is true for Equation (7) where α 
is the angle between the meridian and any direction in 
a point in question. In this paper, we derive new formulae 
that enable calculation of a local linear scale factor in the 
direction of coordinate axes x and y. Moreover, we derive 
the formula for computing the local linear scale factor in 
any direction defined by dx and dy.

The paper proposes avoiding terms like horizontal and 
vertical scales and replacing them with the expression 
scales in the direction of coordinate axes. Furthermore, it 
was shown that the local linear scale factor in the direc
tion of the y-axis (vertical scale in terminology by Seong 
and Usery (2001) and Seong, Mulcahy, and Usery (2002)) 
in a sinusoidal (Sanson) projection is less than or equal to 
1. It is equal to one along the equator (φ ¼ 0) and along 
the central meridian (λ ¼ λ0) only.

Furthermore, it is shown that there is no pseudo
cylindrical equal-are projection that would have 
a local linear scale factor equal to 1 at each point in 
the y-axis direction.

Finally, the position and magnitude of the extreme 
values of the local linear scale factor were considered 
and new formulas were derived.
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