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Abstract

The aim of this work is to present a modified methodfifating the numerical solutions of fuzzy partial
differential equations by using fuzzy artificial neuratworks. Using a fuzzy trial neural solution
depending on the fuzzy initial values and the fuzzy boundamgitons of the problem. Using modified
fuzzy neural network makes that training points should betedl@wer an open interval without training
the network in the range of first and end points. In facts iew method based on replacing each
element in the training set by a polynomial of first degfBee fuzzy trial solution of fuzzy partial
differential equation is written as a sum of two parts. Tibst part satisfies the fuzzy conditions,|it
contains no fuzzy adjustable parameters. The secondnpatves a feed-forward fuzzy neural netwqgrk
containing fuzzy adjustable parameters. In comparisoh &itsting similar fuzzy neural networks, the
proposed method provides solutions with high accuracy. Finally,llugrate our approach by tw
problems.

o

Keywords: Fuzzy partial differential equation; fuzzy neural netwéeed-forward neural network; BFGS
method; hyperbolic tangent function.

1 Introduction

Many methods have been developed so far for solving fd#grential equations (FDEs). Most of the
practical problems require the solution of a FDE whsalisfies fuzzy initial or fuzzy boundary conditions.
The theory of FDEs was treated by Kaleva [1], Ouyamd Wu [2], Nieto [3], Buckley and Feuring [4],
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Seikkala also recently there appeared the papers of Bedie and Gal [5], Diamond [6,7], Georgiou and
Nieto and et al. [8], Nieto and Lopez [9].

In the following, we have mentioned some numerical solutitnich have proposed by other scientists.
Abbasbandy and Allahviranloo have solved FDEs by Runge-Kuta Taytbr methods [10,11]. Also,
Allahviranloo and et al. solved FDEs by predictor- coiwe and transformation methods [12,13,14].
Ghazanfari and Shakerami developed Runge-Kuta like fornfuteder 4 for solving FDEs [15]. Nystrom
method has been introduced for solving FDEs [16]. Allamid@a and Kermani solved fuzzy linear partial
differential equations under new definition of fuzzy daftive [17]. Dahalan and Muthuvalu and et al.
developed the Performance of (Half-Sweep Alternatingu@iExplicit) method with Seikkala derivative for
two dimensional fuzzy Poisson equation [18].

In recent years artificial neural networks for estimatidrnthe ordinary differential equation (ODE) and
partial differential equation (PDE) have been used. In L% and Kang [19] used parallel processor
computers to solve a first order ODEs with Hopfield neurtiwork models. In (1994) Meade and
Fernandez [20,21] solved linear and non-linear ODEs hyguisied-forward neural networks architecture
and B-splines of degree one. In (1997) Lagaris and e2323] used artificial neural network for solving
ODEs and PDEs with the initial/ boundary value probldm$1999) Liu and Jammes [24] developed some
properties of the trial solution to solve the ODEs by gigrtificial neural networks. In (2004) Tawfiq [25]
presented and developed supervised and unsupervised algorithemdvinog ODEs and PDEs. In (2006)
malek and shekari [26] presented numerical method based dniartifeural network and optimization
techniques which the higher-order ODE answers approximatdsding a package form analytical of
specific functions. In (2008) Pattanaik and Mishra [2@plied and developed some properties of ANN for
solution of PDE in RF Engineering. In (2011) Oraibi [28%ide feed-forward neural networks for solving
ordinary initial value problem. In (2015) Hussian and Suhhi2®h {ised modified artificial neural networks
for solving PDEs.

Numerical solution of FDEs by using artificial neuratwerks is the subject of a very modern because it
only goes back to 2010. In (2010) Effati and pakdaman [30] usifidial neural network for solving FDEs,
they used for the first time the artificial neural netiwto approximate fuzzy initial value problems. In
(2012) Mosleh and Otadi [31] used artificial neural networkséiving fuzzy Fredholm integro-differential
eauations. In (2013) Ezadi and et al. [32] used artificiafalenetworks based on semi-Taylor series to solve
first order FDE. In (2015) Hussian and Suhhiem [33] usedified artificial neural networks for solving
FDEs.

Numerical solution of FDEs by using fuzzy artificial ndunatworks is more modern than the previous
subject, where it goes back to 2012. In (2012) Mosleh andi (34] used fuzzy artificial neural network for
solving first order FDEs, they used for the first tithe fuzzy artificial neural network to approximate fuzzy
initial value problems. In (2013) Mosleh [35] used fuzzyfiaitil neural network for solving a system of
FDEs. In (2014) Mosleh and Otadi [36] used fuzzy artifioediral network for solving second order FDEs.
In (2015) Hussian and Suhhiem [37] used modified fuzzy henetworks for solving Fuzzy ordinary
differential equations.

In this work we proposed a new numerical method to find theoappate solution of fuzzy partial
differential equations (FPDES), this method can resuthproved numerical methods for solving FPDEs. In
this proposed method, fuzzy neural network model (FNNMjpiglied as universal approximator. We use
fuzzy trial function, this fuzzy trial function is a comhiion of two terms. A first term is responsible for
the fuzzy conditions while the second term contains the faezyal network adjustable parameters to be
calculated. The main aim of this paper is to illustitadev fuzzy connection weights are adjusted in the
learning of fuzzy neural networks. Our fuzzy neural networkhis work is a three-Layer feed- forward
neural network where connection weights and biases are furmpers. This modified method is called
modified fuzzy neural network (MFNN) for solving FPDE$id new method based on replacing eaat
the training sefwherex € [a, b]) by the polynomial @x) =€ (x + 1) such that Qx) € (a,b) by choosing a
suitablee € (0,1). In this paper, we will illustrate this modified method byvéoy two numerical
examples. In general, this modified method is effedtvesolving FPDEs.
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2 Preliminaries

In this section the basic notations used in fuzzy calcukighénoduced.
Definition 2.1. [38]:

A fuzzy number u is completely determined by any pail(t_n,:ﬁ) of functionsu (r), a (r) : R — [0,1]
satisfying the conditions:

(1) u (r) is a bounded, monotonic, increasiftpn — decreasingleft continuous function for afl
€ (0,1] and right continuous for r=0.

(2) u (r) is a bounded, monotonic, decreasingn — increasingleft continuous function for all €
(0,1] and right continuous for r=0.

(3) For allr € (0,1] we haveu (r) < u ().

For everyu =(u, @) , v = (v,¥v) andk > 0 we define addition and multiplication as follows:

@+v) @=u@®+v () (1)
U+ v)(@)=0@)+7 @) @)
(ku) (1) =Ku @), ku) () =K () ©)

The collection of all fuzzy numbers with addition and multigion as defined bfgs. (1) — (3) is
denoted by E. Forr € (0,1], we define the - cuts of fuzzy number with [u], ={x € R|u (x) >r} and

for r=0 the support ofi is defined agu], ={x € Rlu(x) > 0}.

Definition 2.2. [38]:

The function f: R— E! is called a fuzzy function. Now if, for an arbitrary fikg € R ande > 0 there exist
aé > 0 such that:|t-t;| < 8§ = d [f(t) , f(t)] <€

then f is said to be continuous function.

Definition 2.3. [30]:

letu, v € EL. If there exist we E'such that1 = v+w then w is called the H-difference (Hukuhara-difference)
of u, vand it is denoted by w=u @ v. In this work the® sign stands always for H-difference, and let us
remark thatu ® v # u + (-1) v.

Definition 2.4. [30]:

Let f: [a,b]—> E! and t, € [a,b]. We say that f is H-differential (Hukuhara-diiéntial) at,, if there
exists an element’(t,) € E* such that for all & 0 sufficiently small3 f(¢, +h) © f(t,), f(t,) © (¢, - h)
and the limits.

f(to +h) © £(to)

f(to) © f(tg — h
h n

limp, g =limp, 2= ' (to). 4)
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3 Fuzzy Neural Network

A fuzzy neural network or neuro -fuzzy system is afggy machine that finds the parameters of a fuzzy
system(i.e. fuzzy sets, fuzzy rulgdy exploiting approximation from the neural networks. Cormgjriizzy
system with neural network. Both neural network and fuzziesysiave some things in common [37].

Artificial neural networks are an exciting form of tleetificial intelligence which mimic the learning
process of the human brain in order to extract pattérasn historical data. Simple perceptrons need a
teacher to tell the network what the desired output shouldThgse are supervised networks. In an
unsupervised net, the network adapts purely in responteinput [39].

4 Operations of Fuzzy Numbers

We briefly on mention fuzzy numbers operation defined by #tension principle .Since output vector of
feed-forward neural network is fuzzy in this paper, fokowing addition, multiplication and nonlinear
mapping of fuzzy number are necessary for defining our foemyal network [37]:

Mase (2) = Max {ua (X) A s (Y) | 2= x + y} (5
Mag (2) = Max {ua(X) a pg (Y) | z=xy} (6)
M7(@ = Max o (%) | 2= £ (00} (7)

where A, B and net are fuzzy number (x) denotes the membership function of each fuzzy numbisr,
the minimum operator anf{.) is a continuous activation function (such as hyperbligent function)
inside the hidden neurons. The above operations of fuzzy nsralemnumerically performed on level sets
(i.e. r-cuts).

The r-level set of a fuzzy number A is defined as:

[A, ={xeR|ma(x)=r} ,0<r<1 (8)

Since level sets of fuzzy numbers become closed intematienote[A], as [A], = [ [A]Ir‘ , [A][rJ ]

where[A]lr“ and[A]lfI are the lower limit and the upper limit of the r-leset[A], respectively From interval
arithmetic , the above operations of fuzzy number argemrfor r-level set as follows:

— L L U U

(A, +[B]; = [[A]r + 8%, [a1) + (B ] ©
min {[A1" (B1%, (A" 18], (A1 . [B]", [A1V) . [B] "} ,

[A]r [B]r = ln{ rL rL rL rU rU Il; IL‘I IL‘I} (10)
Max {[A] - [B].",[A] . [B] ,[A] .[B] ", [A] . [BI}

f(Imet],) = f ([[net]'; [net] ‘j]): | (ined™) . £ (ned?)] (11)
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5 Input — Output Relation of Each Unit

Let us consider a fuzzy three — layer feed — forwardatewatwork with n input units, m hidden units and s
output units. Target vector, connection weights and biasesuazy numbers and input vector is real
number. For convenience in this discussion, FNNM with an itgyetr, a single hidden layer, and an output
layer in Fig. 1 is represented as a basic structurhltacture. Here, the dimension of FNNM is denoted by
the number of neurons in each layer , thatism x s, where n, m and s are the number of the neurons in
the input layer, the hidden layer and the output layepeively [35,36] .

Input units Hidden units Output units

[yalr

[yir

[vs]e

Bias unit Bias unit

Fig. 1. Three-layer feed-forward Fuzzy neural network

The architecture of the model shows how FNNM transforms thmputs(x, , x5, ...,X;, ..., X,) into the s
fuzzy outputs ([y.l., [v2le, - Vile s - [ys]le) throughout the m  hidden fuzzy neurons
(AN [Z]r - [zm];) , where the cycles represent the neurons in each laygb;l.etbe the fuzzy
bias for the fuzzy neurojx;], , [cc], be the fuzzy bias for the fuzzy neurdonl. , [wj], be the fuzzy
weight connecting crisp neurafto fuzzy neuroriz;], , and[wy;], be the fuzzy weight connecting fuzzy
neuron[z;], to fuzzy neurory], .

When an n — dimensional input vecfas ,x,, ..., x;, ..., X,) iS presented to our fuzzy neural network , its
input — output relation can be written as follows , wh@teR" — ES :

Input units:

0,=%x; , i=123,..n (12)
Hidden units:

zi =F (net;) , j=123,...m, 13}
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netj = 2?21 0j Wji + b] (14)
Output units:

yx =F (net) , k=123, ...,s5, (15)

nety = Y7L, Wy z;+ (16)
The architecture of our fuzzy neural network is shown in Ejgwhere connection weights, biases, and

targets are fuzzy numbers and inputs are real numbersinfptie — output relation in Eq$12 —16) is
defined by the extension principle.

6 Calculation of Fuzzy Output

The fuzzy output from each unit in Eq4.2 — 16) is numerically calculated for real inputs and level séts
fuzzy weights and fuzzy biases. The input — output relatbrmir fuzzy neural network can be written for
the r — level sets [34].

Input units:
0;=x; , i=1,23,..n (17)
Hidden units:
(2] =F ([netj]r) J =123, ...m, (18)
[net;], = Xizq 05 [wjilr + [bj]; (19)

Output units:

[yils =F ([nety],) k=123, ...,5s, (20)

[netk]r = 2?1:1[ij]1~ [Zj]r+ [Ck]r . 112

From Egs.(17 —21), we can see that the r — level sets of the fuzzy aiypis are calculated from those of
the fuzzy weights, fuzzy biases and the crisp inputs.

From the operations of fuzzy numbers, the above relatiomsewritten as follows when the inputss are
non — negative, i.ex; > 0.

Input units

. 22)
Hidden units:

1o = (netle) =[], [],] = [F (Inet]) ¥ ([net]))] )
where

[net;]) =T, 0 [wy] +[b;] -
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[mtj]f =20 [Wji]f + [b,-]f (25)

Output units:

[yidr =F (meti]y) = [yt V] =- [F([net]r) , F([net,]{)] (26)
etk = Xjea [Wisl, [7]] + Zjen [wil, [77], + ek (@7)
[nety ]y =% [ij]f [Zj];I +Xjed [ij]f [Zj]: + oY (28)

For [z,-]f > [z,-]: >0, where
a={j: [wgll 20}, b={j: [wg] <o}

c={j: [wyl, 20}, d={j: [wgy]] <o},
aub={123,..,m} and cud={1,23,..,m} .

7 Fuzzy Neural Network Approach for Solving FDEs

To solve any fuzzy ordinary differential equation (i.estforder FDE , second order FDE ,ptwe consider

a three — layered FNNM with one unit entry x , one hiddsmr consisting of m activation functions and
one unit outpulN(x,p). The activation function for the hidden units of our fuzzwraé network is
hyperbolic tangent function. Here, the dimension of FNNM.ig (n x 1).

For every entry x the input neuron makes no changes imgtg, so the input to the hidden neurons is
[34,37]:

net; = xw; + b]- j=123, ...m, 29)

wherew; is a weight parameter from input layer to ftieunit in the hidden layeb; is anjth bias for the
jth unit in the hidden layer.

The output, in the hidden neurons is:
z; = S(net]-) J =123, ....m, (30)

where s is the hyperbolic tangent activation function. dimput neuron make no change in its input, so the
input to the output neuron is equal to output:

N=vyzg +VyZp +Vv3z3+ .+ zi+ . +vy 2, =200 Vi 7 31j
wherev; is a weight parameter frofth unit in the hidden layer to the output layer.
From Egs(22 — 28, we can see that the r — level sets of the E2%-— 3] are calculated from those of the
fuzzy weights, fuzzy biases and crisp inputs. For ouryuzeural network, we can derive the learning

algorithm without assuming that the input x is non — negatige réducing the complexity of the learning
algorithm, input x usually assumed as non-negative in the fuzanal network, i.e., ¥ 0:
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Input unit:
0=Xx,
Hidden units:
e = [a], [, ] =[s(Inet],) s (Iney],)
Where
[netj]: = O[Wj]: + [bj]: ; [netj]iJ =o [Wj]iJ + [bj]iJ
Output unit:

[N]: =[IN]F, [NI'] ,  where
INIE =2y} (5] + Zjelvi], 7],
N = Zjedvi]] (5], + el [];
For [z,-]iJ > [z,-]: >0, where: a :{j : [v,-]]; > 0} b :{j : [vj]: < 0}
c=fi: [v]' 20}, d={j: [v]] <o},
aub={1,2,.m} and cud={1,2,..m}.

For illustration the solution steps, we will consider tingt forder FDE:

dy ) _

” =F(,y), x€la,b] ,y(@=A

where A is a fuzzy number intBvith r — level sets :
[Al: = [[Alr, [AIY] ,re[o0,1].
The fuzzy trial solution for this problem is:
[yex, p)]r =[A]; + (x —a) [N(x, p)];
This fuzzy solution by intention satisfies the fuzzyialitondition in (36).

The error function that must be minimized for the prob{&6) is in the form:

E=3%, (B + E}
B = [252]" (5 (s )] |

B = [ [w]“ — [F (x e G 0)], ]2

(32)

(33)

(34)

(35)

(36)

37

(38)

(39)

(40)
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Where{x;}%_, are discrete points belonging to the inteffaglb] (training sef and in the cost functio(8s) ,
EL andE! can be viewed as the squared errors for the lower and lipitsrof the r — level sets. It is easy
to express the first derivative ffi(x, p)], in terms of the derivative of the hyperbolic tangéat,

U U
L @ [zj]r ] [netj]r

L 0[21 6[netj]
o =2l S T Tl G @
d|z d [ne d |z d |ne 1
L=y, a[ie’t] sl a[[i] e (42)

where

[\
(=)
—

3 L
a={j: [v] b={j: [v] <o},
C:{j: [vj]iJ > 0} , d:{j: [v]-];J < 0} ,
aub={1,23,..m} and ocud={1,23,..m}. Also we have

d [net ]:  [net ]
=l i LI

0[21-]11_' _ L\ 2 6[21-]]l_J _ U\ 2
i) [netj]]r“ =1- ([Zj]r) ' ] [netj]iJ =1- ([Zj]r)

Now differentiating from fuzzy trial functiofy,(x, p)]r in (39) and(40) we obtain:

[yt(x p)] — N &, )]t + (x — a)a[N;XX"’)]fL

(43)
[yt<x.p)]ﬁ’_[N oY a[N(x I
B PP +(x—a) (44)
Therefore, we get
Salol" ]+ Bl 5]+ (s — ) T
B =| (Sl k(1= (1)) + Sl ]! (1 - ([z,-]f)))| (45)
(s 1 G- ) (Bl [ 1Y) |

Zvl, 5]+ Zalv], [5]+ i - )
BY =|(Selvl, [l (1 - ([ZI]S)) +Za[vl, [l (1 - ([Zj]:)))| (46)
—F (%, 141+ 5 — @) (Sl 1+ Zaly ! [51))

Now we substitut€45) and(46) in (38) to find the error function that must be minimized for peai (36).

For the higher order fuzzy ordinary differential equationd &PDEs eq(45) and eq(46) will be very
complex and the computations are very difficult.
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Therefore, for reducing the complexity of the learning algoritwe will propose a partially fuzzy neural
network in the next section.

8 Partially Fuzzy Neural Networks

One drawback of the fully fuzzy neural networks with fuzoynection weights is long computation time.

Another drawback is that the learning algorithm is comf@daTherefore, for reducing the complexity of

the learning algorithm, a partially fuzzy neural netew@PFNN) architecture has been proposed where
connection weights to the output unit are fuzzy numbers woitmection weights and biases to the hidden
units are real numbers [34,37].

The input — output relation of each unit of our PFNN in E82-35 can be rewritten for r — level sets as
follows:

Input unit: 0=X
Hidden units:  z; = s(net;) ,j=1,23,..m

where net; =ow; +b;

Output unit: [N], = [[N]}, [N]Y [Z] =1 V]] z ,Xj= 1["1] ZJ]

Now to find the minimized error function (under PFNN) foolgem (36):

a a

a[N]r =2 1[ J]: 0nZeJt net, =2 1["1] wj (1_ Zj ) (47
a a

a[N]r ‘21 1[ J]E 6nZeJt net] Z, 1[V1] Wj (1_ Zj ) (48)

By substituting Egs (47 and 48) in Egs (39 and 40) , we obtain :

»Z}“zl z; [v,-]:+ (xi—a) X, w; (1- ij)[Vj]:_z
—F (Xi: [A]:+ (x; — a) Xit17 [Vj]:)

EL = (49)

b _Z?ﬂ:l z [Vj]f+ (xj—a) XjL,w; (1 - zjz)[Vj]E'z 0
T (e -2 S )

and then we substitu@9) and(50) in (38) to find the error function that must be minimized for proble
(36) (with respect to PFNN).

9 Fuzzy Neural Network Approach for Solving FPDEs

To solve any fuzzy partial differential equatiome, consider a three — layered FNNM with two unit
entries x and y , one hidden layer consisting of m aabivatunctions , and one unit output N(x , y, p).

Here, the dimension of FNNM is (2 x m ¥.1

10
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For every entries andy, the input neurons makes no changes in its inputs, eséngut to the hidden
neurons is:

net; =xwj; +ywj; +b; , j=1,23,..m 1)

wherew;; andw;, are a weights from the input layer to yie unit in the hidden layeb; is anjth bias for
thejth unit in the hidden layer.

The output in the hidden neurons is:
zi=s(net;) ,j =123, ..m (52)
The output neuron make no changes in its input, so the input ©©uhgut neuron is equal to output:

N= 2?1:1 Vj Zj (53)
FromEgs.(22-28 , we can see that the r — level sets of the Exfs— 53 are calculated from those of the
fuzzy weights, fuzzy biases and crisp inp(F&y. 2). For our fuzzy neural network, we can derive the
learning algorithm without assuming that the inpusdy are non — negative. For reducing the complexity
of the learning algorithm, the inputsandy usually assumed as non — negative in the fuzzy neural rlgetwor
i.e.,x=o0andy = o:

Input units:

X=X, Y=y (54)

Hidden units

Input unit Output unit

[Nl

Bias unit

Fig. 2. (2 x m x 1) feed-forward fuzzy neural network

11
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Hidden units:
[z = [[Z]]: [Z]]f] = [5 ([netj]:) S ([“etj]f)] (55)
[netj]: =X [le]: +y [sz]];+ [bj]: (56)
[n‘“j]iJ =X [le]iJ +y [WjZ]E+ [bj]iJ (57)
Output unit:
[N] = [[N]¥, [NIY] (58)
INIE = Zjelv]; [+ Zjelv], 7], (59)
INE =Sedy], (5], + Zielvi], [5]; (60)

For [z,-]f > [z,-]: > 0, where : a-{j : [vj]: > o} b :{j : [vj]: < o}

C:{j: [vj]iJ > o} , d:{j: [vj]iJ < o} ,
aub={1,23..m} and cud={123,..m}.

Also, the input — output of each unit of our PFNN in E&%-60 can be rewritten for r — level sets as
follows:

Input unit:

X=X, y=y (61)
Hidden units:

z; = S(net]-) ,Jj=123,..m (62)
where

net; = Xwj; + ywj+b; (63)
Output unit:

[Nl = [INTE, INIYD =[2 v ]z, Safv] | (64)

10 Description of the Method

We treat here one and two-dimensional problems only. Howevsrstitaightforward to extend the method
to more dimensions. For example, if we consider tliedimensional fuzzy Poisson equation:

a%2u
d x2

82U
*oy - f&y) . x,y€fa,b] (65)

12
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with the Dirichlet fuzzy boundary conditions (fof ke [0,1]):
U@Gy) =fo(y) . ULy) =fi(y) . Ux,0) = g,(x) and Ux, 1) = g, (X).

where: f(x,y) , fo(y) , (V) , g,(X) and g(x) are fuzzy numbers or fuzzy functions with r-levelsset
(parametric form) :

[fo(W] = [£,(0), To(W] L (W1 =[f,(), Ta(y)]
[5,00], =[g,09. G] . [6,00], =[g,00, 5,0
The fuzzy trial solutiofU;(x,y)], = [U.(x,y.1,p) ,Ur(x,y,r,p)] can be chosen as follows [29]:
U,y np=AxY + xy(1=x) (1=-y) N,y r,p)
Ur(x,y, LD =AX,Y) + xy (1= x) (1= ) NKX,y, 1, D (66)
where Ax,y) and A(x,y) are chosen so as to satisfy the fuzzy boundary conditionglyram

ACLY) = (L0 () +x () + (1Y)
[gO(X) ~[a-xg,© +x 90(1)]]+ y[gl(X) ~|a-xg,© +x 91(1)]]

ALY) =(1-x) Fo) +xh(y) +(L-y)
[8,00 = [(2 =0 5, +xT,D]]+ 5,60 — [(1 =) 5, () +x5,(D)]] (67)

The minimized error function will be:  EX,(Ef + E?), where

2
L _ aZUT aZUT L_ L
B = [ [ + 5] - ey

2

%u a2ur Y
By =[5 + 5] - el | (68)

where(x; ,y,) are points in the domafi9,1] x [0,1].
11 Proposed Method

In this section we will introduce a novel method to modily fuzzy neural network. This new method based
on replacing each x in the input vecfmaining se} X = (X, X, , ..., Xn) , X; € [ b] by a polynomial of first
degree.

In [40] Ezadi and parandin used the function: Q(¥)(x + 1),e € (0,1)

then the input vector will befQ(x;), Q(xz) , ... Qky)), Q;) € (a,b). In this paper, we named this
proposed method modified fuzzy neural network. Using modifiedyfuneural network makes that training

13
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points should be selected over the open intdivah) without training the neural network in the range of
first and end points. Therefore, the calculating volunwelving computational error is reduced. In fact, the
training points depending on the distafagb] selected for training fuzzy neural network are congette
similar points in the open intervéd, b) by using the new approach, then the fuzzy network isetain
these similar areas [21,22].

12 Numerical Examples

To show the behavior and properties of the new method, two prsbléll be solved in this section. For
each example, the accuracy of the method is illustratedomputing the deviationgrror- , [errof?
where

[errod =] [U.(x, W)1F-[Ur (¢, WIF|, [errof = [Ua0x, )IP-[Ur (¢, 1P|
and
(U, W 1=[Uax T, [ULxGIY]T  the analytical solution
[Ur O, W1 =[[Ur(x,0]1F, [Ur(x,0IP] the trial solution
For all examples, multilayer perceptron consisting of odgdn layer with 10 units and one linear output
unit is used. To minimize the error function, we used BRB®yden-Fletcher-Goldfarb-Shanno) quasi-

Newton method (For more details, see [41,42]).

Example (1): Consider the fuzzy Poisson problem:
82T 22T .
- —_— = y
oz oY) o (ky) =Kxe’ x,y€[0,1],

whereK(r) = [0.75+0.25r, 1.25— 0.25r] with the fuzzy conditions:
0@,y)=0,U(1,y)=Ke,0<y<1
and
Ux,00=Kx,U(x,)=Kex,0<x<1.
The fuzzy analytical solution for this problem is :
[U.(x, Y], =[(0.75+ 0.25r) x&, (1.25— 0.25r ) x€'].
The fuzzy trial solution for this problem is :
[Ur(x,y)], =[(0.75+ 0.251) x&’, (1.25— 0.25r ) x€&’]
+@y—x) (1-y) [N,y Pl

The error function for m = 10 units in the hidden layer &dg = 11 equally spaced points inside the
interval [0, 1] for each variable x and y is trained.

For e = 0.4, the training set will be:

04(x+1) ,vx€e[0,1]and 0.4y +1) ,Vvy€][O0,1].

14
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Analytical and trial solutions for this problem can be found@able(1) and Tablg2).

For this problem, the minimized error function is:

(B + B
where
i Xz) Z [V]] 115 (Q(X1) Wit Q(Y1) Wit b; )
-y +(2 — 4x;) Zj=1[Vj]rW115 (Qxp) wji+ Q(yi) wjp+ b; )
L
-2 Z}gl[vj]rs (QGxp wjr+ Q(yi) wj+ bj)
L_— +
Eir_
—Yi ) Z Vj] ZS (Q(Xl) wjt Q(Y1) Wi+ b; )
i Xz) +(2 - 4Y1 [Vj] W;j2S (Q(X ) wjt Q(Y1) Wi+ b; )
-2 Z [V]] (Q(Xl) wjt Q(Y1) Wi+ b; )
((Xl - Xz) Z 1[Vj] 1‘215” (Q(Xi) wjt Q) Wi+ bj)w
Gi—yD | +2-4x) X2 [Vj] wj;s” (Q(x;) Wi+ Q(y) wjp+ by)
\ - 22 1[Vj] S(Q(X)le+ Q) W]2+b ) /
U— +
Eir 2
( @i = yD) Zily], whs” (QG) Wy + Q) Wizt by b-)w
—Xj ) + 4Y1) Z [V]] W]ZS (Q(X1) W]1+ Q(Y1) W]2+ b )
\ — 2318 []'s (QCx) wji+ Q(yy) wyz+ by) /
Table 1. Numerical results for example (1), forr = 0.5
X y Ul (U} Uyl [Upx,y]  [error]y  [error]!
0 0 0 0 0 0 0 0
0.1 0.1 0.096702455 0.124331728 0.096702461 0.124331737 6.6854 e-9 9.3281 e-9
0.2 0.2 0.213745482 0.274815620 0.213745474 0.274815626 8.5672e-9 6.5423 e-9
0.3 0.3 0.354337937 0.455577347 0.354337929 0.455577342 8.3301e-9 5.7664 e-9
0.4 0.4 0522138644 0.671321113 0.522138646 0.671321109 2.4376 e-9 4.9806 e-9
0.5 0.5 0.721315555 0.927405714 0.721315505 0.927405718 5.0158 e-8 4.5307 e-9
0.6 0.6 0.956612370 1.229930190 0.956612401 1.229930266 3.1330e-8 7.6771e-8
0.7 0.7 1.233423533 1.585830257 1.233423539 1.585830346 6.7012e-9 8.9137 e-8
0.8 0.8 1.557878650 2.002986836 1.557878654 2.002986840 4.8833e-9 4.0264 e-9
0.9 0.9 1.936937450 2.490348150 1.936937457 2.490348154 7.6347 e-9 4.3421 e-9
1 1 2.378496600 3.058067057 2.378496600 3.058067057 O 0

Example (2): Consider the fuzzy Wave problem:

220
9tz

920 _
,0) 4ﬁ x,©)=0, x,te[0,1],

15
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with the following fuzzy boundary and initial conditions:

0(0,5=0,0(1,0=0,0,0(x,0) =Ksin(rx) and =T (x,0) = 0.

where K(r) =[0.75+ 0.25r, 1.25— 0.251] .

The fuzzy analytical solution for this problem is:

[U.(x, )] =[(0.75 + 0.25r) sin(mx) cos (2mt) , (1.25 — 0.25r ) sin(mx) cos (2mt)].

The fuzzy trial solution for this problem is:

[Ur(x,0)]=[(0.75 + 0.25r)(1 — ¢2) sin(mx) , (1.25 — 0.25r )(1 — t2) sin(mx)] +x (1 —x)t2? [N(x,t,p)];.

Table 2. Numerical results for example (1), for x % = 0.7

r [U,(x, Y [Ua(x, pIY [UrxWIr  [Urx,IY [error]; [error]}

0 1.05722017 1.76203361 1.05722017  1.76203361¢ 2.1229 +9 5.0107 9
0.1 1.092460844 1.726792947  1.092460840 1.726792941 4.7724e-9 6.7036 e-9
0.2 1.127701516  1.691552274  1.127701508 1.691552268 8.3444e-9 6.7939 e-9
0.3 1.162942189 1.656311602 1.162942196 1.656311611 7.0643e-9 9.4339e-9
0.4 1.198182861 1.621070930 1.198182810 1.621070921 5.1151e-8 9.0052 e-9
0.5 1.233423533 1.585830257  1.233423539 1.585830346 6.7012e-9 8.9137 e-8
0.6 1.268664206 1.550589585  1.268664248 1.550589588 4.2159e-8 3.9211e-9
0.7 1.303904878 1.515348912  1.303904925 1.515348894 4.7441e-8 1.8195e-8
0.8 1.339145550 1.480108240  1.339145556 1.480108230 6.2102e-9 1.0122e-8
0.9 1.374386223 1.444867568  1.374386230 1.444867571 7.7177e-9 3.9898 e-9
1 1.409626895 1.409626895  1.409626903 1.409626898 8.0020e-9 3.7220e-9

In [17], Allahviranloo and Kermani solved this problem by udhigite Difference method for h=0.1 and
k=0.001. The max absolute error at the point (0.1,0.004%[0,1] is 7.6247 e6 .

Analytical and trial solutions for this problem can be found@ables 3 and 4.

The minimized error function is: EE (EL + EY), where

Table 3. Numerical results for example (2), for x =0.1, 8:001

r [U,(x, D]y U, D] [Ur(x, D] [Ur(x,O]Y [error]; [error]?

0 0.23175817 0.38626361  0.23175819 0.38626362 2.5029-8 0.6369+-8

0.1 0.239483443 0.378538345 0.239483480  0.378538333 3.7617e-8 1.2021e-8
0.2 0.247208715 0.370813073 0.247208676  0.370813168 3.9641e-8 9.5407e-8
0.3 0.254933988 0.363087801 0..254933954 0.363087888 3.4237e-8 8.7311e-8
0.4 0.262659260 0.355362528 0.262659284  0.355361709 2.4999e-8  8.1995e-7
0.5 0.270384532 0.347637256 0.270384547  0.347638049 1.5216e-8  7.9307e-7
0.6 0.278109805 0.339911984 0.278110262  0.339911194 4.5775e-7  7.9054e-7
0.7 0.285835077 0.332186711 0.285835487  0.332186630 4.1010e-7  8.1042e-8
0.8 0.293560349 0.324461439 0.293560292  0.324461524 5.7922e-8 8.5142e-8
0.9 0.301285622 0.316736167 0.301285692  0.316736258 7.0355e-8  9.1373e-8
1 0.309010894 0.309010894 0.309010824  0.309010990 7.0922e-8  9.6334e-8
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Table 4. Numerical results for example (2), for x =0.00170.1

r [Ua(x, O]r [U,(x, O] [Ur(x, D]} [Ur(x, D]} [error]; [error]?

0 0.001906198 0.003176997 0.001906962 0.003177081  7.6442e-7 8.4491e-8
0.1 0.001969738 0.003113457 0.001969130 0.003113543  6.0894e-7 8.6409e-8
0.2 0.002033278 0.003049917 0.002033340 0.003049851  6.2334e-8 6.6226e-8
0.3 0.002096818 0.002986377 0.002096748 0.002987041  7.0810e-8 6.6492e-7
0.4 0.002160358 0.002922837 0.002160426 0.002923537 6.8840e-8 7.0076e-7
0.5 0.002223897 0.002859297 0.002223827 0.002859920  7.0098e-8 6.2343e-7
0.6 0.002287437 0.002795757 0.002287382 0.002795806  5.5665e-8 4.9970e-8
0.7 0.002350977 0.002732217 0.002351027 0.002732264  5.0226e-8 4.7977e-8
0.8 0.002414517 0.002668677 0.002414570 0.002668647  5.3307e-8 3.0222e-8
0.9 0.002478057 0.002605137 0.002478014 0.002605161  4.3366e-8 2.4430e-8
1 0.002541597 0.002541597 0.002541638 0002541570 4.1121e-8 2.7786e-8

(& —x}) Z}gl[vj]: whs” (Q(x;) wjp+ Q(t) wyp+ bj)\l T

(=4t | +(2 - 4x) 211-21[Vj]];wjls' (Q(y) wji+Q(t) wj+ b))
k -2 z:11‘(:)1["1']:5 Q) wir+ Q(yi) wj+ b,-) }

+
( () TI v ]! whs™ (QGx) wyr+ Q(t) wo+ by) w
(o —xf) | +(4t) Z}gl[vj]:wjzsl Q) wjs+ QL) wjp+ b))
+2 211'31["1]];5 (QGx) wjs+ QL) wj+by) /
+ (4m2(1 — £2) — 2)(0.75 + 0.25r)sinmx;

[ ( (= x2) 510 [v] whs” (QGx) wyat Q) wyp+ b,-)\ T
(—4t) | +(2 — 4x)) Z}Sl[vj]fwjls' Q) wjy+ QL) wj+ b))
= 2338 [v]'s (QCx) wji+ Qo) wiz+ by)
+
() 212 [v;]] whs (QGx) wia+ Q) wyp+b;)
G —x2) | +(@t) T2, [ wias” (Q0x) wja+ Q) wp+ by)
k +2 Z}L[vj]fs (Q(x) wji+ Q1) wp+ by) )
+ (4m?(1 —t?) — 2).(1.25 — 0.25r)sinmx;

U—
Eir_

13 Conclusions

In this paper, we presented a novel approach based on fuzzy netwarks for solving fuzzy partial
differential equations. We demonstrate the abilityuzizly neural networks to approximate the solutions of
FPDEs. From the two examples it is clear that the mextlifizzy neural network method gives best results
and better accuracy comparison with usual fuzzy neural nietisrwell, we can conclude that the method
we proposed can handle effectively all types of FPDEs awodide accurate approximate solution
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throughout the whole domain and not only at the training He¢refore, one can use the interpolation
techniques (such as curve fitting methaod find the approximate solution at points between tamitig
points or at points outside the training set. better remals be possible if one uses more neurons or more
training points. The main reason for using fuzzy neurdaloiks was their applicability in function
approximation. Further research is in progress to applyeatehd this method to solve three-dimensional
fuzzy partial differential equations.
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