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Abstract

Let G be a finite group and δ(G) denote the least n ∈ N such that G is isomorphic to a subgroup

of the symmetric group Sn. The number δ(G) is called the degree of G. This paper is a note

on δ(G) for a finite p-group G with derived subgroup of order p. Our method is based on quasi-

permutation representations of a finite group.
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1 Introduction

By a quasi-permutation matrix we mean a square matrix over the complex field C with non-negative
integral trace. Thus every permutation matrix over C is a quasi-permutation matrix. For a given
finite group G, then δ(G) is the minimal degree of a faithful permutation representation of G. Let
c(G) denote the minimal degree of a faithful representation of G by quasi-permutation matrices.

It is easy to see that
c(G) ≤ δ(G)
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where G is a finite group. In this paper we determine δ(G) for some p-groups with |G′| = p, also
we give a sharp lower bound for δ(G) in the case Z(G) = G′ × A for some A 6 Z(G) (Theorem
2.1.(c)).

Now, let G be a finite p-group and |G′| = p. By [[1], Theorem 3.1] G is isoclinic to a Camina
p-group H of class 2 and we have

δ(H) = pmδ(Z(H)) = pm
r∑

i=1

mi

when p > 2 and Z(G) ∼=
r∏

i=1

Cmi (See [2] and [3], Theorem 2.11).

We need some known results. Moreover let HG =
⋂

g∈GH
g be the core of H 6 G.

Lemma 1.1. ([[4], Theorem 2.2]) Let G be a finite group. Then

δ(G) = min
{ n∑

i=1

|G : Hi| : Hi 6 G for i = 1, 2, . . . , n and

n⋂
i=1

(Hi)G = 1
}
.

Lemma 1.2. ([[5], P roposition 1.5]) Let G be a p-group such that |G′| = p and d(G) = 2. Then G
is minimal non-abelian.

Lemma 1.3. ([[4], Theorem 4.12] and [6]) Let G be a finite p-group of class 2 and let Z(G) be cyclic.
Then

δ(G) = |G : Z(G)|1/2|Z(G)|
if G has no Q8 section, otherwise δ(G) = 2|G : Z(G)|1/2|Z(G)|.

Lemma 1.4. ([7]) Let G be a minimal non-abelian p-group. Then

δ(G) = |G : Z(G)|1/2|δ(Z(G))|,

unless G ∼= Q8 that we have δ(Q8) = 8.

2 Main Results

In this section we give our main result followed by two examples.

Let G be a finite group. Let Ci for 0 ≤ i ≤ r be the Galois conjugacy classes of irreducible complex
characters of the group G over the rational field Q. For 0 ≤ i ≤ r, suppose that ψi is a representative
of the class Ci with ψ0 = 1G. Write Ψi =

∑
Ci. The characters Ψi are called the Galois sums of G

and Ψ0 is the principal Galois sum.

Theorem 2.1. Let G be a p-group such that |G′| = p. Then

a) If Z(G) is cyclic and G has no Q8 section, then δ(G) = |G : Z(G)|1/2|Z(G)|, otherwise
δ(G) = 2|G : Z(G)|1/2|Z(G)|.

b) If d(G) = 2, then δ(G) = |G : Z(G)|1/2|δ(Z(G))|, unless G ∼= Q8 that we have δ(Q8) = 8.

c) If Z(G) = G′ × A for some A < Z(G) and for each non-principal linear character χ of A
and each linear character ψ of G with ψA = χ holds Ψ = |G : Z(G)|1/2X on A (Ψ and X
are the Galois sums corresponding to ψ and χ), then

|G : Z(G)|1/2 c(Z(G)) ≤ c(G).
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Proof. Since G is nilpotent, so [G′, G] < G′. Therefore we have G′ 6 Z(G) and G has nilpotency
class 2. Note that for each x, y ∈ G; [xp, y] = [x, y]p = 1, thus Gp 6 Z(G) and Φ(G) = G′Gp 6
Z(G). Therefore G/Z(G) is elementary abelian. By [[8], Theorem 7.5 and Example 7.6] we have
[G : Z(G)] = p2m for some positive integer m, cd(G) = {1, pm}, and G has |G|/p characters of
degree 1 and |Z(G)| − |Z(G)|/p irreducible characters of degree pm. For (a) see Lemma 1.3. For
(b) see Lemmas 1.2 and 1.4. Finally for (c) see [[9], Lemma 2.3] and note that cd(G) = {1, |G :
Z(G)|1/2}.

In the next Example we use Theorem 2.1.(c).

Example 2.2. Let

G =< x, y, z |x2
m−2

= 1, y2 = z2, xy = yx, xz = xy, yz = zy > (m ≥ 4).

Set A =< x2 >. Then since G′ =< y >, so Z(G) = G′ × A. It is straightforward to see that for
each non-principal linear character χ of A and each linear character ψ of G with ψA = χ we have
Ψ = |G : Z(G)|1/2X on A. Now, since |G| = 2m and c(Z(G)) = 2m−3 + 2, so 2m−2 + 4 ≤ c(G) by
Theorem 2.1.

Let H =< x > and K = {1, y, z, yz}. Then HG ∩KG = 1. Thus

c(G) ≤ δ(G) ≤ |G : H|+ |G : K| = 2m−2 + 4

by Lemma 1.1 and δ(G) = 2m−2 + 4. Note that in this example we have the equality

|G : Z(G)|1/2 c(Z(G)) = c(G).

Example 2.3. ([[10], Section 4]) Let G be a non-abelian group of order p4 and Z(G) be an elementary
abelian group. Also let Φ(G) < Z(G). Then d(G) = 3, |G′| = p and Z(G) = G′ × A for some
A < Z(G) of order p. Now, since c(G) = p2 + p and |G : Z(G)|1/2 c(Z(G)) = p (p+ p) = 2p2, so we
have

|G : Z(G)|1/2 c(Z(G)) > c(G).

3 Conclusions

In Theorem 2.1 we determined δ(G) for some p-groups G in which |G′| = p. Example 2.2 shows that
the bound provided in Theorem 2.1.(c) is best possible. Infact the last equality of this Example is
true for our p-groups G with Z(G) = G′ of order p (See [[2], Lemma 2.2]), however, the Example
2.3 shows that this is not the case in general.
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