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Abstract 
 

The aim of this work is to present a modified method for finding the numerical solutions of fuzzy partial 
differential equations by using fuzzy artificial neural networks. Using a fuzzy trial neural solution 
depending on the fuzzy initial values and the fuzzy boundary conditions of the problem. Using modified 
fuzzy neural network makes that training points should be selected over an open interval without training 
the network in the range of first and end points. In fact, This new method based on replacing each 
element in the training set by a polynomial of first degree. The fuzzy trial solution of fuzzy partial 
differential equation is written as a sum of two parts. The first part satisfies the fuzzy conditions, it 
contains no fuzzy adjustable parameters. The second part involves a feed-forward fuzzy neural network 
containing fuzzy adjustable parameters. In comparison with existing similar fuzzy neural networks, the 
proposed method provides solutions with high accuracy. Finally, we illustrate our approach by two 
problems. 

 

Keywords: Fuzzy partial differential equation; fuzzy neural network; feed-forward neural network; BFGS 
method; hyperbolic tangent function. 

 

1 Introduction 
 
Many methods have been developed so far for solving fuzzy differential equations (FDEs). Most of the 
practical problems require the solution of a FDE which satisfies fuzzy initial or fuzzy boundary conditions. 
The theory of FDEs was treated by Kaleva [1], Ouyang and Wu [2], Nieto [3], Buckley and Feuring [4], 
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Seikkala also recently there appeared the papers of Bede, Bede and Gal [5], Diamond [6,7], Georgiou and 
Nieto and et al. [8], Nieto and Lopez [9]. 
 
In the following, we have mentioned some numerical solution which have proposed by other scientists. 
Abbasbandy and Allahviranloo have solved FDEs by Runge-Kuta and Taylor methods [10,11]. Also, 
Allahviranloo and et al. solved FDEs by predictor- corrector and transformation methods [12,13,14]. 
Ghazanfari and Shakerami developed Runge-Kuta like formula of order 4 for solving FDEs [15]. Nystrom 
method has been introduced for solving FDEs [16]. Allahviranloo and Kermani solved fuzzy linear partial 
differential equations under new definition of fuzzy derivative [17]. Dahalan and Muthuvalu and et al. 
developed the Performance of (Half-Sweep Alternating Group Explicit) method with Seikkala derivative for 
two dimensional fuzzy Poisson equation [18].  
 
In recent years artificial neural networks for estimation of the ordinary differential equation (ODE) and 
partial differential equation (PDE) have been used. In (1990) lee and Kang [19] used parallel processor 
computers to solve a first order ODEs with Hopfield neural network models. In (1994) Meade and 
Fernandez [20,21] solved linear and non-linear ODEs by using feed-forward neural networks architecture 
and B-splines of degree one. In (1997) Lagaris and et al. [22,23] used artificial neural network for solving  
ODEs  and PDEs with the initial/ boundary value problems. In (1999) Liu and Jammes [24] developed some 
properties of the trial solution to solve the ODEs by using artificial neural networks. In (2004) Tawfiq [25] 
presented and developed supervised and unsupervised algorithms for solving ODEs and PDEs. In (2006) 
malek and shekari [26] presented numerical method based on artificial neural network and optimization 
techniques which the higher-order ODE answers approximates by finding a package form analytical of 
specific functions. In (2008) Pattanaik and Mishra [27] applied and developed some properties of ANN for 
solution of PDE in RF Engineering. In (2011) Oraibi [28] design feed-forward neural networks for solving 
ordinary initial value problem. In (2015) Hussian and Suhhiem [29] used modified artificial neural networks 
for solving PDEs. 
 
Numerical solution of FDEs by using artificial neural networks is the subject of a very modern because it 
only goes back to 2010. In (2010) Effati and pakdaman [30] used artificial neural network for solving FDEs, 
they used for the first time the artificial neural network to approximate fuzzy initial value problems. In 
(2012) Mosleh and Otadi [31] used artificial neural networks for solving fuzzy Fredholm integro-differential 
eauations. In (2013) Ezadi and et al. [32] used artificial neural networks based on semi-Taylor series to solve 
first order FDE. In (2015) Hussian and Suhhiem [33] used modified artificial neural networks for solving 
FDEs. 
 
Numerical solution of FDEs by using fuzzy artificial neural networks is more modern than the previous 
subject, where it goes back to 2012. In (2012) Mosleh and Otadi [34] used fuzzy artificial neural network for 
solving first order FDEs, they used for the first time the fuzzy artificial neural network to approximate fuzzy 
initial value problems. In (2013) Mosleh [35] used fuzzy artificial neural network for solving a system of 
FDEs. In (2014) Mosleh and Otadi [36] used fuzzy artificial neural network for solving second order FDEs. 
In (2015) Hussian and Suhhiem [37] used modified fuzzy neural networks for solving Fuzzy ordinary 
differential equations. 
 
In this work we proposed a new numerical method to find the approximate solution of fuzzy partial 
differential equations (FPDEs), this method can result in improved numerical methods for solving FPDEs. In 
this proposed method, fuzzy neural network model (FNNM) is applied as universal approximator. We use 
fuzzy trial function, this fuzzy trial function is a combination of two terms. A first term is responsible for   
the fuzzy conditions while the second term contains the fuzzy neural network adjustable parameters to be 
calculated. The main aim of this paper is to illustrate how fuzzy connection weights are adjusted in the 
learning of fuzzy neural networks. Our fuzzy neural network in this work is a three-Layer feed- forward 
neural network where connection weights and biases are fuzzy numbers. This modified method is called 
modified fuzzy neural network (MFNN) for solving FPDEs. This new method based on replacing each x in 
the training set (where x ∈ �a, b�) by the polynomial Q (x) = 
 (x + 1) such that Q (x) ∈ (a, b) by choosing a 
suitable 
  ∈  (0 , 1) . In this paper, we will illustrate this modified method by solving two numerical 
examples.   In general, this modified method is effective for solving FPDEs. 
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2 Preliminaries                                                                                                          
 
In this section the basic notations used in fuzzy calculus are introduced. 
 
Definition 2.1. [38]:  
 
A fuzzy number u is completely determined by any pair u= �u , u�� of functions u (r), u�  (r) : R ⟶ �0,1� 
satisfying the conditions: 
 (1) u (r) is a bounded, monotonic, increasing (non – decreasing) left continuous function for all r ∈ (�0,1� and right continuous  for  r=0.    (2) u� (r) is a bounded,  monotonic, decreasing (non – increasing) left continuous function for all r ∈ (�0,1� and right continuous  for   r=0.       (3) For all r ∈ (�0,1� we have u (r) ≤ u� (r).  
 
For every u =�u , u�� , v = �v , v� and � > 0 we define addition and multiplication as follows:          
                                                                           (u +  v)  (r) = u (r) + v (r)                                                                                                              (1) 

  (u +  v) (r) = u� (r) + v (r)                                                                                                              (2) 
 (k u)  (r) = K u (r) , (k u) (r) = K u� (r)                                                                                          (3) 
 
The collection of all fuzzy numbers with addition and multiplication as defined by �� . (1) ⟶ (3) is 
denoted by E1 . For r ∈ (�0,1�, we define the r - cuts of fuzzy number u with �u�! ="x ∈ R|u (x) ≥ r%  and 

for r=0 the support of u is defined as �u�&  ="x ∈ R|u (x)  > 0%.       
                 
Definition 2.2. [38]:  
 
The function f: R ⟶ E1 is called a fuzzy function. Now if, for an arbitrary fixed t1 ∈ R and 
 > 0 there exist 
a ( > 0 such that:  )t - t1) < ( ⟹ d �f(t) , f(t1)� < 
                                          
 
then f is said to be continuous function.  
 
Definition 2.3. [30]:  
 
let u, v ∈ E1 . If there exist w ∈ E1 such that u = v+w then w is called the H-difference (Hukuhara-difference) 
of u, v and it is denoted by w=  u Θ v. In this work the Θ sign stands always for H-difference, and let us 
remark that  u Θ v ≠ u + (-1) v. 
 
Definition 2.4. [30]:  
 
Let f: [a,b] →  �1   and  2&  ∈  [a,b]. We say that f is H-differential (Hukuhara-differential) at 2&, if there 
exists an element  fˊ(2&) ∈ �1 such that for all  h> 0  sufficiently small, ∃ f(2& +h) Θ f(2&), f(2&) Θ f(2& - h) 
and the limits.  
 lim7→& 8(9: ;<) Θ 8(9:)7  = lim7→& 8(9:) Θ 8(9: = <)7  = fˊ(2&).                                                                      (4)    
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3 Fuzzy Neural Network                                                                                                                                         
 
A fuzzy neural network or neuro -fuzzy system is a learning machine that finds the parameters of a fuzzy 
system (i.e. fuzzy sets, fuzzy rules) by exploiting approximation from the neural networks. Combining fuzzy 
system with neural network. Both neural network and fuzzy system have some things in common [37]. 
 
Artificial  neural  networks  are an exciting form of  the  artificial intelligence  which  mimic  the  learning  
process of the human  brain  in order to extract patterns  from  historical data. Simple perceptrons need a 
teacher to tell the network what the desired output should by. These are supervised networks.  In an 
unsupervised net, the network adapts purely in response to its input [39]. 
 

4 Operations of Fuzzy Numbers 
 
We briefly on mention fuzzy numbers operation defined by the extension principle .Since output vector of 
feed-forward neural network is fuzzy in this paper, the following addition, multiplication and nonlinear 
mapping of fuzzy number are necessary for defining our fuzzy neural network [37]: 
 

ϻA+B (z) = Max {ϻA (x) ᴧ ϻB (y) │z = x + y}                                                                                     (5) 
 
ϻAB (z) = Max {ϻA(x) ᴧ ϻB (y) │z = x y}                                                                                          (6)    
  
ϻ>(net)(z)  = Max? ϻnet (x) │z = @(x)A                                                                                                (7)        

           
where A, B and net are fuzzy number , ϻ (∗) denotes the membership function of each fuzzy number, ᴧ is 
the minimum operator and @(.) is a continuous activation function (such as hyperbolic tangent function) 
inside the hidden neurons. The above operations of fuzzy numbers are numerically performed on level sets 
(i.e. r-cuts). 
 
The r-level set of a fuzzy number A is defined as: 
 �A�C = " x ϵ R │ ϻA (x) ≥  r  %  , 0 < r ≤ 1                                                                                        (8) 
 

Since level sets of fuzzy numbers become closed intervals we denote  �A�C  as : �A�C  =   D �A�Lr , �A�Ur   H 
 

where �A�Lr and �A�Ur  are the lower limit and the upper limit of the r-level set �A�C respectively From interval 

arithmetic , the above operations of fuzzy number are written for r-level set as follows:  
 

�A�C +�B�C  =  I�A�Lr  +  �B�Lr , �A�Ur +  �B�Ur   K                                                                                (9)    

                                  

�A�C �B�C = LMin O�A�Lr. �B�Lr , �A�Lr . �B�Ur  , �A�Ur  . �B�Lr , �A�Ur  . �B�Ur P ,
Max O�A�Lr. �B�Lr , �A�Lr. �B�Ur  , �A�Ur . �B�Lr , �A�Ur  . �B�Ur  P Q                                         (10) 

 

@(�net�C ) = @ SI�net�Lr , �net�Ur KT= D@ U�net�LrV , @ U�net�Ur VH                                                      (11)                         
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5 Input – Output Relation of Each Unit 
 
Let us consider a fuzzy three – layer feed – forward neural network with n input units, m hidden units and s 
output units. Target vector, connection weights and biases are fuzzy numbers and input vector is real 
number. For convenience in this discussion, FNNM with an input layer, a single hidden layer, and an output 
layer in Fig. 1 is represented as a basic structural architecture. Here, the dimension of FNNM is denoted by 
the number of neurons in each layer , that is n W m W s, where n , m and s are the number of the neurons in 
the input layer, the hidden layer and the output layer , respectively [35,36] . 
 

 
 

Fig. 1. Three-layer feed-forward Fuzzy neural network 
 
The architecture of the model shows how FNNM transforms the n inputs (x1 , xX, … , xZ , … , x[)  into the s 
fuzzy outputs (�y1�C , �yX�C , … �y]�C , … �y^�C) throughout the m hidden fuzzy neurons ��z1�C , �zX�C , … �z̀ �C , … �za�C� , where the cycles represent the neurons in each layer. Let �b̀ �C  be the fuzzy 
bias for the fuzzy neuron �z̀ �C , �c]�C  be the fuzzy bias for the fuzzy neuron �y]�C , �w`Z�C  be the fuzzy 
weight connecting crisp neuron xZ to fuzzy neuron �z̀ �C , and �w]`�C be the fuzzy weight connecting fuzzy 
neuron �z̀ �C to fuzzy neuron �y]�C  . 
 
When an n – dimensional input vector (x1 , xX, … , xZ , … , x[) is presented to our fuzzy neural network , its 
input – output relation can be written as follows , where   F : R[ ⟶ E^ :  
 
Input units: 
 oZ = xZ  ,    i = 1,2,3, …n                                                                                                                  (12) 
 
Hidden units: 
 z̀  = F �net`�  ,    g = 1,2,3, …,m,                                                                                                    (13) 
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net` = ∑ oZ w`Z + b̀[Zi1                                                                                                                      (14) 
 
Output units: 
 

 y] = F (net])  ,    k = 1,2,3, …, s,                                                                                                  (15) 
 net] = ∑ w]`  z̀ +ài1 c]                                                                                                                    (16) 
 
The architecture of our fuzzy neural network is shown in Fig. 1, where connection weights, biases, and 
targets are fuzzy numbers and inputs are real numbers. The input – output relation in Eqs. (12 – 16) is 
defined by the extension principle. 
 

6 Calculation of Fuzzy Output 
 
The fuzzy output from each unit in Eqs. (12 – 16) is numerically calculated for real inputs and level sets of 
fuzzy weights and fuzzy biases. The input – output relations of our fuzzy neural network can be written for 
the r – level sets [34]. 
 
Input units: 
 oZ = xZ  ,    i = 1,2,3, …n                                                                                                                  (17) 
 
Hidden units:  
 �z̀ �C = F ��net`�C�  , g = 1,2,3, …,m,                                                                                               (18) 
 �net`�C = ∑ oZ �w`Z�C + �b`�C[Zi1                                                                                                         (19) 
 
Output units: 
 �y]�C = F (�net]�C)  , k = 1,2,3, …, s,                                                                                            (20) 
 
 �net]�C = ∑ �w]`�C �z̀ �C+ài1 �c]�C .                                                                                                  (21) 
 
From Eqs. (17 – 21), we can see that the r – level sets of the fuzzy outputs y]´s are calculated from those of 
the fuzzy weights, fuzzy biases and the crisp inputs.  
 
From the operations of fuzzy numbers, the above relations are rewritten as follows when the inputs xZ´s are 
non – negative, i.e., xZ ≥ 0.   
 
Input units: 
 oZ = xZ                                                                                                                                               (22) 
    
Hidden units: 
 �z̀ �C = F ��net̀ �C� = Dmz̀ nCo , mz̀ nCpH = . DF Umnet`nCoV , F Umnet`nCpVH                                                (23) 

 
where    
                                                                                                                   mnet`nCo = ∑ oZ mw`ZnCo + mb`nCo[Zi1                                                                                                        (24) 
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mnet`nCp = ∑ oZ mw`ZnCp + mb̀ nCp[Zi1                                                                                                       (25) 

 
Output units: 
 �y]�C = F (�net]�C) = ��y]�Co , �y]�Cp� = . �F(�net]�Co) , F(�net]�Cp)�                                                (26)  
                                                                                        �net]�Co = ∑  mw]`nCo  mz̀ nCo ̀ ∈q  + ∑  mw]`nCo  mz̀ nCp ̀ ∈r  + �c]�Co                                                            (27)   

                                                                                           �net]�Cp = ∑  mw]`nCp  mz̀ nCp ̀ ∈s  + ∑  mw]`nCp  mz̀ nCo ̀ ∈t  + �c]�Cp                                                           (28)    

                                                                                       

For mz̀ nCp ≥ mz̀ nCo ≥ 0 , where  

 a = Og ∶  mw]`nCo  ≥ 0P , b = Og ∶  mw]`nCo  < 0P 

 

c = Og ∶  mw]`nCp  ≥ 0P , d = Og ∶  mw]`nCp  < 0P ,  

 
a ∪ b = "1,2,3, … , m%  and  c ∪ d = "1,2,3, … , m%  . 

 

7 Fuzzy Neural Network Approach for Solving FDEs 
 
To solve any fuzzy ordinary differential equation (i.e., first order FDE , second order FDE ,etc.) we consider 
a three – layered FNNM with one unit entry x , one hidden layer consisting of m activation functions and 
one unit output N(x , p) . The activation function for the hidden units of our fuzzy neural network is 
hyperbolic tangent function. Here, the dimension of FNNM is (1 x m x 1). 
 
For every entry x the input neuron makes no changes in its input, so the input to the hidden neurons is 
[34,37]: 
 net̀  = x w` + b`  , g = 1,2,3, …,m,                                                                                                  (29) 
 
where w` is a weight parameter from input layer to the gth unit in the hidden layer, b̀  is an gth bias for the gth unit in the hidden layer. 
 
The output, in the hidden neurons is:  
 z̀  = s �net̀ �    , g = 1,2,3, …,m,                                                                                                      (30) 
 
where s is the hyperbolic tangent activation function. The output neuron make no change in its input, so the 
input to the output neuron is equal to output:  
 

N = v1 z1 + vX zX + vy zy + … + v̀  z̀  + … + va za = ∑ v̀  z̀ài1                                                   (31)  
 
where v̀  is a weight parameter from gth unit in the hidden layer to the output layer.  
 
From Eqs. (22 – 28), we can see that the r – level sets of the Eqs. (29 – 31) are calculated from those of the 
fuzzy weights, fuzzy biases and crisp inputs. For our fuzzy neural network, we can derive the learning 
algorithm without assuming that the input x is non – negative. For reducing the complexity of the learning 
algorithm, input x usually assumed as non-negative in the fuzzy neural network, i.e.,  x ≥ 0 : 
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Input unit: 
 

 o = x,                                                                                                                                               (32)  
 
Hidden units: 
                                              �z̀ �C = Dmz̀ nCo , mz̀ nCpH = Ds Umnet`nCoV , s Umnet̀ nCpVH                                                                         (33) 

 
   Where 
 mnet`nCo = o mw`nCo + mb`nCo    ,      mnet`nCp = o mw`nCp + mb`nCp          

                                                                         
Output unit:   
 

 �N�C = ��N�Co , �N�Cp�   ,     where   
 �N�Co = ∑ mv̀ nCo mz̀ nCo+ ∑ mv̀ nCo mz̀ nCp`∈b   ̀ ∈a                                                                                          (34) 

 �N�Cp = ∑ mv̀ nCp mz̀ nCp+ ∑ mv̀ nCp mz̀ nCo`∈d   ̀ ∈c                                                                                         (35) 

 

For mz̀ nCp ≥ mz̀ nCo ≥ 0, where: a = Og ∶  mv̀ nCo  ≥  0P , b = Og ∶  mv̀ nCo  <  0P  

 

c = Og ∶  mv̀ nCp  ≥  0P  ,  d = Og ∶  mv̀ nCp  <  0P  , 

 
a ∪ b = "1,2, … m%  and  c ∪ d = "1,2, … m%. 
 
For illustration the solution steps, we will consider the first order FDE: 
 t z ({)t{  = F (x , y),  x ∈ �a , b�  , y (a) = A                                                                                         (36) 

 
where A is a fuzzy number in E1 with r – level sets : 
 �A�C = ��A�Co , �A�Cp�  , r ∈ �0, 1� . 
 
The fuzzy trial solution for this problem is: 
 �y|(x , p)�C = �A�C + (x − a) �N(x , p)�C                                                                                           (37) 
 
This fuzzy solution by intention satisfies the fuzzy initial condition in (36). 
 
The error function that must be minimized for the problem (36) is in the form:         
 

E = ∑ �EZCo +  EZCp�~Zi1                                                                                                                        (38)   
 

EZCo  = � Dt z� ({� ,�)t{ HC
o −  mF �xZ , y| (xZ , p)�nCo �X

                                                                                  (39) 

 

 EZCp = � Dt z� ({� ,�)t{ HC
p −  mF �xZ , y| (xZ , p)�nCp �X

                                                                                (40) 
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Where "xZ%Zi1~  are discrete points belonging to the interval �a , b� (training set) and in the cost function (38) , ECo and ECp can be viewed as the squared errors for the lower and upper limits of the   r – level sets. It is easy 
to express the first derivative of �N(x , p)�C in terms of the derivative of the hyperbolic tangent, i.e.,  
 

� ������x
 = ∑ mv̀ nCo  � m��n��� m[�|�n��   � m[�|�n���xq  + ∑ mv̀ nCo  � m��n��� m[�|�n��   � m[�|�n���xr                                                         (41)          

                                                                                    

� ������x
 = ∑ mv̀ nCp  � m��n��� m[�|�n��   � m[�|�n���xs  + ∑ mv̀ nCp  � m��n��� m[�|�n��   � m[�|�n���xt                                                        (42)       

                                                                                      
where   
 

a = Og ∶  mv̀ nCo  ≥  0P  ,  b = Og ∶  mv̀ nCo  <  0P  , 

 

c = Og ∶  mv̀ nCp  ≥  0P  ,  d = Og ∶  mv̀ nCp  <  0P  , 

 
a ∪ b = "1,2,3, … m%  and  c ∪ d = "1,2,3, … m% . Also we have  
 � m[�|�n���x

 = mw`nCo               ,        
� m[�|�n���x

 = mw`nCp         

                                                                                                        � m��n��� m[�|�n�� = 1 - Umz̀ nCoVX
     ,       

� m��n��� m[�|�n�� = 1 - Umz̀ nCpVX
            

                                                
Now differentiating from fuzzy trial function myt

(x , p)n
r
 in (39) and (40) we obtain:  

 myt (x ,p)n
r

L

�x
 = �N (x , p)�r

L  + (x − a) 
� �N (x ,p)�rL�x

                                                                                      (43) 

 myt (x ,p)n
r

U

�x
 = �N (x , p)�r

U + (x − a) 
� �N (x ,p)�rU�x

                                                                                     (44) 

 
Therefore, we get  
 

EZCo  = 

���
���

∑ mv̀ nCo mz̀ nCo+ ∑ mv̀ nCo mz̀ nCp+ (xZ − a)rqU∑ mv̀ nCo mw`nCo �1 − Umz̀ nCoV�q + ∑ mv̀ nCo mw`nCp �1 − Umz̀ nCpV�r V
−F �xZ, �A�Co+ (xZ − a) U∑ mv̀ nCo mz̀ nCo+ ∑ mv̀ nCo mz̀ nCprq V� ���

���
X
                                       (45)   

                                                                                                            

EZCp = 

���
���

∑ mv̀ nCp mz̀ nCp+ ∑ mv̀ nCp mz̀ nCo+ (xZ − a)tsU∑ mv̀ nCp mw`nCp �1 − Umz̀ nCpV�s + ∑ mv̀ nCp mw`nCo �1 − Umz̀ nCoV�t V
−F �xZ, �A�Cp+ (xZ − a) U∑ mv̀ nCp mz̀ nCp+ ∑ mv̀ nCp mz̀ nCots V� ���

���
X
                                      (46)   

                                                                                          
Now we substitute (45) and (46) in (38) to find the error function that must be minimized for problem (36). 
 
For the higher order fuzzy ordinary differential equations and FPDEs eq. (45) and eq. (46) will be very 
complex and the computations are very difficult. 
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Therefore, for reducing the complexity of the learning algorithm, we will propose a partially fuzzy neural 
network in the next section. 
 

8 Partially Fuzzy Neural Networks 
 
One drawback of the fully fuzzy neural networks with fuzzy connection weights is long computation time. 
Another drawback is that the learning algorithm is complicated. Therefore, for reducing the complexity of 
the learning algorithm, a partially fuzzy neural network (PFNN) architecture has been proposed where 
connection weights to the output unit are fuzzy numbers while connection weights and biases to the hidden 
units are real numbers [34,37]. 
 
The input – output relation of each unit of our PFNN in Eqs. (32-35)  can be rewritten for r – level sets as 
follows: 
 
Input unit:            o = x        
                                                                           
Hidden units:       z̀  = s �net`�  , g = 1,2,3, … m        
                                
where                    net` = o w` + b`          
                                                       

Output unit:        �N�C = ��N�Co , �N�Cp�=D∑ mv̀ nCoz̀  ài1  , ∑ mv̀ nCpz̀  ài1 H       
                              
Now to find the minimized error function (under PFNN) for problem (36): 
 � ������x

 = ∑ mv̀ nCo  � ��� [�|�   � [�|��x
ài1  = ∑ mv̀ nCo ài1 w`  �1 −  z̀ X�                                                              (47)  

                          � ������x
 = ∑ mv̀ nCp  � ��� [�|�   � [�|��x

ài1  = ∑ mv̀ nCp ài1 w`  �1 −  z̀ X�                                                             (48)   

                              
By substituting Eqs (47 and 48) in Eqs (39 and 40) , we obtain : 
 

EZCo  = L∑ z̀ài1 mv̀ nCo+ (xZ − a) ∑ w`ài1 �1 −  z̀ X�mv̀ nCo−F UxZ, ���Co+ (xZ − a) ∑ z̀  ài1 mv̀ nCoV QX
                                                               (49) 

 

EZCp = L∑ z̀ài1 mv̀ nCp+ (xZ − a) ∑ w`ài1 �1 − z̀ X�mv̀ nCp−F UxZ, ���Cp+ (xZ − a) ∑ z̀  ài1 mv̀ nCpV QX
                                                               (50) 

 
and then we substitute (49) and (50) in (38) to find the error function that must be minimized for problem (36) (with respect to PFNN). 
 

9 Fuzzy Neural Network Approach for Solving FPDEs   
 
To  solve  any  fuzzy  partial  differential  equation , we consider a three – layered FNNM with two unit 
entries x and y , one hidden layer consisting of  m  activation  functions , and  one unit output N(x , y, p).  
 
Here, the dimension of FNNM is (2 x m x 1).  
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For every entries x and y, the input neurons makes no changes in its inputs, so the input to the hidden 
neurons is: 
 net̀  = x w`1 + y w`X + b`  ,  g = 1,2,3, … m                                                                              (51) 
 
where w`1 and w`X are a weights from the input layer to the gth unit in the hidden layer, b` is an gth bias for 
the gth unit in the hidden layer. 
 
The output in the hidden neurons is: 
 z̀  = s �net̀ � , g = 1,2,3, …,m                                                                                                          (52)     
                           
The output neuron make no changes in its input, so the input to the. Output neuron is equal to output: 
 

N = ∑ v̀  z̀ài1                                                                                                                                (53)   
 
From Eqs.(22-28) , we can see that the r – level sets of the Eqs. (51 – 53) are calculated from those of the 
fuzzy weights, fuzzy biases and crisp inputs (Fig. 2). For our fuzzy neural network, we can derive the 
learning algorithm without assuming that the inputs x and y are non – negative. For reducing the complexity 
of the learning algorithm, the inputs x and y usually assumed as non – negative in the fuzzy neural network, 
i.e., x ≥ o and y ≥ o: 
 
Input units:  
 

x = x,  y = y                                                                                                                                    (54)                               
 

 
 

Fig. 2. (2 x m x 1) feed-forward fuzzy neural network 
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Hidden units: 
 �z̀ �C = Dmz̀ nCo , mz̀ nCpH = Ds Umnet`nCoV , s Umnet̀ nCpVH                                                                         (55) 

 mnet̀ nCo = x mw`1nCo + y mw`XnCo+ mb̀ nCo                                                                                               (56) 

   mnet`nCp = x mw`1nCp + y mw`XnCp+ mb̀ nCp                                                                                             (57) 
 
Output unit: 
 �N�C = ��N�Co , �N�Cp�                                                                                                                        (58)    
                            �N�Co = ∑ mv̀ nCo mz̀ nCo+ ∑ mv̀ nCo mz̀ nCp`∈b   ̀ ∈a                                                                                          (59) 

 �N�Cp = ∑ mv̀ nCp mz̀ nCp+ ∑ mv̀ nCp mz̀ nCo`∈d   ̀ ∈c                                                                                         (60) 

 

For mz̀ nCp ≥ mz̀ nCo ≥ o, where : a = Og ∶  mv̀ nCo  ≥  oP ,b = Og ∶  mv̀ nCo  <  oP  

 

c = Og ∶  mv̀ nCp  ≥  oP  ,  d = Og ∶  mv̀ nCp  <  oP  , 

 
a ∪ b = "1,2,3, … m%  and  c ∪ d = "1,2,3, … m% . 
 
Also, the input – output of each unit of our PFNN in  Eqs. (54-60)  can be rewritten for r – level sets as 
follows: 
 
Input unit:     
 

 x = x  ,   y = y                                                                                                                                  (61)              
                                                
Hidden units:   
 z̀  = s �net̀ �  , g = 1,2,3, … m                                                                                                          (62)    
                                                 
 where    
         net̀  = x w`1 + y w`X+ b̀                                                                                                                  (63)         
                                           
Output unit: 
 �N�C = ��N�Co , �N�Cp�  =D∑ mv̀ nCoz̀  ài1  , ∑ mv̀ nCpz̀  ài1 H                                                                     (64)         

                                 

10 Description of the Method   
 
We treat here one and two-dimensional problems only. However, it is straightforward to extend the method 
to more dimensions. For example, if we consider the two-dimensional fuzzy Poisson equation: 
 �� p� {�   + 

�� p� z� = f (x , y) , x , y ∈ �a , b�                                                                                              (65) 
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with the Dirichlet fuzzy boundary conditions (for x , y ∈ �0,1�): 
 

U(0, y) = f0( y) , U(1, y) = f1( y) , U(x , 0) = g0(x) and U(x , 1) = g1(x). 
 
where: f (x , y)  , f0( y)  , f1( y)  , g0(x) and g1(x)  are fuzzy numbers or fuzzy functions with r-level sets 
(parametric form) : 
 �f0( y)�r = Df

0
( y) , f0( y)H , �f1( y)�r = Df

1
( y) , f1( y)H 

 mg0(x)n
r
 = Dg

0
(x) , g0(x)H , mg1(x)n

r
 = Dg

1
(x) , g1(x)H 

 
 The fuzzy trial solution �UT(x , y)�r = � U

T
(x , y, r, p) , UT(x , y, r, p) �  can     be chosen as follows [29]: 

 
U

T
(x , y, r, p) = A(x , y) +  x  y (1 − x) (1 − y) N(x , y, r, p )         

                                                                                          
UT(x , y, r, p) = A(x , y) +  x  y (1 −  x) (1 −  y) N(x , y, r, p)                                                       (66)        

  
where A(x , y) and A(x , y) are chosen so as to satisfy the fuzzy boundary conditions, namely:  
 

A(x , y) = (1 - x) f
0
(y) + x f

1
( y) + (1 -  y) 

 

Ig
0
(x) − D(1 − x) g

0
(0) + x g

0
(1)HK+ y Ig

1
(x) − D(1 − x) g

1
(0) + x g

1
(1)HK 

 
A(x , y) = (1 - x) f0(y) + x f1( y) + (1 -  y) 

 Dg0
(x) − m(1 − x) g0

(0) + x g0(1)nH+ y Dg1
(x) − m(1 − x) g1

(0) + x g1(1)nH                                 (67)    

                       
The minimized error function will be:     E = ∑ �Eir

L +  Eir
U�g

ii1 , where      
                                                                                                           

EZCo  = � D��p�� {�   +  ��p�� z�  HC
o −  �f (xZ , yZ )�Co �X

              

                             

EZCp = � D��p�� {�   +  ��p�� z� HC
p −  �f (xZ , yZ )�Cp �X

                                                                                      (68)      

                                          
where �xi  , yi� are points in the domain �0 ,1� W �0 ,1�.  
 

11 Proposed Method  
 
In this section we will introduce a novel method to modify the fuzzy neural network. This new method based 
on replacing each x in the input vector (training set) x�� = (x1 , x2 , … , xn) , x̀  ∈ �a, b� by a polynomial of first 
degree. 
 
In [40] Ezadi and parandin used the function: Q(x) = 
 (x + 1), 
 ∈ (0,1).    
                                      
then the input vector will be: (Q(x1) , Q(xX) , …  Q(x[)), Q(x`) ∈  (a , b).  In this paper, we named this 
proposed method modified fuzzy neural network. Using modified fuzzy neural network makes that training 
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points should be selected over the open interval (a , b) without training the neural network in the range of 
first and end points. Therefore, the calculating volume involving computational error is reduced. In fact, the 
training points depending on the distance �a , b� selected for training fuzzy neural network are converted to 
similar points in the open interval (a , b) by using the new approach, then the fuzzy network is trained in 
these similar areas [21,22]. 
 

12 Numerical Examples 
 
To show the behavior and properties of the new method, two problems will be solved in this section. For 
each example, the accuracy of the method is illustrated by computing the deviations �error�r    L , �error�r

U    
where 
 �error�r

L=)�Ua(x , y)�r
L-�UT(x , y)�r

L) , �error�r
U=)�Ua(x , y)�r

U-�UT(x , y)�r
U)   

 
and 
 �Ua(x , y)�r=��Ua(x , y)�r

L  , �Ua(x , y)�r
U�      the analytical solution            

       �UT(x , y)�r =��UT(x , y)�r
L  , �UT(x , y)�r

U�      the trial solution 
 
For all examples, multilayer perceptron consisting of one hidden layer with 10 units and one linear output 
unit is used. To minimize the error function, we used BFGS (Broyden-Fletcher-Goldfarb-Shanno) quasi-
Newton method (For more details, see [41,42]).  
 
Example (1): Consider the fuzzy Poisson problem:  
 �� p�� {�   (x , y) + 

�� p�� z�  (x , y) = K� x ez  , x , y ∈ �0 , 1� , 
 
where K�(r) = �0.75 + 0.25 r , 1.25− 0.25 r�   with the fuzzy conditions: 
 

U�  (0 , y) = 0 , U�  (1 , y) = K�  ey , 0 ≤ y ≤ 1   
 
and  
 

U�  (x , 0) = K�  x , U�  (x , 1) = K� ex , 0 ≤ x ≤ 1 . 
 
The fuzzy analytical solution for this problem is : 
 �Ua(x , y)�r = �(0.75 + 0.25r) xey , (1.25− 0.25r ) xey�. 
 
The fuzzy trial solution for this problem is : 
 �UT(x , y)�r = �(0.75 + 0.25r) xey , (1.25 − 0.25r ) xey�  
 
                                                + xy (1 − x)  (1 − y) �N(x , y, p)�r .  
 
The error function for m = 10 units in the hidden layer and for g = 11 equally spaced points inside the 
interval �0 , 1� for each variable x and y is trained.  
 
For 
 = 0.4, the training set will be: 
 

0.4 (x + 1)  , ∀ x ∈ �0 , 1� and 0.4 (y + 1)  , ∀ y ∈ �0 , 1�. 



 
 
 

Hussian and Suhhiem; BJMCS, 12(2): 1-20, 2016; Article no.BJMCS.20504 
 
 
 

15 
 
 

Analytical and trial solutions for this problem can be found in Table (1) and Table (2). 
 
For this problem, the minimized error function is: 
  E = ∑ �Eir

L +  Eir
U�11

ii1    
 
where                                                                             

EZCo =

��
��
��
��
��
��
�(yZ − yZX)

�
� 

(xZ − xZX) ∑ mv̀ nCo w`1X s´´1&`i1 �Q(xZ) w`1+ Q(yZ) w`X+ b`�
+(2 − 4xZ) ∑ mv̀ nCow`1s´1&`i1 �Q(xZ) w`1+ Q(yZ) w`X+ b`�

− 2 ∑ mv̀ nCos1&`i1 �Q(xZ) w`1+ Q(yZ) w`X+ b`� ¤
¥¦ 

  +
(xZ − xZX)

�
� 

(yZ − yZX) ∑ mv̀ nCo w`XX s´´1&`i1 �Q(xZ) w`1+ Q(yZ) w`X+ b`�
+(2 − 4yZ) ∑ mv̀ nCow`Xs´1&`i1 �Q(xZ) w`1+ Q(yZ) w`X+ b`�

− 2 ∑ mv̀ nCos1&`i1 �Q(xZ) w`1+ Q(yZ) w`X+ b`� ¤
¥¦

  ��
��
��
��
��
��
�X

       

   

EZCp=

��
��
��
��
��
��
�(yZ − yZX)

�
� 

(xZ − xZX) ∑ mv̀ nCp w`1X s´´1&`i1 �Q(xZ) w`1+ Q(yZ) w`X+ b`�
+(2 − 4xZ) ∑ mv̀ nCpw`1s´1&`i1 �Q(xZ) w`1+ Q(yZ) w`X+ b`�

− 2 ∑ mv̀ nCps1&`i1 �Q(xZ) w`1+ Q(yZ) w`X+ b`� ¤
¥¦ 

  +
(xZ − xZX)

�
� 

(yZ − yZX) ∑ mv̀ nCp w`XX s´´1&`i1 �Q(xZ) w`1+ Q(yZ) w`X+ b`�
+(2 − 4yZ) ∑ mv̀ nCpw`Xs´1&`i1 �Q(xZ) w`1+ Q(yZ) w`X+ b`�

− 2 ∑ mv̀ nCps1&`i1 �Q(xZ) w`1+ Q(yZ) w`X+ b`� ¤
¥¦

  ��
��
��
��
��
��
�X

              

 
Table 1. Numerical results for example (1), for r = 0.5  

 
x   § �¨©(ª , §)�«¬ �¨©(ª , §)�«̈  �¨­(ª , §)�«¬ �¨­(ª , §)�«̈  �®««¯«�«¬ �®««¯«�«̈  
0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 

0 
0.096702455 
0.213745482 
0.354337937 
0.522138644 
0.721315555 
0.956612370 
1.233423533 
1.557878650 
1.936937450 
2.378496600 

0 
0.124331728 
0.274815620 
0.455577347 
0.671321113 
0.927405714 
1.229930190 
1.585830257 
2.002986836 
2.490348150 
3.058067057 

0 
0.096702461 
0.213745474 
0.354337929 
0.522138646 
0.721315505 
0.956612401 
1.233423539 
1.557878654 
1.936937457 
2.378496600 

0 
0.124331737 
0.274815626 
0.455577342 
0.671321109 
0.927405718 
1.229930266 
1.585830346 
2.002986840 
2.490348154 
3.058067057 

0 
6.6854 e-9 
8.5672 e-9 
8.3301 e-9 
2.4376 e-9 
5.0158 e-8 
3.1330 e-8 
6.7012 e-9 
4.8833 e-9 
7.6347 e-9 
0 

0 
9.3281 e-9 
6.5423 e-9 
5.7664 e-9 
4.9806 e-9 
4.5307 e-9 
7.6771 e-8 
8.9137 e-8 
4.0264 e-9 
4.3421 e-9 
0 

 
Example (2): Consider the fuzzy Wave problem:  
 �� p�� |�   (x , t) −4 

�� p�� {�   (x , t) = 0,    x , t ∈ �0 , 1�, 
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with the following fuzzy boundary and initial conditions: 
 U� (0 , t) = 0 , U� (1 , t) = 0 , 0 , U� (x , 0) = K� sin(°x)  and   ��9 U� (x , 0) = 0. 

 
where K�(r) = �0.75 + 0.25 r , 1.25− 0.25 r� .   
 
The fuzzy analytical solution for this problem is: 
 �Uq(x , t)�C =�(0.75 + 0.25r) sin(πx) cos (2πt) , (1.25 − 0.25r ) sin(πx) cos (2πt)�.    
                                                                                                                            
The fuzzy trial solution for this problem is: 
 �U³(x , t)�C=�(0.75 + 0.25r)(1 − 2X) sin(πx) , (1.25 − 0.25r )(1 − 2X) sin(πx)� + x (1 − x)2X �N(x , t, p)�C.     
 

Table 2. Numerical results for example (1), for x = § = 0.7  
 

r �¨©(ª , §)�«¬ �¨©(ª , §)�«̈  �¨­(ª , §)�«¬ �¨­(ª , §)�«̈  �®««¯«�«¬ �®««¯«�«̈  
0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 

1.057220171 
1.092460844 
1.127701516 
1.162942189 
1.198182861 
1.233423533 
1.268664206 
1.303904878 
1.339145550 
1.374386223 
1.409626895 

1.762033619 
1.726792947 
1.691552274 
1.656311602 
1.621070930 
1.585830257 
1.550589585 
1.515348912 
1.480108240 
1.444867568 
1.409626895 

1.057220173 
1.092460840 
1.127701508 
1.162942196 
1.198182810 
1.233423539 
1.268664248 
1.303904925 
1.339145556 
1.374386230 
1.409626903 

1.762033614 
1.726792941 
1.691552268 
1.656311611 
1.621070921 
1.585830346 
1.550589588 
1.515348894 
1.480108230 
1.444867571 
1.409626898 

2.1229 e-9 
4.7724 e-9 
8.3444 e-9 
7.0643 e-9 
5.1151 e-8 
6.7012 e-9 
4.2159 e-8 
4.7441 e-8 
6.2102 e-9 
7.7177 e-9 
8.0020 e-9 

5.0107 e-9 
6.7036 e-9 
6.7939 e-9 
9.4339 e-9 
9.0052 e-9 
8.9137 e-8 
3.9211 e-9 
1.8195 e-8 
1.0122 e-8 
3.9898 e-9 
3.7220 e-9 

 
In [17], Allahviranloo and Kermani solved this problem by using Finite Difference method for h=0.1 and 
k=0.001. The max absolute error at the point (0.1,0.001), ∀ r ∈[0,1] is 7.6247 e−6 . 
 
Analytical and trial solutions for this problem can be found in Tables 3 and 4. 
 
The minimized error function is: E = ∑ �Eir

L + Eir
U�11

ii1 , where   
 

Table 3. Numerical results for example (2), for x =0.1, t=0.001 
 

r �¨©(ª , ´)�«¬ �¨©(ª , ´)�«̈  �¨­(ª , ´)�«¬ �¨­(ª , ´)�«̈  �®««¯«�«¬ �®««¯«�«̈  
0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 

0.231758171 
0.239483443 
0.247208715 
0.254933988 
0.262659260 
0.270384532 
0.278109805 
0.285835077 
0.293560349 
0.301285622 
0.309010894 

0.386263618 
0.378538345 
0.370813073 
0.363087801 
0.355362528 
0.347637256 
0.339911984 
0.332186711 
0.324461439 
0.316736167 
0.309010894 

0.231758196 
0.239483480 
0.247208676 
0..254933954 
0.262659284 
0.270384547 
0.278110262 
0.285835487 
0.293560292 
0.301285692 
0.309010824 

0.386263624 
0.378538333 
0.370813168 
0.363087888 
0.355361709 
0.347638049 
0.339911194 
0.332186630 
0.324461524 
0.316736258 
0.309010990 

2.5029e-8 
3.7617e-8 
3.9641e-8 
3.4237e-8 
2.4999e-8 
1.5216e-8 
4.5775e-7 
4.1010e-7 
5.7922e-8 
7.0355e-8 
7.0922e-8 

0.6369e-8 
1.2021e-8 
9.5407e-8 
8.7311e-8 
8.1995e-7 
7.9307e-7 
7.9054e-7 
8.1042e-8 
8.5142e-8 
9.1373e-8 
9.6334e-8 
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Table 4. Numerical results for example (2), for x =0.001, t=0.1 
 

r �¨©(ª , ´)�«¬ �¨©(ª , ´)�«̈  �¨­(ª , ´)�«¬ �¨­(ª , ´)�«̈  �®««¯«�«¬ �®««¯«�«̈  
0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 

0.001906198 
0.001969738 
0.002033278 
0.002096818 
0.002160358 
0.002223897 
0.002287437 
0.002350977 
0.002414517 
0.002478057 
0.002541597 

0.003176997 
0.003113457 
0.003049917 
0.002986377 
0.002922837 
0.002859297 
0.002795757 
0.002732217 
0.002668677 
0.002605137 
0.002541597 

0.001906962 
0.001969130 
0.002033340 
0.002096748 
0.002160426 
0.002223827 
0.002287382 
0.002351027 
0.002414570 
0.002478014 
0.002541638 

0.003177081 
0.003113543 
0.003049851 
0.002987041 
0.002923537 
0.002859920 
0.002795806 
0.002732264 
0.002668647 
0.002605161 
0002541570 

7.6442e-7 
6.0894e-7 
6.2334e-8 
7.0810e-8 
6.8840e-8 
7.0098e-8 
5.5665e-8 
5.0226e-8 
5.3307e-8 
4.3366e-8 
4.1121e-8 

8.4491e-8 
8.6409e-8 
6.6226e-8 
6.6492e-7 
7.0076e-7 
6.2343e-7 
4.9970e-8 
4.7977e-8 
3.0222e-8 
2.4430e-8 
2.7786e-8 

 

EZCo =

��
��
��
��
��
��
��
�(−4tZX)

�
� 

(xZ − xZX) ∑ mv̀ nCo w`1X s´´1&`i1 �Q(xZ) w`1+ Q(tZ) w`X+ b`�
+(2 − 4xZ) ∑ mv̀ nCow`1s´1&`i1 �Q(xZ) w`1+ Q(tZ) w`X+ b̀ �

− 2 ∑ mv̀ nCos1&`i1 �Q(xZ) w`1+ Q(yZ) w`X+ b̀ � ¤
¥¦ 

  +
(xZ − xZX)

�
� 

(tZX) ∑ mv̀ nCo w`XX s´´1&`i1 �Q(xZ) w`1+ Q(tZ) w`X+ b̀ �
+(4tZ) ∑ mv̀ nCow`Xs´1&`i1 �Q(xZ) w`1+ Q(tZ) w`X+ b̀ �

+ 2 ∑ mv̀ nCos1&`i1 �Q(xZ) w`1+ Q(tZ) w`X+ b`� ¤
¥¦

.+ (4πX(1 − tZX) − 2)(0.75 + 0.25r)sinπxZ  ��
��
��
��
��
��
��
�X

        

                                                                                  

EZCp=

��
��
��
��
��
��
��
�(−4tZX)

�
� 

(xZ − xZX) ∑ mv̀ nCp w`1X s´´1&`i1 �Q(xZ) w`1+ Q(tZ) w`X+ b̀ �
+(2 − 4xZ) ∑ mv̀ nCpw`1s´1&`i1 �Q(xZ) w`1+ Q(tZ) w`X+ b`�

− 2 ∑ mv̀ nCps1&`i1 �Q(xZ) w`1+ Q(yZ) w`X+ b`� ¤
¥¦ 

  +
(xZ − xZX)

�
� 

(tZX) ∑ mv̀ nCp w`XX s´´1&`i1 �Q(xZ) w`1+ Q(tZ) w`X+ b`�
+(4tZ) ∑ mv̀ nCpw`Xs´1&`i1 �Q(xZ) w`1+ Q(tZ) w`X+ b`�

+ 2 ∑ mv̀ nCps1&`i1 �Q(xZ) w`1+ Q(tZ) w`X+ b`� ¤
¥¦

.+ (4πX(1 − tZX) − 2)(1.25 − 0.25r)sinπxZ  ��
��
��
��
��
��
��
�X

                                                       

 

13 Conclusions 
 
In this paper, we presented a novel approach based on fuzzy neural networks for solving fuzzy partial 
differential equations. We demonstrate the ability of fuzzy neural networks to approximate the solutions of 
FPDEs. From the two examples it is clear that the modified fuzzy neural network method gives best results 
and better accuracy comparison with usual fuzzy neural network. As well, we can conclude that the method 
we proposed can handle effectively all types of FPDEs and provide accurate approximate solution 
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throughout the whole domain and not only at the training set. Therefore, one can use the interpolation 
techniques (such as curve fitting method) to find the approximate solution at points between the training 
points or at points outside the training set. better results may be possible if one uses more neurons or more 
training points. The main reason for using fuzzy neural networks was their applicability in function 
approximation. Further research is in progress to apply and extend this method to solve three-dimensional 
fuzzy partial differential equations. 
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